商务合作
动脉网APP
可切换为仅中文
AbstractVirtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients’ survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research.
摘要虚拟患者和数字患者/双胞胎是两个类似的概念,在医疗保健中越来越受到关注,其目标是加速药物开发和提高患者的生存率,但有其自身的局限性。尽管已经提出了使用机械模型生成虚拟患者群体的方法,但在免疫肿瘤学研究中的应用数量有限。
Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other..
此外,由于数字双胞胎的要求更为严格,它们通常以特定于研究的方式生成,并根据特定的临床环境(例如治疗,癌症和数据类型)定制模型。在这里,我们讨论了免疫肿瘤学中虚拟患者生成的挑战,以及我们最近的经验,开发数字双胞胎的举措,以及对这两个概念的研究如何相互借鉴。。
IntroductionCancer is a leading cause of death worldwide with the lowest success rate of clinical trials among all complex diseases. In an analysis of clinical trials from 2000 to 2015, the overall probability (defined by Wong et al. 1) of a drug successfully moving from phase I to approval was merely 3.4% in oncology, but for trials that used biomarkers for patient selection, the probability of success was significantly improved1.
引言癌症是全球死亡的主要原因,在所有复杂疾病中,临床试验的成功率最低。在2000年至2015年的临床试验分析中,药物从I期成功进入批准的总体概率(由Wong等人定义)在肿瘤学中仅为3.4%,但对于使用生物标志物进行患者选择的试验,成功的可能性显着提高1。
With increasing number of newly discovered drugs and potential biomarkers to investigate, it is extremely difficult to test and compare all dose levels, therapy combinations, and predictive biomarkers for each cancer type via clinical trials, which necessitates development of computational tools to accelerate the process.Since 1990s, mathematical models have and continue to play important roles in drug development as a cost-efficient tool to inform clinical trial design (i.e., model-informed drug development or MIDD)2.
随着新发现的药物和潜在生物标志物数量的增加,通过临床试验测试和比较每种癌症类型的所有剂量水平,治疗组合和预测性生物标志物是极其困难的,这需要开发计算工具来加速这一过程。自20世纪90年代以来,数学模型已经并将继续在药物开发中发挥重要作用,作为告知临床试验设计(即模型知情药物开发或MIDD)的具有成本效益的工具2。
Semi-mechanistic approaches like pharmacokinetic-pharmacodynamic (PKPD) models started first to accompany regulatory submissions, and, with advancing mechanistic understanding of pathophysiology and increasing computational power, mechanistic models, such as physiologically-based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) models, were developed2,3.
药代动力学-药效学(PKPD)模型等半机械方法首先开始伴随监管提交,随着对病理生理学的机械理解和计算能力的提高,机械模型,如基于生理的药代动力学(PBPK)和定量系统药理学(QSP)模型,被开发出来2,3。
From 2013 to 2020, the US Food and Drug Administration has received a rising number of new drug applications with the support of QSP models, more than one fifth of which were for oncologic diseases4. Therefore, hypothesis-driven mechanistic QSP modeling has begun to play a critical role in predicting effectiveness of newly discovered drugs and determining the optimal dosage to assist clinical trial design via clinical trial simulation (i.e., in silico/virtual .
从2013年到2020年,美国食品和药物管理局在QSP模型的支持下收到了越来越多的新药申请,其中超过五分之一用于肿瘤疾病4。因此,假设驱动的机制QSP建模已经开始在预测新发现药物的有效性和确定通过临床试验模拟(即计算机/虚拟)辅助临床试验设计的最佳剂量方面发挥关键作用。
Data availability
数据可用性
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
数据共享不适用于本文,因为在当前研究期间没有生成或分析数据集。
ReferencesWong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).Article
参考文献Wong,C.H.,Siah,K.W。&Lo,A.W。临床试验成功率和相关参数的估计。生物统计学20273-286(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Madabushi, R., Seo, P., Zhao, L., Tegenge, M. & Zhu, H. Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm. Res. 39, 1669–1680 (2022).Article
Madabushi,R.,Seo,P.,Zhao,L.,Tegenge,M。&Zhu,H。评论:模型知情药物开发方法在药物开发和监管决策生命周期中的作用。《药物研究》第391669-1680号(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Azer, K. et al. History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. Front. Physiol. 12, 637999 (2021).Article
Azer,K.等人。定量系统药理学建模及其应用学科的历史和未来前景。正面。生理学。12637999(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bai, J. P. F. et al. Quantitative systems pharmacology: landscape analysis of regulatory submissions to the US Food and Drug Administration. CPT Pharm. Syst. Pharma 10, 1479–1484 (2021).Article
Bai,J.P.F.等人,《定量系统药理学:向美国食品和药物管理局提交的监管报告的景观分析》。CPT制药系统。Pharma 101479-1484(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Holford, N. H. G., Kimko, H. C., Monteleone, J. P. R. & Peck, C. C. Simulation of clinical trials. Annu. Rev. Pharmacol. Toxicol. 40, 209–234 (2000).Article
Holford,N.H.G.,Kimko,H.C.,Monteleone,J.P.R。和Peck,C.C。临床试验模拟。年。药理学杂志。毒理学。40209-234(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brown, L. V., Gaffney, E. A., Wagg, J. & Coles, M. C. Applications of mechanistic modelling to clinical and experimental immunology: an emerging technology to accelerate immunotherapeutic discovery and development. Clin. Exp. Immunol. 193, 284–292 (2018).Article
Brown,L.V.,Gaffney,E.A.,Wagg,J。&Coles,M.C。机械建模在临床和实验免疫学中的应用:一种加速免疫治疗发现和发展的新兴技术。临床。实验免疫。193284-292(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sorger, P. K. et al. Quantitative and systems pharmacology in the post‐genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. An NIH White Paper by the QSP Workshop Group (2011).Michelson, S. The impact of systems biology and biosimulation on drug discovery and development.
Sorger,P.K.等人,《后基因组时代的定量和系统药理学:发现药物和理解治疗机制的新方法》。美国国立卫生研究院QSP研讨会小组的白皮书(2011年)。Michelson,S。系统生物学和生物模拟对药物发现和开发的影响。
Mol. BioSyst. 2, 288 (2006).Article .
分子生物系统。2,288 (2006).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chelliah, V. et al. Quantitative systems pharmacology approaches for immuno‐oncology: adding virtual patients to the development paradigm. Clin. Pharma Therapeutics 109, 605–618 (2021).Article
Chelliah,V。等人。免疫肿瘤学的定量系统药理学方法:将虚拟患者添加到开发范例中。临床。Pharma Therapeutics 109605–618(2021)。文章
Google Scholar
谷歌学者
Surendran, A. et al. Approaches to generating virtual patient cohorts with applications in oncology. in Personalized Medicine Meets Artificial Intelligence (eds. Cesario, A., D’Oria, M., Auffray, C. & Scambia, G.) 97–119 (Springer International Publishing, Cham, 2023). https://doi.org/10.1007/978-3-031-32614-1_8.Craig, M., Gevertz, J.
Surendran,A。等人。通过肿瘤学应用生成虚拟患者队列的方法。《个性化医学与人工智能》(eds.Cesario,A.,D'Oria,M.,Auffray,C.&Scambia,G.)97-119(Springer International Publishing,Cham,2023)。https://doi.org/10.1007/978-3-031-32614-1_8.Craig,M.,Gevertz,J。
L., Kareva, I. & Wilkie, K. P. A practical guide for the generation of model-based virtual clinical trials. Front. Syst. Biol. 3, 1174647 (2023).Article .
五十、 ,Kareva,I。&Wilkie,K.P。基于模型的虚拟临床试验生成的实用指南。正面。系统。生物学31174647(2023)。文章。
Google Scholar
谷歌学者
Hormuth, D. A. et al. Mechanism-based modeling of tumor growth and treatment response constrained by multiparametric imaging data. JCO Clin. Cancer Inf. 1–10 https://doi.org/10.1200/CCI.18.00055 (2019).Lazarou, G. et al. Integration of omics data sources to inform mechanistic modeling of immune-oncology therapies: a tutorial for clinical pharmacologists.
Hormuth,D.A.等人。基于多参数成像数据约束的肿瘤生长和治疗反应的基于机制的建模。JCO临床。癌症信息1-10https://doi.org/10.1200/CCI.18.00055(2019年)。Lazarou,G。等人。整合组学数据源以告知免疫肿瘤学疗法的机理建模:临床药理学家指南。
Clin. Pharm. Ther. 107, 858–870 (2020).Article .
临床。药剂师。107858-870(2020)。文章。
Google Scholar
谷歌学者
Arulraj, T. et al. Leveraging multi-omics data to empower quantitative systems pharmacology in immuno-oncology. Brief. Bioinf. 25, bbae131 (2024).Article
Arulraj,T。等人。利用多组学数据来增强免疫肿瘤学中的定量系统药理学。简介。生物信息。25,bbae131(2024)。文章
Google Scholar
谷歌学者
Stahlberg, E. A. et al. Exploring approaches for predictive cancer patient digital twins: opportunities for collaboration and innovation. Front. Digit. Health 4, 1007784 (2022).Article
Stahlberg,E.A.等人,《探索预测癌症患者数字双胞胎的方法:合作和创新的机会》。正面。数字。健康41007784(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, Y. et al. Virtual populations for quantitative systems pharmacology models. Methods Mol. Biol. 2486, 129–179 (2022).Article
Cheng,Y.等人。定量系统药理学模型的虚拟种群。方法分子生物学。2486129-179(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).Article
Mellman,I.,Chen,D.S.,Powles,T。&Turley,S.J。癌症免疫周期:适应症,基因型和免疫型。免疫力562188-2205(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).Article
Chen,D.S。&Mellman,I。肿瘤学与免疫学相遇:癌症免疫周期。免疫39,1-10(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Niederer, S. A. et al. Creation and application of virtual patient cohorts of heart models. Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190558 (2020).CAS
Niederer,S.A.等人。心脏模型虚拟患者队列的创建和应用。菲洛斯。事务处理。数学。物理。工程科学。37820190558(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sové, R. J. et al. QSP‐IO: a quantitative systems pharmacology toolbox for mechanistic multiscale modeling for immuno‐oncology applications. Clin. Pharmacol. Ther. 9, 484–497 (2020).Article
Sové,R.J.等人。QSP-IO:用于免疫肿瘤学应用的机械多尺度建模的定量系统药理学工具箱。临床。药理学。他们。9484-497(2020)。文章
Google Scholar
谷歌学者
Jafarnejad, M. et al. A computational model of neoadjuvant PD-1 inhibition in non-small cell lung cancer. AAPS J. 21, 79 (2019).Article
Jafarnejad,M.等。非小细胞肺癌新辅助PD-1抑制的计算模型。AAPS J.21,79(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ma, H. et al. A quantitative systems pharmacology model of T cell engager applied to solid tumor. AAPS J. 22, 85 (2020).Article
Ma,H。等人。应用于实体瘤的T细胞接受者的定量系统药理学模型。AAPS J.22,85(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, H. et al. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J. Immunother. Cancer 8, e001141 (2020).Article
如QSP模型所预测的,与T细胞接受者和PD-L1阻断剂的联合治疗增强了T细胞的抗肿瘤效力。J、 免疫疗法。癌症8,e001141(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H. et al. Conducting a virtual clinical trial in HER2-negative breast cancer using a quantitative systems pharmacology model with an epigenetic modulator and immune checkpoint inhibitors. Front. Bioeng. Biotechnol. 8, 141 (2020).Article
Wang,H.等人使用具有表观遗传调节剂和免疫检查点抑制剂的定量系统药理学模型对HER2阴性乳腺癌进行虚拟临床试验。正面。生物能源。生物技术。8141(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H., Ma, H., Sové, R. J., Emens, L. A. & Popel, A. S. Quantitative systems pharmacology model predictions for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. J. Immunother. Cancer 9, e002100 (2021).Article
Wang,H.,Ma,H.,Sové,R.J.,Emens,L.A。&Popel,A.S。定量系统药理学模型预测atezolizumab和nab-paclitaxel在三阴性乳腺癌中的疗效。J、 免疫疗法。癌症9,e002100(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anbari, S. et al. Using quantitative systems pharmacology modeling to optimize combination therapy of anti-PD-L1 checkpoint inhibitor and T cell engager. Front. Pharmacol. 14, 1163432 (2023).Article
Anbari,S.等人。使用定量系统药理学建模优化抗PD-L1检查点抑制剂和T细胞参与者的联合治疗。正面。药理学。141163432(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H., Zhao, C., Santa-Maria, C. A., Emens, L. A. & Popel, A. S. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 25, 104702 (2022).Article
Wang,H.,Zhao,C.,Santa Maria,C.A.,Emens,L.A。&Popel,A.S。三阴性乳腺癌免疫治疗定量系统药理学模型中肿瘤相关巨噬细胞的动力学。iScience 25104702(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H., Arulraj, T., Kimko, H. & Popel, A. S. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. npj Precis. Onc. 7, 55 (2023).Article
Wang,H.,Arulraj,T.,Kimko,H。&Popel,A.S。使用QSP模型生成免疫基因组数据指导虚拟患者,以预测晚期NSCLC对PD-L1抑制的反应。npj精度。Onc。7,55(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Ippolito, A. et al. Eliciting the antitumor immune response with a conditionally activated PD‐L1 targeting antibody analyzed with a quantitative systems pharmacology model. CPT Pharmacom & Syst. Pharma psp4.13060 https://doi.org/10.1002/psp4.13060 (2023).Arulraj, T., Wang, H., Emens, L.
Ippolito,A。等人用定量系统药理学模型分析了条件性激活的PD-L1靶向抗体引发抗肿瘤免疫反应。CPT药理学与系统。制药psp4.13060https://doi.org/10.1002/psp4.13060(2023年)。阿鲁拉吉,T.,王,H.,埃门斯,L。
A., Santa-Maria, C. A. & Popel, A. S. A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition. Sci. Adv. 9, eadg0289 (2023).Article .
A、 ,Santa Maria,C.A。&Popel,A.S。转移性三阴性乳腺癌的转录组知情QSP模型鉴定了PD-1抑制的预测性生物标志物。科学。Adv.9,eadg0289(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gong, C., Ruiz-Martinez, A., Kimko, H. & Popel, A. S. A spatial quantitative systems pharmacology platform spQSP-IO for simulations of tumor-immune interactions and effects of checkpoint Inhibitor Immunotherapy. Cancers (Basel) 13, 3751 (2021).Article
Gong,C.,Ruiz-Martinez,A.,Kimko,H。&Popel,A.S。空间定量系统药理学平台spQSP IO,用于模拟肿瘤免疫相互作用和检查点抑制剂免疫疗法的作用。癌症(巴塞尔)133751(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ruiz-Martinez, A. et al. Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model. PLoS Comput. Biol. 18, e1010254 (2022).Article
Ruiz Martinez,A.等人。通过将基于空间代理的模型与全患者定量系统药理学模型耦合,模拟肿瘤生长和对免疫疗法的反应。PLoS计算机。生物学18,e1010254(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nikfar, M., Mi, H., Gong, C., Kimko, H. & Popel, A. S. Quantifying intratumoral heterogeneity and immunoarchitecture generated in-silico by a spatial quantitative systems pharmacology model. Cancers 15, 2750 (2023).Article
Nikfar,M.,Mi,H.,Gong,C.,Kimko,H。&Popel,A.S。通过空间定量系统药理学模型量化计算机产生的肿瘤内异质性和免疫结构。癌症152750(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, S. et al. Integration of clinical trial spatial multi-omics analysis and virtual clinical trials enables immunotherapy response prediction and biomarker discovery. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-24-0943 (2024).Allen, R. J., Rieger, T. R. & Musante, C. J. Efficient generation and selection of virtual populations in quantitative systems pharmacology models.
Zhang,S.等。临床试验空间多组学分析和虚拟临床试验的整合使免疫治疗反应预测和生物标志物发现成为可能。癌症研究。https://doi.org/10.1158/0008-5472.CAN-24-0943(2024年)。Allen,R.J.,Rieger,T.R。&Musante,C.J。定量系统药理学模型中虚拟种群的有效生成和选择。
CPT Pharmacomet. Syst. Pharm. 5, 140–146 (2016).Article .
CPT Pharmacomet。系统。Pharm.5140-146(2016)。文章。
CAS
中科院
Google Scholar
谷歌学者
Rieger, T. R. et al. Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog. Biophys. Mol. Biol. 139, 15–22 (2018).Article
Rieger,T.R.等人,《改进定量系统药理学模型中虚拟种群的产生和选择》。程序。生物物理。分子生物学。139,15-22(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mi, H. et al. Spatial and compositional biomarkers in tumor microenvironment predicts clinical outcomes in triple-negative breast cancer. bioRxiv 2023.12.18.572234 https://doi.org/10.1101/2023.12.18.572234 (2023).Cimino-Mathews, A. et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas.
Mi,H。等人。肿瘤微环境中的空间和组成生物标志物预测三阴性乳腺癌的临床结果。bioRxiv 2023.12.18.572234https://doi.org/10.1101/2023.12.18.572234(2023年)。Cimino Mathews,A。等人。原发性和转移性乳腺癌中PD-L1(B7-H1)的表达和免疫肿瘤微环境。
Hum. Pathol. 47, 52–63 (2016).Article .
哼。感伤。47,52-63(2016)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shiao, S. L. et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell 42, 70–84.e8 (2024).Article
Shiao,S.L.等人,《单细胞和空间分析》确定了三阴性乳腺癌对pembrolizumab和放射治疗的三种反应轨迹。癌细胞42,70-84.e8(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jenner, A. L., Cassidy, T., Belaid, K., Bourgeois-Daigneault, M.-C. & Craig, M. In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity. J. Immunother. Cancer 9, e001387 (2021).Article
Jenner,A.L.,Cassidy,T.,Belaid,K.,Bourgeois Daigneault,M.-C.&Craig,M.在计算机试验中预测,增强水泡性口炎溶瘤病毒的组合策略由肿瘤侵袭性决定。J、 免疫疗法。癌症9,e001387(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cardinal, O. et al. Establishing combination PAC‐1 and TRAIL regimens for treating ovarian cancer based on patient‐specific pharmacokinetic profiles using in silico clinical trials. Comp. Sys Onco 2, e1035 (2022).Article
Cardinal,O.等人,使用计算机临床试验,基于患者特异性药代动力学特征,建立PAC-1和TRAIL联合治疗卵巢癌的方案。公司。Sys Onco 2,e1035(2022)。文章
Google Scholar
谷歌学者
Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: keys and clues. BioScience 51, 341 (2001).Article
Limpert,E.,Stahel,W.A。&Abbt,M。跨科学的对数正态分布:关键和线索。生物科学51341(2001)。文章
Google Scholar
谷歌学者
Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).Article
Sender,R.等人。人体内免疫细胞的总质量、数量和分布。程序。国家科学院。科学。美国120,e2308511120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Autissier, P., Soulas, C., Burdo, T. H. & Williams, K. C. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytom. A 77, 410–419 (2010).Article
Autissier,P.,Soulas,C.,Burdo,T.H。&Williams,K.C。评估12色流式细胞仪小组以研究人类淋巴细胞,单核细胞和树突状细胞亚群。Cytom公司。A 77410-419(2010)。文章
Google Scholar
谷歌学者
Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).Article
Thorsson,V。等人,《癌症的免疫景观》。免疫力48812-830.e14(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garcia-Recio, S. et al. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat. Cancer 4, 128–147 (2023).CAS
来自AURORA US网络的原发性和转移性乳腺肿瘤的多组学发现了转移的微环境和表观遗传驱动因素。《自然癌症》4128-147(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).Article
Rozenblatt-Rosen,O.等人,《人类肿瘤图谱网络:以单细胞分辨率绘制跨越空间和时间的肿瘤转变图》。细胞181236-249(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eddy, J. A. et al. CRI iAtlas: an interactive portal for immuno-oncology research. F1000Res 9, 1028 (2020).Article
Eddy,J.A。等人,《CRI iAtlas:免疫肿瘤学研究的交互式门户》。F1000Res 91028(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siegel, M. B. et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 128, 1371–1383 (2018).Article
Siegel,M.B.等人整合的RNA和DNA测序揭示了转移性乳腺癌的早期驱动因素。J、 临床。调查。1281371-1383(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Racle, J., De Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 6, e26476 (2017).Article
Racle,J.,De Jonge,K.,Baumgaertner,P.,Speiser,D.E。&Gfeller,D。从大量肿瘤基因表达数据中同时计数癌症和免疫细胞类型。eLife 6,e26476(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).Article
Finotello,F。等人。通过RNA-seq数据的去卷积揭示肿瘤免疫背景的分子和药理学调节剂。基因组医学11,34(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Venkatesh, K. P., Raza, M. M. & Kvedar, J. C. Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. npj Digit. Med. 5, 150 (2022).Article
Venkatesh,K.P.,Raza,M.M。和Kvedar,J.C。健康数字双胞胎作为精准医学的工具:计算,实施和监管的考虑因素。npj数字。医学杂志5150(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Laubenbacher, R., Mehrad, B., Shmulevich, I. & Trayanova, N. Digital twins in medicine. Nat. Comput Sci. 4, 184–191 (2024).Article
Laubenbacher,R.,Mehrad,B.,Shmulevich,I。和Trayanova,N。医学数字双胞胎。自然计算机科学。4184-191(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Katsoulakis, E. et al. Digital twins for health: a scoping review. npj Digit. Med. 7, 77 (2024).Article
Katsoulakis,E.等人,《健康数字双胞胎:范围界定评论》。npj数字。医学杂志7,77(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moingeon, P., Chenel, M., Rousseau, C., Voisin, E. & Guedj, M. Virtual patients, digital twins and causal disease models: Paving the ground for in silico clinical trials. Drug Discov. Today 28, 103605 (2023).Article
Moingeon,P.,Chenel,M.,Rousseau,C.,Voisin,E。&Guedj,M。虚拟患者,数字双胞胎和因果疾病模型:为计算机临床试验奠定基础。药物发现。今天28103605(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vallée, A. Digital twin for healthcare systems. Front. Digit. Health 5, 1253050 (2023).Article
Vallée,A。医疗保健系统的数字双胞胎。正面。数字。健康51253050(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wright, L. & Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 7, 13 (2020).Article
Wright,L。和Davidson,S。如何区分模特和数字双胞胎。高级模型。模拟。工程科学。7,13(2020)。文章
Google Scholar
谷歌学者
An, G. & Cockrell, C. Drug development digital twins for drug discovery, testing and repurposing: a schema for requirements and development. Front. Syst. Biol. 2, 928387 (2022).Article
An,G。&Cockrell,C。药物开发用于药物发现,测试和再利用的数字双胞胎:需求和开发的模式。正面。系统。生物学2928387(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Laubenbacher, R. et al. Building digital twins of the human immune system: toward a roadmap. npj Digit. Med. 5, 64 (2022).Article
Laubenbacher,R.等人,《构建人类免疫系统的数字双胞胎:走向路线图》。npj数字。医学5,64(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, C. et al. MRI-based digital models forecast patient-specific treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer. Cancer Res. 82, 3394–3404 (2022).Article
Wu,C.等人。基于MRI的数字模型预测三阴性乳腺癌患者对新辅助化疗的特异性治疗反应。癌症研究823394-3404(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Board on Mathematical Sciences and Analytics et al. Opportunities and Challenges for Digital Twins in Biomedical Research: Proceedings of a Workshop-in Brief. 26922 (National Academies Press, Washington, D.C, 2023). https://doi.org/10.17226/26922.Lorenzo, G. et al. Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data.
数学科学与分析委员会等。生物医学研究中数字双胞胎的机遇与挑战:研讨会论文集简介。26922(国家科学院出版社,华盛顿特区,2023年)。https://doi.org/10.17226/26922.Lorenzo,G.等人。结合人工智能和大数据的特定于患者的肿瘤生长机制模型。
Annu. Rev. Biomed. Eng. https://doi.org/10.1146/annurev-bioeng-081623-025834 (2024).Jarrett, A. M. et al. Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting. Nat. Protoc. 16, 5309–5338 (2021).Article .
年。生物医学评论。发动机。https://doi.org/10.1146/annurev-bioeng-081623-025834(2024年)。Jarrett,A.M.等人。社区环境中乳腺癌患者的定量磁共振成像和肿瘤预测。自然协议。165309-5338(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Committee on Foundational Research Gaps and Future Directions for Digital Twins et al. Foundational Research Gaps and Future Directions for Digital Twins. 26894 (National Academies Press, Washington, D.C, 2024). https://doi.org/10.17226/26894.Alber, M. et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
数字双胞胎基础研究差距和未来方向委员会等。数字双胞胎的基础研究差距和未来方向。26894(国家科学院出版社,华盛顿特区,2024年)。https://doi.org/10.17226/26894.Alber,M.等人。在生物学,生物医学和行为科学中整合机器学习和多尺度建模的观点,挑战和机遇。
npj Digit. Med. 2, 115 (2019).Article .
数字。医学2115(2019)。第条。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Susilo, M. E. et al. Systems‐based digital twins to help characterize clinical dose–response and propose predictive biomarkers in a Phase I study of bispecific antibody, mosunetuzumab, in NHL. Clinical Translational Sci cts. 13501 https://doi.org/10.1111/cts.13501 (2023).Tivay, A., Kramer, G.
Susilo,M.E.等人基于系统的数字双胞胎有助于表征临床剂量反应,并在NHL双特异性抗体mosunetuzumab的I期研究中提出预测性生物标志物。临床转化Sci CT。13501https://doi.org/10.1111/cts.13501(2023年)。蒂维,A.,克莱默,G。
C. & Hahn, J.-O. Virtual patient generation using physiological models through a compressed latent parameterization. in 2020 American Control Conference (ACC) 1335–1340 (IEEE, Denver, CO, USA, 2020). https://doi.org/10.23919/ACC45564.2020.9147298.Sun, T., He, X. & Li, Z. Digital twin in healthcare: Recent updates and challenges.
C、 &Hahn,J.-O。通过压缩潜在参数化使用生理模型生成虚拟患者。2020年美国控制会议(ACC)1335–1340(IEEE,丹佛,CO,美国,2020)。https://doi.org/10.23919/ACC45564.2020.9147298.Sun,T.,He,X。&Li,Z。医疗保健中的数字双胞胎:最新更新和挑战。
Digital Health 9, 205520762211496 (2023).Article .
数字健康9205520762211496(2023)。文章。
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work is supported in part by NIH grant R01CA138264.Author informationAuthors and AffiliationsDepartment of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USAHanwen Wang, Theinmozhi Arulraj, Alberto Ippolito & Aleksander S.
下载参考文献致谢这项工作得到了NIH grant R01CA138264的部分支持。作者信息作者和附属机构约翰·霍普金斯大学医学院生物医学工程系,马里兰州巴尔的摩,USAHanwen Wang,Theinmozhi Arulraj,Alberto Ippolito&Aleksander S。
PopelDepartments of Medicine and Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USAAleksander S. PopelAuthorsHanwen WangView author publicationsYou can also search for this author in.
美国马里兰州巴尔的摩市约翰·霍普金斯大学医学院医学与肿瘤学系和西德尼·金梅尔综合癌症中心,美国亚历山大·S·波佩拉特·桑文·王维(Shanwen WangView)作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarTheinmozhi ArulrajView author publicationsYou can also search for this author in
PubMed Google ScholarTheinmozhi ArulrajView作者出版物您也可以在
PubMed Google ScholarAlberto IppolitoView author publicationsYou can also search for this author in
PubMed Google ScholarAlberto IppolitoView作者出版物您也可以在
PubMed Google ScholarAleksander S. PopelView author publicationsYou can also search for this author in
PubMed Google ScholarAleksander S.PopelView作者出版物您也可以在
PubMed Google ScholarContributionsAll authors conceptualized this study. A.S.P. supervised this study and acquired funding. H.W., T.A., and A.I. designed the methodology. H.W. analyzed the results and wrote the manuscript. All authors reviewed and revised the manuscript.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献所有作者都将这项研究概念化。A、 S.P.监督了这项研究并获得了资金。H、 W.,T.A。和A.I.设计了该方法。H、 W.分析了结果并撰写了手稿。所有作者都审阅并修订了手稿。对应作者对应。
Hanwen Wang.Ethics declarations
王汉文。道德宣言
Competing interests
相互竞争的利益
A.S.P. is a consultant to Incyte, J&J/Janssen, and AsclepiX Therapeutics. The terms of these arrangements are being managed by the Johns Hopkins University in accordance with its conflict-of-interest policies. A.I. is a current employee of AstraZeneca PLC. The remaining authors declare no competing interests..
A、 S.P.是Incyte,J&J/Janssen和AsclepiX Therapeutics的顾问。这些安排的条款由约翰·霍普金斯大学根据其利益冲突政策进行管理。A、 I.是阿斯利康公司的现任员工。其余作者声明没有利益冲突。。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, H., Arulraj, T., Ippolito, A. et al. From virtual patients to digital twins in immuno-oncology: lessons learned from mechanistic quantitative systems pharmacology modeling.
转载和许可本文引用本文Wang,H.,Arulraj,T.,Ippolito,A。等人,《从虚拟患者到免疫肿瘤学中的数字双胞胎:从机械定量系统药理学建模中吸取的教训》。
npj Digit. Med. 7, 189 (2024). https://doi.org/10.1038/s41746-024-01188-4Download citationReceived: 25 January 2024Accepted: 03 July 2024Published: 16 July 2024DOI: https://doi.org/10.1038/s41746-024-01188-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj数字。医学杂志7189(2024)。https://doi.org/10.1038/s41746-024-01188-4Download引文接收日期:2024年1月25日接受日期:2024年7月3日发布日期:2024年7月16日OI:https://doi.org/10.1038/s41746-024-01188-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供