EN
登录

产副丝藻纤细眼虫的染色体水平基因组组装

A chromosome-level genome assembly for the paramylon-producing microalga Euglena gracilis

Nature 等信源发布 2024-07-16 20:44

可切换为仅中文


AbstractEuglena gracilis (E. gracilis), pivotal in the study of photosynthesis, endosymbiosis, and chloroplast development, is also an industrial microalga for paramylon production. Despite its importance, E. gracilis genome exploration faces challenges due to its intricate nature. In this study, we achieved a chromosome-level de novo assembly (2.37 Gb) using Illumina, PacBio, Bionano, and Hi-C data.

摘要Euglena gracilis(E.gracilis)是光合作用,内共生和叶绿体发育研究的关键,也是一种用于生产paramylon的工业微藻。尽管其重要性,但由于其复杂的性质,纤细芽孢杆菌基因组探索面临挑战。在这项研究中,我们使用Illumina,PacBio,Bionano和Hi-C数据实现了染色体水平的从头组装(2.37Gb)。

The assembly exhibited a contig N50 of 619 Kb and scaffold N50 of 1.12 Mb, indicating superior continuity. Approximately 99.83% of the genome was anchored to 46 chromosomes, revealing structural insights. Repetitive elements constituted 58.84% of the sequences. Functional annotations were assigned to 39,362 proteins, enhancing interpretative power.

该组件显示重叠群N50为619 Kb,支架N50为1.12 Mb,表明具有优异的连续性。大约99.83%的基因组锚定在46条染色体上,揭示了结构见解。重复元件占序列的58.84%。功能注释被分配给39362个蛋白质,增强了解释能力。

BUSCO analysis confirmed assembly completeness at 80.39%. This first high-quality E. gracilis genome offers insights for genetics and genomics studies, overcoming previous limitations. The impact extends to academic and industrial research, providing a foundational resource..

BUSCO分析证实组装完整性为80.39%。这第一个高质量的纤细埃希氏菌基因组为遗传学和基因组学研究提供了见解,克服了以前的局限性。影响扩展到学术和工业研究,提供了基础资源。。

Background & SummaryEuglena, a genus of single-celled flagellate eukaryotes, is ubiquitously distributed in both freshwater and saltwater environments. Possessing photosynthetic chloroplasts, Euglena exhibits autotrophic characteristics akin to plants, while also displaying heterotrophic attributes similar to animals1,2,3.

背景与总结Euglena是一种单细胞鞭毛真核生物,广泛分布于淡水和盐水环境中。眼虫具有光合叶绿体,表现出类似于植物的自养特性,同时也表现出类似于动物的异养特性1,2,3。

E. gracilis, a prominent species within the genus, serves as a widely utilized model organism in both academic and industrial research due to its rich array of valuable compounds, including pigments, unsaturated fatty acids, vitamins, amino acids, and the distinctive β-1,3-glucan, paramylon—an advantageous functional food ingredient4,5,6.

E、 gracilis是该属中的一个重要物种,由于其丰富的有价值的化合物,包括色素,不饱和脂肪酸,维生素,氨基酸和独特的β-1,3-葡聚糖,paramylon是一种有利的功能性食品成分4,5,6,因此在学术和工业研究中被广泛使用。

Notably, recent studies, such as Wu et al.’s pilot-scale fermentation achieving maximal biomass and paramylon content7, underscore the industrial potential of E. gracilis.Despite substantial advancements in genetic modification8,9,10,11,12,13, hindered by the absence of a high-quality genome, E. gracilis remains a subject of limited genetic engineering tools and applications.

值得注意的是,最近的研究,例如Wu等人的中试规模发酵,实现了最大的生物量和paramylon含量7,强调了纤细芽孢杆菌的工业潜力。尽管由于缺乏高质量的基因组,遗传修饰取得了实质性进展8,9,10,11,12,13,但纤细芽孢杆菌仍然是有限的基因工程工具和应用的主题。

In 2019, Ebenezer et al. presented an initial genome assembly of E. gracilis (1.43 Gb), which, though informative, proved significantly fragmented14. Consequently, researchers have resorted to omics approaches, including de novo transcriptome assembly14,15 and proteomic analysis1,14, to explore physiological and genomic aspects.

2019年,Ebenezer等人提出了E.gracilis(1.43Gb)的初始基因组组装,尽管提供了信息,但证明了显着的碎片化14。因此,研究人员采用组学方法,包括从头转录组组装14,15和蛋白质组学分析1,14,以探索生理和基因组方面。

Nevertheless, a definitive high-quality genome assembly remains a critical prerequisite for advancing genetic engineering and synthetic biology applications in E. gracilis6.This study addresses the existing gap by introducing a chromosome-level genome assembly of E. gracilis through the integration of Illumina, PacBio, Bionano, and Hi-C technologies (Table 1).

然而,确定的高质量基因组组装仍然是推进基因工程和合成生物学在纤细芽孢杆菌中应用的关键先决条件6。本研究通过整合Illumina,PacBio,Bionano和Hi-C技术引入纤细芽孢杆菌的染色体水平基因组组装来解决现有差距(表1)。

The resulting assembly, spanning 2.37 Gb, with contig N50 of .

产生的组件跨越2.37Gb,重叠群N50为。

Code availability

代码可用性

All commands and pipelines employed for data processing adhered strictly to the guidelines specified in the manuals of the pertinent bioinformatics software, with the parameters explicitly detailed in the Methods section. In instances where no specific parameters were explicitly stated for a particular software, default parameters were applied.

用于数据处理的所有命令和管道严格遵守相关生物信息学软件手册中规定的指南,参数在方法部分中有明确的详细说明。在没有明确说明特定软件的特定参数的情况下,将应用默认参数。

It is noteworthy that no bespoke scripts or custom code were formulated or utilized throughout the course of this study..

值得注意的是,在整个研究过程中,没有制定或使用定制脚本或自定义代码。。

ReferencesChen, Z. et al. Proteomic Responses of Dark-Adapted Euglena gracilis and Bleached Mutant Against Light Stimuli. Frontiers in bioengineering and biotechnology 10, 843414 (2022).Article

参考文献Chen,Z。等人。暗适应的纤细眼虫和漂白突变体对光刺激的蛋白质组学反应。生物工程和生物技术前沿10843414(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, H. et al. Occurrence and light response of residual plastid genes in a Euglena gracilis bleached mutant strain OflB2. Journal of Oceanology and Limnology 38, 1858–1866 (2020).Article

秦,H。等。纤细眼虫漂白突变株LB2中残留质体基因的发生和光响应。《海洋与湖沼学杂志》381858-1866(2020)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Shao, Q. et al. Metabolomic response of Euglena gracilis and its bleached mutant strain to light. PLoS One 14, e0224926 (2019).Article

Shao,Q。等人。纤细眼虫及其漂白突变株对光的代谢组学反应。PLoS One 14,e0224926(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gissibl, A., Sun, A., Care, A., Nevalainen, H. & Sunna, A. Bioproducts from Euglena gracilis: synthesis and applications. Frontiers in bioengineering and biotechnology 7, 108 (2019).Article

Gissibl,A.,Sun,A.,Care,A.,Nevalainen,H。&Sunna,A。来自Euglena gracilis的生物产品:合成和应用。生物工程和生物技术前沿7108(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kottuparambil, S., Thankamony, R. L. & Agusti, S. Euglena as a potential natural source of value-added metabolites. A review. Algal research 37, 154–159 (2019).Article

Kottuparambil,S.,Thankamony,R.L。和Agusti,S.Euglena作为增值代谢物的潜在天然来源。回顾。藻类研究37154-159(2019)。文章

Google Scholar

谷歌学者

Chen, Z. et al. A Synthetic Biology Perspective on the Bioengineering Tools for an Industrial Microalga: Euglena gracilis. Frontiers in Bioengineering and Biotechnology 10 (2022).Wu, M. et al. A new pilot-scale fermentation mode enhances Euglena gracilis biomass and paramylon (β-1,3-glucan) production.

Chen,Z.等人。工业微藻生物工程工具的合成生物学观点:Euglena gracilis。生物工程和生物技术前沿10(2022)。Wu,M.等人。一种新的中试规模发酵模式可提高纤细眼虫的生物量和副葡聚糖(β-1,3-葡聚糖)的产量。

Journal of Cleaner Production 321, 128996 (2021).Article .

清洁生产杂志321128996(2021)。文章。

CAS

中科院

Google Scholar

谷歌学者

Becker, I. et al. Agrobacterium tumefaciens-mediated nuclear transformation of a biotechnologically important microalga—Euglena gracilis. International Journal of Molecular Sciences 22, 6299 (2021).Article

Becker,I.等人。根癌农杆菌介导的生物技术上重要的微藻Euglena gracilis的核转化。国际分子科学杂志226299(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Z. et al. High‐throughput sequencing revealed low-efficacy genome editing using Cas9 RNPs electroporation and single‐celled microinjection provided an alternative to deliver CRISPR reagents into Euglena gracilis. Plant Biotechnology Journal 20, 2048 (2022).Article

Chen,Z。等人。高通量测序揭示了使用Cas9 RNPs电穿孔和单细胞显微注射进行低效基因组编辑提供了将CRISPR试剂递送至Euglena gracilis的替代方法。植物生物技术杂志202048(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, P. & Sun, C. Fast and efficient molecule delivery into Euglena gracilis mediated by cell‐penetrating peptide or dimethyl sulfoxide. FEBS Open bio 13, 597–605 (2023).Article

Gao,P。&Sun,C。由细胞穿透肽或二甲基亚砜介导的快速有效的分子递送到Euglena gracilis中。FEBS Open bio 13597–605(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khatiwada, B., Kautto, L., Sunna, A., Sun, A. & Nevalainen, H. Nuclear transformation of the versatile microalga Euglena gracilis. Algal Research 37, 178–185 (2019).Article

Khatiwada,B.,Kautto,L.,Sunna,A.,Sun,A。&Nevalainen,H。多功能微藻Euglena gracilis的核转化。藻类研究37178-185(2019)。文章

Google Scholar

谷歌学者

Nakazawa, M. et al. Stable nuclear transformation methods for Euglena gracilis and its application to a related Euglenida. Algal Research 75, 103292 (2023).Article

Nakazawa,M.等人。纤细眼虫的稳定核转化方法及其在相关眼虫中的应用。藻类研究75103292(2023)。文章

Google Scholar

谷歌学者

Nomura, T. et al. Highly efficient transgene‐free targeted mutagenesis and single‐stranded oligodeoxynucleotide‐mediated precise knock‐in in the industrial microalga Euglena gracilis using Cas9 ribonucleoproteins. Plant biotechnology journal 17, 2032 (2019).Article

Nomura,T。等人。使用Cas9核糖核蛋白在工业微藻Euglena gracilis中进行高效无转基因靶向诱变和单链寡核苷酸介导的精确敲入。植物生物技术杂志172032(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ebenezer, T. E. et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 17, 11 (2019).Article

Ebenezer,T.E.等人。纤细眼虫的转录组,蛋白质组和基因组草图。BMC Biol 17,11(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cordoba, J. et al. De Novo Transcriptome Meta-Assembly of the Mixotrophic Freshwater Microalga Euglena gracilis. Genes (Basel) 12 (2021).Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).Article .

Cordoba,J.等人。混合营养淡水微藻Euglena gracilis的从头转录组元组装。基因(巴塞尔)12(2021)。Marçais,G。&Kingsford,C。一种快速,无锁的方法,用于有效并行计数k聚体的发生。生物信息学27764-770(2011)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature communications 11, 1432 (2020).Article

Ranallo Benavidez,T.R.,Jaron,K.S。&Schatz,M.C。GenomeScope 2.0和Smudgeplot用于多倍体基因组的无参考分析。自然通讯111432(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, J. et al. An efficient error correction and accurate assembly tool for noisy long reads. bioRxiv, (2023). 2023.03.09.531669.Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).Article .

Hu,J.等人。一种有效的纠错和准确的组装工具,用于嘈杂的长读取。bioRxiv,(2023年)。2023.03.09.531669.Hu,J.,Fan,J.,Sun,Z。&Liu,S。NextPolish:一种用于长读装配的快速有效的基因组抛光工具。生物信息学362253-2255(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).Article

Dudchenko,O。等人。使用Hi-C从头组装埃及伊蚊基因组产生染色体长度支架。科学356,92-95(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst 3, 99–101 (2016).Article

Juicebox为Hi-C接触图提供了一个无限缩放的可视化系统。细胞系统3,99-101(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–8 (2007).Article

Xu,Z。&Wang,H。LTR\u FINDER:预测全长LTR逆转录转座子的有效工具。核酸Res 35,W265-8(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).Article

Ellinghaus,D.,Kurtz,S。&Willhoeft,U。LTRharvest,一种用于从头检测LTR逆转录转座子的有效且灵活的软件。BMC生物信息学9,18(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ou, S. & Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol 176, 1410–1422 (2018).Article

Ou,S。&Jiang,N。LTR\U retriever:用于鉴定长末端重复反转录转座子的高度准确和灵敏的程序。植物生理学1761410-1422(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA 117, 9451–9457 (2020).Article

Flynn,J.M.等人,RepeatModeler2,用于转座因子家族的自动基因组发现。美国国家科学院院刊1179451–9457(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4, 4.10.1–4.10.14 (2009).PubMed

Tarailo-Graovac,M。&Chen,N。使用RepeatMasker识别基因组序列中的重复元件。Curr Protoc生物信息学第4章,4.10.1–4.10.14(2009)。PubMed出版社

Google Scholar

谷歌学者

Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11 (2015).Article

Bao,W.,Kojima,K。K。&Kohany,O。Repbase Update,真核基因组中重复元件的数据库。移动DNA 6,11(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–80 (1999).Article

Benson,G。Tandem repeats finder:一个分析DNA序列的程序。核酸研究27573-80(1999)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, P. P. & Lowe, T. M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol 1962, 1–14 (2019).Article

Chan,P。P。&Lowe,T。M。tRNAscan SE:在基因组序列中搜索tRNA基因。方法Mol Biol 1962,1-14(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ye, J., McGinnis, S. & Madden, T. L. BLAST: improvements for better sequence analysis. Nucleic acids research 34, W6–W9 (2006).Article

Ye,J.,McGinnis,S。&Madden,T.L。BLAST:改进序列分析。核酸研究34,W6-W9(2006)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalvari, I. et al. Non-Coding RNA Analysis Using the Rfam Database. Curr Protoc Bioinformatics 62, e51 (2018).Article

Kalvari,I。等人。使用Rfam数据库进行非编码RNA分析。Curr Protoc生物信息学62,e51(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–5 (2013).Article

Nawrocki,E.P。&Eddy,S.R。Infernal 1.1:RNA同源性搜索速度快100倍。生物信息学292933-5(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–20 (2014).Article

Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-20(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–52 (2011).Article

Grabherr,M.G.等人,无参考基因组的RNA-Seq数据的全长转录组组装。Nat Biotechnol 29644-52(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31, 5654–66 (2003).Article

Haas,B.J.等人。使用最大转录本比对组件改进拟南芥基因组注释。核酸研究315654-66(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic acids research 34, W435–W439 (2006).Article

Stanke,M.等人,《奥古斯都:替代转录本的从头开始预测》。核酸研究34,W435–W439(2006)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).Article

Korf,I。新基因组中的基因发现。BMC生物信息学5,59(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).Article

Holt,C。&Yandell,M。MAKER2:用于第二代基因组计划的注释管道和基因组数据库管理工具。BMC生物信息学12491(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27, 29–34 (1999).Article

Ogata,H.等人。KEGG:《京都基因与基因组百科全书》。核酸研究27,29-34(1999)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000).Article

Ashburner,M.等人,《基因本体论:生物学统一的工具》。自然遗传学25,25-29(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic acids research 49, D344–D354 (2021).Article

Blum,M.等人,《InterPro蛋白质家族和结构域数据库:20年过去了》。核酸研究49,D344–D354(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res 51, D18-d28 (2023).Chen, T. et al. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genomics Proteomics Bioinformatics 19, 578–583 (2021).Article .

2023年中国国家生物信息中心国家基因组数据中心的数据库资源。核酸研究51,D18-d28(2023)。Chen,T.等人,《基因组序列档案家族:走向爆炸性数据增长和多样化数据类型》。基因组学蛋白质组学生物信息学19578-583(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA013190 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP353774 (2022).Chen, Z. et al. A chromosome-level genome assembly for the paramylon-producing microalga Euglena gracilis, Figshare, https://doi.org/10.6084/m9.figshare.c.7024970.v1 (2024).NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_039621445.1 (2024).Huang, N.

基因组序列档案https://ngdc.cncb.ac.cn/gsa/browse/CRA013190(2024年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRP353774(2022年)。Chen,Z.等人。产生paramylon的微藻Euglena gracilis的染色体水平基因组组装,Figshare,https://doi.org/10.6084/m9.figshare.c.7024970.v1(2024年)。NCBI基因库https://identifiers.org/ncbi/insdc.gca:GCA_039621445.1(2024年)。黄,N。

& Li, H. compleasm: a faster and more accurate reimplementation of BUSCO. Bioinformatics 39 (2023).Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes.

&Li,H。compleasm:BUSCO的更快,更准确的重新实现。生物信息学39(2023)。Manni,M.,Berkeley,M.R.,Seppey,M.,Simao,F.A.&Zdobnov,E.M.BUSCO更新:新颖而简化的工作流程,以及更广泛和更深入的系统发育覆盖范围,用于真核,原核和病毒基因组的评分。

Mol Biol Evol 38, 4647–4654 (2021).Article .

Mol Biol Evol 38,4647–4654(2021)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–60 (2009).Article

Li,H。&Durbin,R。使用Burrows-Wheeler变换进行快速准确的短读比对。生物信息学251754-60(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was partially supported by China’s National Key R&D Programs (2021YFA0910800, 2018YFA0902500, 2020YFA0908703), the National Natural Science Foundation of China (41876188), the Science Technology and Innovation Committee of Shenzhen Municipality (KCXFZ202002011006448), Shenzhen Science and Technology Program (KCXST20221021111206015 and KCXFZ20201221173404012), and Natural Science Foundation of Guangdong Province (2024B1515020034).Author informationAuthor notesThese authors contributed equally: Zixi Chen, Yang Dong, Shengchang Duan.Authors and AffiliationsShenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, ChinaZixi Chen, Jiayi He, Huan Qin, Chao Bian, Zhenfan Chen, Chenchen Liu, Chao Zheng, Ming Du, Rao Yao, Chao Li, Yun Wang, Shuangfei Li, Ning Xie, Ying Xu, Qiong Shi, Zhangli Hu, Anping Lei & Jiangxin WangState Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, ChinaYang Dong & Shengchang DuanYunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, ChinaYang Dong & Shengchang DuanShenzhen Rare Disease Engineering Research Center of Metabolomics in Precision Medicine, Shenzhen Aone Medical Laboratory Co, Ltd, Shenzhen, 518000, ChinaPanpan JiangCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, ChinaLiqing ZhaoAuthorsZixi ChenView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了中国国家重点研发计划(2021YFA0910802018YFA09025002020YFA0908703),国家自然科学基金(41876188),深圳市科学技术与创新委员会(KCXFZ202002011006448),深圳市科学技术计划(KCXST20221021111206015和KCXFZ20201221173404012)和广东省自然科学基金(2024B1515020034)的部分支持。作者信息作者注意到这些作者做出了同样的贡献:Zixi Chen,Yang Dong,Shengchang Duan。作者和单位深圳市海洋生物资源与生态环境科学重点实验室,深圳市海藻生物技术工程实验室,深圳大学生命科学与海洋学院广东省植物表观遗传学重点实验室,深圳,518060,中国陈子喜,何嘉怡,秦焕,赵扁,陈振凡,刘晨晨,郑超,杜明耀,姚超,王云,李双飞,谢宁,徐英,石琼,胡张丽,雷安平,王江新云南省生物资源保护与利用国家重点实验室,云南农业大学,昆明,650201,中国杨东&盛昌段云南研究昆明当地高原农业与工业研究所,650201,中国杨东和盛昌段深圳精密医学代谢组学罕见病工程研究中心,深圳市奥恩医学实验室有限公司,深圳,518000,中国深圳大学化学与环境工程学院,深圳,518060,中国赵丽青作者Zixi ChenView作者出版物您也可以在中搜索该作者。

PubMed Google ScholarYang DongView author publicationsYou can also search for this author in

PubMed Google ScholarYang DongView作者出版物您也可以在

PubMed Google ScholarShengchang DuanView author publicationsYou can also search for this author in

PubMed Google ScholarShengchang DuanView作者出版物您也可以在

PubMed Google ScholarJiayi HeView author publicationsYou can also search for this author in

PubMed Google ScholarJiayi HeView作者出版物您也可以在

PubMed Google ScholarHuan QinView author publicationsYou can also search for this author in

PubMed Google ScholarHuan QinView作者出版物您也可以在

PubMed Google ScholarChao BianView author publicationsYou can also search for this author in

PubMed Google ScholarChao BianView作者出版物您也可以在

PubMed Google ScholarZhenfan ChenView author publicationsYou can also search for this author in

PubMed谷歌学者陈振凡查看作者出版物您也可以在

PubMed Google ScholarChenchen LiuView author publicationsYou can also search for this author in

PubMed Google ScholarChenchen LiuView作者出版物您也可以在

PubMed Google ScholarChao ZhengView author publicationsYou can also search for this author in

PubMed Google ScholarChao ZhengView作者出版物您也可以在

PubMed Google ScholarMing DuView author publicationsYou can also search for this author in

PubMed Google ScholarMing DuView作者出版物您也可以在

PubMed Google ScholarRao YaoView author publicationsYou can also search for this author in

PubMed Google Scholarao YaoView作者出版物您也可以在

PubMed Google ScholarChao LiView author publicationsYou can also search for this author in

PubMed Google ScholarChao LiView作者出版物您也可以在

PubMed Google ScholarPanpan JiangView author publicationsYou can also search for this author in

PubMed Google ScholarPanpan JiangView作者出版物您也可以在

PubMed Google ScholarYun WangView author publicationsYou can also search for this author in

PubMed Google ScholarYun WangView作者出版物您也可以在

PubMed Google ScholarShuangfei LiView author publicationsYou can also search for this author in

PubMed Google ScholarShuangfei LiView作者出版物您也可以在

PubMed Google ScholarNing XieView author publicationsYou can also search for this author in

PubMed谷歌学术评论作者出版物您也可以在

PubMed Google ScholarYing XuView author publicationsYou can also search for this author in

PubMed Google ScholarYing XuView作者出版物您也可以在

PubMed Google ScholarQiong ShiView author publicationsYou can also search for this author in

PubMed Google ScholarQiong ShiView作者出版物您也可以在

PubMed Google ScholarZhangli HuView author publicationsYou can also search for this author in

PubMed Google ScholarZhangli HuView作者出版物您也可以在

PubMed Google ScholarAnping LeiView author publicationsYou can also search for this author in

PubMed Google ScholarAnping LeiView作者出版物您也可以在

PubMed Google ScholarLiqing ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarLiqing ZhaoView作者出版物您也可以在

PubMed Google ScholarJiangxin WangView author publicationsYou can also search for this author in

PubMed Google ScholarJiangxin WangView作者出版物您也可以在

PubMed Google ScholarContributionsZixi Chen, Yang Dong and Shengchang Duan analysed the data and wrote the manuscript. Jiayi He, Huan Qin, Zhenfan Chen, Chenchen Liu, Chao Zheng, Ming Du, Rao Yao and Chao Li performed the experiments. Chao Bian, Panpan Jiang and Qiong Shi analysed the data.

PubMed Google ScholarContributionsZixi Chen,Yang Dong和Shengchang Duan分析了数据并撰写了手稿。何家义、秦欢、陈振凡、刘晨晨、郑超、杜明、饶耀和李超进行了实验。Chao Bian、Panpan Jiang和Qiong Shi分析了数据。

Yun Wang, Shuangfei Li, Ning Xie, Ying Xu and Zhangli Hu revised the manuscript. Anping Lei, Liqing Zhao and Jiangxin Wang conceived and designed the whole project, and revised the manuscript. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

王云,李双飞,谢宁,徐颖和胡张丽修改了手稿。雷安平、赵丽清和王江新构思并设计了整个项目,并修改了手稿。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Liqing Zhao or Jiangxin Wang.Ethics declarations

赵丽清或王江新。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleChen, Z., Dong, Y., Duan, S. et al. A chromosome-level genome assembly for the paramylon-producing microalga Euglena gracilis.

转载和许可本文引用本文Chen,Z.,Dong,Y.,Duan,S。等人。产生paramylon的微藻Euglena gracilis的染色体水平基因组组装。

Sci Data 11, 780 (2024). https://doi.org/10.1038/s41597-024-03404-yDownload citationReceived: 16 January 2024Accepted: 22 May 2024Published: 16 July 2024DOI: https://doi.org/10.1038/s41597-024-03404-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci数据11780(2024)。https://doi.org/10.1038/s41597-024-03404-yDownload引文收到日期:2024年1月16日接受日期:2024年5月22日发布日期:2024年7月16日OI:https://doi.org/10.1038/s41597-024-03404-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

GenomePlant geneticsWater microbiology

基因组植物遗传微生物学