EN
登录

使用RedEx方法对复杂克隆DNA序列进行无缝定点突变

Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method

Nature 等信源发布 2024-07-15 01:37

可切换为仅中文


AbstractSeamless site-directed mutagenesis is an important technique for studying protein functions, tuning enzyme catalytic activities and modifying genetic elements in multiple rounds because it can insert, delete or substitute nucleotides, DNA segments or even entire genes at the target site without introducing any unwanted change.

摘要无缝定点诱变是研究蛋白质功能,调节酶催化活性和多轮修饰遗传元件的重要技术,因为它可以在靶位点插入,删除或取代核苷酸,DNA片段甚至整个基因,而不会引入任何不必要的变化。

To facilitate seamless site-directed mutagenesis in large plasmids and bacterial artificial chromosomes (BACs) with repetitive sequences, we recently developed the RedEx strategy. Compared with previous methods, our approach achieves the recovery of correct recombinants with high accuracy by circumventing unwanted recombination between repetitive sequences.

为了促进具有重复序列的大质粒和细菌人工染色体(BAC)中的无缝定点诱变,我们最近开发了RedEx策略。与以前的方法相比,我们的方法通过避免重复序列之间不需要的重组,以高精度恢复正确的重组体。

RedEx readily yields more than 80% accuracy in seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters, which are among the most difficult targets due to the large number of repetitive DNA sequences in modules encoding almost identical enzymes. Here we present the RedEx method by describing in detail the seamless site-directed mutagenesis in a BAC vector.

RedEx在大型多模式聚酮合酶基因簇中无缝DNA插入和缺失的准确率很容易达到80%以上,由于编码几乎相同酶的模块中存在大量重复DNA序列,因此这些基因簇是最困难的靶标之一。在这里,我们通过详细描述BAC载体中的无缝定点诱变来介绍RedEx方法。

Overall, the process includes three parts: (1) insertion of the RedEx cassette containing the desired mutation together with selection–counterselection markers flanked by unique restriction sites and 20-bp overlapping sequences into the target site by recombineering, (2) removal of the selection–counterselection markers in the BAC by restriction digestion and (3) circularization of the linear BAC by exonuclease-mediated in vitro DNA annealing.

总体而言,该过程包括三个部分:(1)通过重组工程将含有所需突变的RedEx盒与侧翼为独特限制性位点和20 bp重叠序列的选择-反选择标记一起插入靶位点,(2)通过限制性消化去除BAC中的选择-反选择标记,以及(3)通过核酸外切酶介导的体外DNA退火使线性BAC环化。

This protocol can be performed within 3 weeks and will enable researchers with DNA cloning experience to master seamless site-directed mutagenesis to accelerate their research.Key points.

该方案可以在3周内完成,并将使具有DNA克隆经验的研究人员能够掌握无缝定点诱变,以加速他们的研究。关键点。

By combining recombineering, ccdB counterselection and exonuclease-mediated in vitro annealing, RedEx achieves seamless mutagenesis of large DNA molecules, including plasmids, fosmids and BACs.

通过结合重组工程,ccdB反选择和核酸外切酶介导的体外退火,RedEx实现了大DNA分子(包括质粒,fosmid和BAC)的无缝诱变。

Compared with CRISPR-based approaches, this method allows the efficient editing of highly repetitive, multimodular gene clusters and represents a powerful tool for modifying biosynthesis pathways and generating new natural products.

与基于CRISPR的方法相比,该方法可以有效编辑高度重复的多模式基因簇,并且是修饰生物合成途径和产生新天然产物的有力工具。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Overview of the RedEx strategy for seamless site-directed mutagenesis in a BAC.Fig. 2: Analysis of DNA direct repeats in pBAC-Target using the Unipro UGENE software.Fig. 3: Analysis of restriction enzymes that did not cleave pBAC-Target (noncutters) by SnapGene software.Fig. 4: Design templates for point mutations, insertions, deletions and swaps using RedEx.Fig.

图1:BAC中无缝定点诱变的RedEx策略概述。图2:使用Unipro UGENE软件分析pBAC靶标中的DNA直接重复序列。图3:通过SnapGene软件分析未切割pBAC靶标(非切割)的限制酶。图4:使用RedEx设计点突变,插入,缺失和交换的模板。图。

5: Preparation of the RedEx cassette.Fig. 6: Restriction analysis of pBAC-ampccdB-Mut recombinants after LCHR.Fig. 7: Restriction analysis of pBAC-Mut recombinants..

5: RedEx盒的准备。图6:LCHR后pBAC-ampccdB-Mut重组体的限制性分析。图7:pBAC-Mut重组体的限制性分析。。

Data availability

数据可用性

The data supporting the findings of this study are available in the supporting primary research paper12.

支持本研究结果的数据可在支持性主要研究论文12中找到。

ReferencesAtanasov, A. G., Zotchev, S. B., Dirsch, V. M., the International Natural Product Sciences Taskforce & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical diversity.

参考文献Satanasov,A.G.,Zotchev,S.B.,Dirsch,V.M.,国际天然产物科学特别工作组和Supuran,C.T。药物发现中的天然产物:进展和机遇。《药物目录》修订版。2020-216(2021)。Smanski,M.J.等人,《利用合成生物学获取和扩大自然界的化学多样性》。

Nat. Rev. Microbiol. 14, 135–149 (2016).Article .

自然修订版微生物学。14135-149(2016)。文章。

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).Article

Rutledge,P.J。&Challis,G.L。通过激活沉默生物合成基因簇发现微生物天然产物。自然修订版微生物学。13509-523(2015)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).Article

Dutta,S.等人。模块化聚酮合酶的结构。《自然》510512-517(2014)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bagde, S. R., Mathews, I. I., Fromme, J. C. & Kim, C. Y. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 374, 723–729 (2021).Article

Bagde,S.R.,Mathews,I.I.,Fromme,J.C。和Kim,C.Y。模块化聚酮合酶包含两个异步操作的反应室。科学374723-729(2021)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grininger, M. Enzymology of assembly line synthesis by modular polyketide synthases. Nat. Chem. Biol. 19, 401–415 (2023).Article

Grininger,M。通过模块化聚酮合酶进行装配线合成的酶学。自然化学。生物学19401-415(2023)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Winn, M., Fyans, J. K., Zhuo, Y. & Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347 (2016).Article

Winn,M.,Fyans,J.K.,Zhuo,Y。和Micklefield,J。工程非核糖体肽装配线的最新进展。《国家生产报告》33317–347(2016)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Tao, X. B. et al. ClusterCAD 2.0: an updated computational platform for chimeric type I polyketide synthase and nonribosomal peptide synthetase design. Nucleic Acids Res. 51, D532–D538 (2023).Article

Tao,X.B。等人。ClusterCAD 2.0:嵌合I型聚酮合酶和非核糖体肽合成酶设计的更新计算平台。核酸研究51,D532–D538(2023)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Englund, E. et al. Expanding extender substrate selection for unnatural polyketide biosynthesis by acyltransferase domain exchange within a modular polyketide synthase. J. Am. Chem. Soc. 145, 8822–8832 (2023).Article

Englund,E.等人。通过模块化聚酮合酶内的酰基转移酶结构域交换,扩展扩展扩展剂底物选择以进行非天然聚酮生物合成。J、 美国化学。Soc.1458822–8832(2023年)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).Article

Wlodek,A。等人。通过模块化基因簇的加速进化,以多样性为导向的生物合成。国家公社。81206(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ji, C. H. et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus. Metab. Eng. 69, 40–49 (2022).Article

Ji,C.H.等人。自上而下的合成生物学方法,用于提高玫瑰孢链霉菌中临床重要抗生素达托霉素的滴度。代谢。工程69,40-49(2022)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Song, C. et al. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res. 48, e130 (2020).Article

Song,C。等人。RedEx:一种在大型多模式聚酮合酶基因簇中无缝插入和缺失DNA的方法。核酸研究48,e130(2020)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).Article

Zhang,Y.,Buchholz,F.,Muyrers,J.P.P。&Stewart,A.F。使用大肠杆菌重组进行DNA工程的新逻辑。纳特·吉内特。20123-128(1998)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y., Muyrers, J. P. P., Testa, G. & Stewart, A. F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).Article

Zhang,Y.,Muyrers,J.P.P.,Testa,G。&Stewart,A.F。通过大肠杆菌中的同源重组克隆DNA。美国国家生物技术公司。181314-1317(2000)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).Article

Sarov,M.等人。应用于秀丽隐杆线虫的功能基因组学重组工程管道。《自然方法》3839-844(2006)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Bird, A. W. et al. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes. Nat. Methods 9, 103–109 (2012).Article

Bird,A.W.等人。细菌人工染色体定点诱变的高效反选择重组工程。自然方法9103-109(2012)。文章

CAS

CAS

Google Scholar

谷歌学者

Wang, H. et al. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res. 42, e37 (2014).Article

Wang,H.等人通过使用ccdB进行反选择的重组工程改进了无缝诱变。核酸研究42,e37(2014)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat. Protoc. 11, 1175–1190 (2016).Article

Wang,H。等。RecET直接克隆和Redαβ重组工程生物合成基因簇,大操纵子或单个基因的异源表达。自然协议。111175-1190(2016)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).Article

Wang,H.H.等人。通过多重基因组工程编程细胞并加速进化。《自然》460894-898(2009)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011).Article

Isaacs,F.J。等人。体内染色体的精确操作可以实现全基因组密码子置换。科学333348-353(2011)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).Article

Gallagher,R.R.,Li,Z.,Lewis,A.O。&Isaacs,F.J。使用合成DNA文库快速编辑和进化细菌基因组。自然协议。92301-2316(2014)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).Article

Fredens,J.等人。具有重新编码基因组的大肠杆菌的全合成。自然569514-518(2019)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).Article

Sharan,S.K.,Thomason,L.C.,Kuznetsov,S.G。和Court,D.L。重组工程:基于同源重组的基因工程方法。Nat。Protoc。4206-223(2009)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, R., Li, A., Zhang, Y. & Fu, J. The emerging role of recombineering in microbiology. Eng. Microbiol. 3, 100097 (2023).Article

Li,R.,Li,A.,Zhang,Y。&Fu,J。重组工程在微生物学中的新兴作用。工程微生物。3100097(2023)。文章

CAS

CAS

Google Scholar

谷歌学者

Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).Article

Zheng,L.,Baumann,U。&Reymond,J.L。一种有效的一步定点和位点饱和诱变方案。核酸研究32,e115(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muyrers, J. P. P. et al. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 1, 239–243 (2000).Article

Muyrers,J.P.P.等人。通过et重组对细菌人工染色体进行点突变。EMBO Rep.1239–243(2000)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).Article

吉布森(Gibson,D.G.)等人。酶促组装高达数百千碱基的DNA分子。《自然方法》6343-345(2009)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res. 46, e28 (2018).Article

Wang,H。等。ExoCET:核酸外切酶体外组装与RecET重组相结合,用于从复杂基因组中高效直接克隆DNA。核酸研究46,e28(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wong, Q. N. et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res. 33, e59 (2005).Article

Wong,Q.N.等人。在大肠杆菌中使用胸苷酸合酶a选择系统进行高效且无缝的DNA重组工程。核酸研究33,e59(2005)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).Article

Warming,S.,Costantino,N.,Court,D.L.,Jenkins,N.A。&Copeland,N.G。使用galK选择进行简单高效的BAC重组工程。核酸研究33,e36(2005)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

DeVito, J. A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res. 36, e4 (2008).Article

DeVito,J.A。用tolC作为选择/反选择标记进行重组工程:重塑大肠杆菌的rRNA操纵子。核酸研究36,e4(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kudo, K. et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat. Commun. 11, 4022 (2020).Article

Kudo,K。等人。体外Cas9辅助编辑模块化聚酮合酶基因以产生所需的天然产物衍生物。国家公社。114022(2020)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shao, Z. & Zhao, H. Manipulating natural product biosynthetic pathways via DNA assembler. Curr. Protoc. Chem. Biol. 6, 65–100 (2014).Article

Shao,Z。&Zhao,H。通过DNA组装器操纵天然产物生物合成途径。货币。普罗托克。化学。生物学杂志6,65-100(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, Y., Zhang, L., Barton, K. W. & Zhao, H. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth. Biol. 4, 1001–1010 (2015).Article

Luo,Y.,Zhang,L.,Barton,K。W。和Zhao,H。系统鉴定来自白色链霉菌的一组强组成型启动子。ACS合成。生物学杂志41001-1010(2015)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).Article

Engler,C.,Kandzia,R。&Marillonnet,S。一种具有高通量能力的一锅一步精确克隆方法。PLoS ONE 3,e3647(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Scior, A., Preissler, S., Koch, M. & Deuerling, E. Directed PCR-free engineering of highly repetitive DNA sequences. BMC Biotechnol. 11, 87 (2011).Article

Scior,A.,Preissler,S.,Koch,M。&Deuerling,E。指导高度重复DNA序列的无PCR工程。BMC生物技术。11,87(2011)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Iacovelli, R., Zwahlen, R. D., Bovenberg, R. A. L. & Driessen, A. J. M. Biochemical characterization of the Nocardia lactamdurans ACV synthetase. PLoS ONE 15, e0231290 (2020).Article

Iacovelli,R.,Zwahlen,R.D.,Bovenberg,R.A.L。&Driessen,A.J.M。乳酸诺卡氏菌ACV合成酶的生化表征。PLoS ONE 15,e0231290(2020)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bian, X., Plaza, A., Yan, F., Zhang, Y. & Müller, R. Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnol. Bioeng. 112, 1343–1353 (2015).Article

Bian,X.,Plaza,A.,Yan,F.,Zhang,Y。&Müller,R。腺苷酸结构域的合理和有效的定点诱变改变了体内鲁米胺衍生物的相对产量。生物技术。生物能源。1121343-1353(2015)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Zhong, L. et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat. Commun. 12, 296 (2021).Article

Zhong,L.等人。非核糖体肽生物合成中脂质起始过程的工程和阐明。国家公社。12296(2021)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Soeriyadi, A. H. et al. Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase. ChemBioChem 23, e202100574 (2022).Article

Soeriyadi,A.H.等人,裁剪酶的严格性掩盖了lyngbyatoxin(吲哚内酰胺生物碱)非核糖体肽合成酶的多特异性。化学生物化学23,e202100574(2022)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Konigs, V. et al. SRSF7 maintains its homeostasis through the expression of split-ORFs and nuclear body assembly. Nat. Struct. Mol. Biol. 27, 260–273 (2020).Article

Konigs,V。等人。SRSF7通过分裂ORF的表达和核体组装来维持其体内平衡。自然结构。分子生物学。27260-273(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baker, O. et al. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res. 45, 8105–8115 (2017).Article

Baker,O.等人,《同源臂对核酸酶辅助基因组工程的贡献》,《核酸研究》458105-8115(2017)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Medina-Ruiz, L. et al. Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice. eLife 11, e72418 (2022).Article

Medina-Ruiz,L。等人。使用多受体报告小鼠分析组合趋化因子受体表达动力学。eLife 11,e72418(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blanch-Asensio, A. et al. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells. Cell Rep. Methods 2, 100300 (2022).Article

Blanch-Asensio,A。等人,STRAIGHT-IN能够高通量靶向人类多能干细胞中的大量DNA有效载荷。细胞代表方法2100300(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Botti, V. et al. Cellular differentiation state modulates the mRNA export activity of SR proteins. J. Cell Biol. 216, 1993–2009 (2017).Article

Botti,V。等人。细胞分化状态调节SR蛋白的mRNA输出活性。J、 细胞生物学。2161993-2009(2017)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bahlmann, N. A. et al. Properties of adenovirus vectors with increased affinity to DSG2 and the potential benefits of oncolytic approaches and gene therapy. Viruses 14, 1835 (2022).Article

Bahlmann,N.A。等人。对DSG2亲和力增强的腺病毒载体的特性以及溶瘤方法和基因治疗的潜在益处。病毒141835(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hidalgo, P. et al. Evidence that the adenovirus single-stranded DNA binding protein mediates the assembly of biomolecular condensates to form viral replication compartments. Viruses 13, 1778 (2021).Article

Hidalgo,P。等人的证据表明,腺病毒单链DNA结合蛋白介导生物分子缩合物的组装以形成病毒复制区室。病毒131778(2021)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).Article

Berman,C.M.等人,《人类细胞定向进化的适应性平台》。J、 美国化学。Soc.14018093–18103(2018)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, W. et al. An engineered virus library as a resource for the spectrum-wide exploration of virus and vector diversity. Cell Rep. 19, 1698–1709 (2017).Article

Zhang,W。等人。工程病毒文库作为病毒和载体多样性的全谱探索资源。Cell Rep.191698–1709(2017)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. Fiber2 and hexon genes are closely associated with the virulence of the emerging and highly pathogenic fowl adenovirus 4. Emerg. Microbes Infect. 7, 199 (2018).Article

Zhang,Y。等人。Fiber2和hexon基因与新出现的高致病性禽腺病毒4的毒力密切相关。紧急微生物感染。7199(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doerner, J. et al. Novel group C oncolytic adenoviruses carrying a miRNA inhibitor demonstrate enhanced oncolytic activity in vitro and in vivo. Mol. Cancer Ther. 21, 460–470 (2022).Article

Doerner,J。等人。携带miRNA抑制剂的新型C组溶瘤腺病毒在体外和体内表现出增强的溶瘤活性。分子癌症治疗。21460-470(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).Article

Cong,L。等人。使用CRISPR-Cas系统的多重基因组工程。《科学》339819–823(2013)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).Article

Jinek,M。等人。适应性细菌免疫中的可编程双RNA引导的DNA内切核酸酶。科学337816-821(2012)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Z. J. et al. Engineered biosynthesis of complex disorazol polyketides in a streamlined Burkholderia thailandensis. ACS Synth. Biol. 12, 971–977 (2023).Article

Wang,Z.J.等人在流线型Burkholderia thailandensis中设计了复杂的二唑聚酮化合物的生物合成。ACS合成。生物学12971-977(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Z. J. et al. Engineering of Burkholderia thailandensis strain E264 serves as a chassis for expression of complex specialized metabolites. Front. Microbiol. 13, 1073243 (2022).Article

Wang,Z.J.等人。Burkholderia thailandensis菌株E264的工程化作为表达复杂特化代谢物的底盘。正面。微生物。131073243(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, J. et al. High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination. Biotechnol. Lett. 45, 1327–1337 (2023).Article

Yi,J。等人。基于λ红介导的重组的病毒高效基因工程工具包。生物技术。利特。451327-1337(2023)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Song, C. et al. Enhanced heterologous spinosad production from a 79-kb synthetic multi-operon assembly. ACS Synth. Biol. 8, 137–147 (2019).Article

Song,C.等人通过79 kb的合成多操纵子组装增强了异源多杀菌素的产生。ACS合成。生物学8137-147(2019)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Jiang, C. et al. Establishing an efficient salinomycin biosynthetic pathway in three heterologous Streptomyces hosts by constructing a 106-kb multioperon artificial gene cluster. Biotechnol. Bioeng. 118, 4668–4677 (2021).Article

Jiang,C.等。通过构建106 kb多操纵子人工基因簇,在三种异源链霉菌宿主中建立有效的盐霉素生物合成途径。生物技术。生物能源。1184668-4677(2021)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Fu, J. et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30, 440–446 (2012).Article

Fu,J。等人。全长RecE增强线性线性同源重组,并促进直接克隆用于生物勘探。美国国家生物技术公司。30440-446(2012)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).Article

Li,M.Z.&Elledge,S.J.利用体外同源重组通过SLIC产生重组DNA。自然方法4251-256(2007)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China (32122049); Natural Science Foundation of Shandong Province (ZR2022JQ11 and ZR2019ZD22); National Key Research and Development Program of China (2018YFA0900400, 2021YFC2101000 and 2019YFA0904000); the Fund for Distinguished Young Scholars of SDU; the Fundamental Research Funds of Shandong University (2023QNTD001); Qingdao Key Technology Research and Industrialization Demonstration Project (22-3-4-xxgg-1-nsh); and the 111 Project (B16030).

下载参考文献致谢这项工作得到了国家自然科学基金(32122049)的支持;山东省自然科学基金(ZR2022JQ11和ZR2019ZD22);国家重点研究发展计划(2018YFA0900400、2021YFC2101000和2019YFA0904000);SDU杰出青年学者基金;山东大学基础研究基金(2023QNTD001);青岛市关键技术研究与产业化示范项目(22-3-4-xxgg-1-nsh);和111项目(B16030)。

The authors acknowledge J. Qu, J. Zhu and Z. Li of the Core Facilities for Life and Environmental Sciences, State Key laboratory of Microbial Technology of Shandong University for their technical assistance.Author informationAuthors and AffiliationsState Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, ChinaJi Luan, Chaoyi Song, Yan Liu, Ruoting He, Ruofei Guo, Qingwen Cui, Chanjuan Jiang, Xiaochen Li, Kexin Hao, Jun Fu, Youming Zhang & Hailong WangGenomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, GermanyA.

作者感谢山东大学微生物技术国家重点实验室生命与环境科学核心设施的J.Qu,J.Zhu和Z.Li的技术援助。作者信息作者和附属机构山东大学亥姆霍兹国际抗感染实验室微生物技术研究所微生物技术国家重点实验室-山东大学亥姆霍兹生物技术研究所,山东青岛,中国济銮,宋朝毅,刘燕,何若婷,郭若飞,崔庆文,蒋春娟,李晓晨,郝可欣,傅军,张有明,王海龙基因组学,分子与细胞生物工程中心,德累斯顿工业大学生物技术中心,德国德累斯顿。

Francis StewartAuthorsJi LuanView author publicationsYou can also search for this author in.

FrancisStewartauthorsji LuanView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarChaoyi SongView author publicationsYou can also search for this author in

PubMed Google Scholarchoyi SongView作者出版物您也可以在

PubMed Google ScholarYan LiuView author publicationsYou can also search for this author in

PubMed Google ScholarYan LiuView作者出版物您也可以在

PubMed Google ScholarRuoting HeView author publicationsYou can also search for this author in

PubMed谷歌学术评论HeView作者出版物您也可以在

PubMed Google ScholarRuofei GuoView author publicationsYou can also search for this author in

PubMed Google Scholarrofei GuoView作者出版物您也可以在

PubMed Google ScholarQingwen CuiView author publicationsYou can also search for this author in

PubMed谷歌学者Qingwen CuiView作者出版物您也可以在

PubMed Google ScholarChanjuan JiangView author publicationsYou can also search for this author in

PubMed Google ScholarChanjuan JiangView作者出版物您也可以在

PubMed Google ScholarXiaochen LiView author publicationsYou can also search for this author in

PubMed Google ScholarXiaochen LiView作者出版物您也可以在

PubMed Google ScholarKexin HaoView author publicationsYou can also search for this author in

PubMed Google ScholarKexin HaoView作者出版物您也可以在

PubMed Google ScholarA. Francis StewartView author publicationsYou can also search for this author in

PubMed谷歌ScholarA。FrancisStewartView作者出版物您也可以在

PubMed Google ScholarJun FuView author publicationsYou can also search for this author in

PubMed Google ScholarJun FuView作者出版物您也可以在

PubMed Google ScholarYouming ZhangView author publicationsYou can also search for this author in

PubMed Google ScholaryYouming ZhangView作者出版物您也可以在

PubMed Google ScholarHailong WangView author publicationsYou can also search for this author in

PubMed Google ScholarHailong WangView作者出版物您也可以在

PubMed Google ScholarContributionsJ.L., A.F.S., J.F., Y.Z. and H.W. designed and supervised the project. J.L., C.S., Y.L., R.H., R.G., Q.C., C.J., X.L. and K.H. performed the experiments. J.L. and H.W. wrote the manuscript. All authors reviewed and approved the manuscript.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献。五十、 ,A.F.S.,J.F.,Y.Z.和H.W.设计并监督了该项目。J、 L.,C.S.,Y.L.,R.H.,R.G.,Q.C.,C.J.,X.L.和K.H.进行了实验。J、 L.和H.W.写了手稿。所有作者都审查并批准了手稿。对应作者对应。

Hailong Wang.Ethics declarations

王海龙。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Protocols thanks Imre Berger, Hang Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Nature Protocols感谢Imre Berger,Hang Wu和其他匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksKey references using this protocolWang, H. et al. Nucleic Acids Res. 42, e37 (2014): https://doi.org/10.1093/nar/gkt1339Song, C. et al.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。使用此协议的相关linksKey参考文献Wang,H.等人,《核酸研究》42,e37(2014):https://doi.org/10.1093/nar/gkt1339Song,C.等人。

Nucleic Acids Res. 48, e130 (2020): https://doi.org/10.1093/nar/gkaa956Zhang, Y. et al. Nat. Genet. 20, 123–128 (1998): https://doi.org/10.1038/2417Muyrers, J. P. P. et al. EMBO Rep. 1, 239–243 (2000): https://doi.org/10.1093/embo-reports/kvd049Bird, A. W. et al. Nat. Methods 9, 103–109 (2012): https://doi.org/10.1038/nmeth.1803Supplementary informationSupplementary InformationSupplementary Notes 1–4.Reporting SummaryRights and permissionsSpringer Nature or its licensor (e.g.

核酸研究48,e130(2020):https://doi.org/10.1093/nar/gkaa956Zhang,Y。等人,Nat。Genet。20123-128(1998):https://doi.org/10.1038/2417Muyrers,J.P.P.等人,EMBO Rep.1239–243(2000):https://doi.org/10.1093/embo-reports/kvd049Bird,A.W.等人,《自然方法》9103-109(2012):https://doi.org/10.1038/nmeth.1803Supplementary信息补充信息补充说明1-4.报告摘要权利和许可原告性质或其许可人(例如。

a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleLuan, J., Song, C., Liu, Y.

协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Luan,J.,Song,C.,Liu,Y。

et al. Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method..

等人。使用RedEx方法在复杂克隆的DNA序列中进行无缝定点诱变。。

Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01016-9Download citationReceived: 22 November 2023Accepted: 01 May 2024Published: 15 July 2024DOI: https://doi.org/10.1038/s41596-024-01016-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Protoc(2024年)。https://doi.org/10.1038/s41596-024-01016-9Download引文接收日期:2023年11月22日接收日期:2024年5月1日发布日期:2024年7月15日OI:https://doi.org/10.1038/s41596-024-01016-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。