EN
登录

基于综合序列分析的GBA1变异与MSA的关联研究——基于人类参考基因组的短读序列分析中的陷阱-

Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-

Nature 等信源发布 2024-07-18 12:29

可切换为仅中文


AbstractMultiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP.

摘要多系统萎缩(MSA)是一种神经退行性疾病,其特征是自主神经衰竭,帕金森病和小脑共济失调的各种组合。为了阐明与MSA相关的变体,我们一直在进行基于短读的全基因组序列分析。在关联研究的过程中,我们最初将重点放在GBA1(一种先前提出的MSA易感基因)上,以评估尽管GBA1与其假基因GBA1LP具有极高的同源性,但是否可以有效鉴定GBA1变体。

To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P–p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38.

为此,我们进行了短读全基因组序列分析,并与GRCh38进行了比对,以及Sanger序列分析,并比较了结果。我们确定了两个管道之间不一致的五个变体,其中三个变体(p.L483P,p.A495P–p.V499V,p.L483\U M489delinsW)是由于在GRCh38中注册的GBA1P1中的次要等位基因导致的错位结果。

The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW).

通过将GRCh37作为参考基因组进行比对,可以解决这些变体中的错误事件,其中主要等位基因被注册。此外,通过短读或Sanger序列分析均未正确识别结构变体。完成正确的变体调用后,我们确定了三种对高雪氏病致病的变体(p.S310G,p.L483P和p.L483\U M489delinsW)。

Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.92 (95% CI; 1.08 – 7.90, p = 0.0353)..

在这些变体中,MSA病例中p.L483P的等位基因频率(0.003)高于对照组(0.0011)。纳入先前报告的荟萃分析表明,p.L483P与MSA显着相关,优势比为2.92(95%CI;1.08-7.90,p=0.0353)。。

IntroductionGBA1 (HGNC:4177) is the gene encoding a lysosomal enzyme, glucocerebrosidase, located on chromosome 1q21. GBA1 consists of 11 exons spanning 7.6 kb, and a highly homologous pseudogene (GBA1LP, HGNC:4178) is located approximately 16 kb apart from the functional GBA1 gene [1,2,3]. Unequal pairing with rearrangement between GBA1 and GBA1LP is a frequent cause leading to the generation of gene–pseudogene rearrangements, many of which are causative variants for Gaucher disease.

简介GBA1(HGNC:4177)是编码溶酶体酶葡萄糖脑苷脂酶的基因,位于染色体1q21上。GBA1由11个外显子组成,跨度为7.6kb,一个高度同源的假基因(GBA1LP,HGNC:4178)位于距功能性GBA1基因约16kb的位置[1,2,3]。GBA1和GBA1LP之间重排的不平等配对是导致基因-假基因重排产生的常见原因,其中许多是高雪氏病的致病变异。

Of these rearrangements, nonreciprocal recombination (gene conversion) events are the most frequent, in which a portion of the functional gene sequence is replaced by the corresponding part of the pseudogene [1, 2, 4].Biallelic pathogenic variants of GBA1 cause deficient glucocerebrosidase activities leading to the development of Gaucher disease [4].

在这些重排中,非互易重组(基因转换)事件是最常见的,其中功能基因序列的一部分被假基因的相应部分取代[1,2,4]。。

Starting from the observation that family members of patients with Gaucher disease have a considerably high prevalence of Parkinson disease (PD) [5], numerous studies have consistently shown that deleterious variants of GBA1 are strong risk factors for the development of PD [6,7,8,9]. Furthermore, we have reported that GBA1 variants pathogenic for Gaucher disease are also significantly, albeit with a small odds ratio, associated with an increased risk of developing multiple system atrophy (MSA), which is also a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia along with the accumulation of α-synuclein within oligodendroglia [10].

从观察到高雪氏病患者的家庭成员帕金森病(PD)的患病率相当高开始,许多研究一致表明,GBA1的有害变异是PD发展的强烈危险因素[6,7,8,9]。。

Other studies, however, have not demonstrated the associations of GBA1 variants with MSA, possibly owing to their small sample sizes [11,12,13].Given the remarkable progress of short-read sequencing technologies employing next-generation sequenc.

然而,其他研究尚未证明GBA1变体与MSA的关联,可能是由于其样本量较小[11,12,13]。鉴于采用下一代sequenc的短读测序技术取得了显着进展。

Case 4: c.115+1G>A was called by short-read sequence analysis, while p.H313del was called by Sanger sequence analysisWhen the read depth data of the short-read sequence analysis were analyzed, we noticed that the read depths in the part of the GBA1 region were increased to about 1.5, whereas those in the GBA1LP region were decreased to about 0.5, raising the possibility that the copy numbers of GBA1 and GBA1LP regions are three and one, respectively (Fig. 3A).

案例4:短读序列分析调用c.115+1 g A,而桑格序列分析调用p.H313del当分析短读序列分析的读取深度数据时,我们注意到GBA1区域部分的读取深度增加到约1.5,而GBA1LP区域的读取深度减少到约0.5,这增加了GBA1和GBA1LP区域的拷贝数分别为3和1的可能性(图3A)。

Of note, long-read sequence analysis revealed that the long-reads 1 and 2 indeed contained a chimeric structure containing the GBA1LP–MTX1 and the GBA1 regions. The long-reads 3 and 4 contained a chimeric structure containing the GBA1LP–MTX1 and the GBA1–MTX1LP regions (Fig. 3B). Based on these results, we concluded that a gene conversion event occurred in the GBA1LP–MTX1 region due to the extraordinarily high homology between the GBA1–MTX1LP and GBA1LP–MTX1 regions.

值得注意的是,长读序列分析表明,长读序列1和2确实包含包含GBA1LP–MTX1和GBA1区域的嵌合结构。长读数3和4包含一个包含GBA1LP–MTX1和GBA1–MTX1LP区域的嵌合结构(图3B)。。

The region spanning the intron 2 of GBA1LP and the intron 5 of MTX1 (NC_00001.11:g.155213012_155218391 indicated by a box in Fig. 3B) was replaced by the region spanning the intron 2 of GBA1 and the intron 5 of MTX1LP (NC_00001.11:g.155233640_155240628). Of note, there is a deletion of CAC in this region (NC_00001.11:g.155237401_155237403del).

跨越GBA1LP内含子2和MTX1内含子5的区域(NC\U 00001.11:g.155213012\U 155218391由图3B中的框表示)被跨越GBA1内含子2和MTX1LP内含子5的区域所取代(NC\U 00001.11:g.155233640\U 155240628)。值得注意的是,该区域删除了CAC(NC\U 00001.11:g.155237401\U 155237403del)。

Taken together with these observations, the complex structural variant is described as NC_00001.11:g.155213012_155218391delins[NC_00001.11:g.155233640_155237400; NC_00001.11:g.155237404_155240628] according to the guidelines of the Human Genome Variation Society (https://www.hgvs.org/content/guidelines).

结合这些观察结果,根据人类基因组变异学会的指南,复杂的结构变异被描述为NC\U 00001.11:g.155213012\u 155218391delins[NC\U 00001.11:g.155233640\u 155237400;NC\U 00001.11:g.155237404\u 155240628](https://www.hgvs.org/content/guidelines)。

Consistent with the above interpretation, one of the paired-end reads spanning the breakpoint between GBA1 (upstream) and GBA1LP (downstream) contained GBA1-specific sequences derived from GBA1. On the other han.

与上述解释一致,跨越GBA1(上游)和GBA1LP(下游)之间断点的配对末端读数之一包含源自GBA1的GBA1特异性序列。另一个汉人。

ReferencesTsuji S, Choudary PV, Martin BM, Stubblefield BK, Mayor JA, Barranger JA, et al. A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher’s disease. N Engl J Med. 1987;316:570–5. https://doi.org/10.1056/NEJM198703053161002Article

参考文献Tsuji S,Choudary PV,Martin BM,Stubblefield BK,Mayor JA,Barranger JA等。神经病性高雪氏病中人类葡萄糖脑苷脂酶基因的突变。英格兰医学杂志1987;316:570-5。https://doi.org/10.1056/NEJM198703053161002Article

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era. J Mol Diagn. 2017;19:733–41. https://doi.org/10.1016/j.jmoldx.2017.05.005Article

Zampieri S,Cattarossi S,Bembi B,Dardis A.下一代时代的GBA分析。J分子诊断。2017年;19: 733年至41年。https://doi.org/10.1016/j.jmoldx.2017.05.005Article

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics. 1989;4:87–96. https://doi.org/10.1016/0888-7543(89)90319-4Article

Horowitz M,Wilder S,Horowitz Z,Reiner O,Gelbart T,Beutler E.人类葡萄糖脑苷脂酶基因和假基因:结构和进化。基因组学。1989年;4: 。https://doi.org/10.1016/0888-7543(89)90319-4条

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tayebi N, Stubblefield BK, Park JK, Orvisky E, Walker JM, LaMarca ME, et al. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am J Hum Genet. 2003;72:519–34. https://doi.org/10.1086/367850Article

Tayebi N,Stubblefield BK,Park JK,Orvisky E,Walker JM,LaMarca ME等。葡萄糖脑苷脂酶基因区域的相互和非相互重组:对高雪氏病复杂性的影响。我是J Hum Genet。2003年;72:519-34。https://doi.org/10.1086/367850Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet. 2004;41:937–40. https://doi.org/10.1136/jmg.2004.024455Article

戈克·阿尔潘(Goker Alpan O),希夫曼(Schiffmann R),拉马克(LaMarca ME),努斯鲍姆(Nussbaum RL),麦金纳尼·利奥(McInerney Leo A),西德兰斯基(Sidransky E)。戈谢病携带者中的帕金森病。J Med Genet。2004年;41:937年至40年。https://doi.org/10.1136/jmg.2004.024455Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J, et al. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol. 2009;66:571–6. https://doi.org/10.1001/archneurol.2009.72Article

Mitsui J,Mizuta I,Toyoda A,Ashida R,Takahashi Y,Goto J等。高雪氏病的突变赋予帕金森氏病高度易感性。Arch Neurol。2009年;66:571-6。https://doi.org/10.1001/archneurol.2009.72Article

PubMed

PubMed

Google Scholar

谷歌学者

Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61. https://doi.org/10.1056/NEJMoa0901281Article

Sidransky E,Nalls MA,Aasly JO,Aharon Peretz J,Annesi G,Barbosa ER等。帕金森病中糖脑苷脂酶突变的多中心分析。英国医学杂志2009;361:1651年至1661年。https://doi.org/10.1056/NEJMoa0901281Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gan-Or Z, Amshalom I, Kilarski LL, Bar-Shira A, Gana-Weisz M, Mirelman A, et al. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology. 2015;84:880–7. https://doi.org/10.1212/WNL.0000000000001315Article

Gan或Z,Amshalom I,Kilarski LL,Bar Shira A,Gana Weisz M,Mirelman A等。严重和轻度GBA突变对帕金森病的不同影响。神经病学。2015年;84:880-7。https://doi.org/10.1212/WNL.0000000000001315Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo SH, et al. Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain. 2015;138:2648–58. https://doi.org/10.1093/brain/awv179Article

Alcalay RN,Levy OA,Waters CC,Fahn S,Ford B,Kuo SH等。有和没有GBA突变的帕金森病中的葡萄糖脑苷脂酶活性。大脑。2015年;138:2648-58。https://doi.org/10.1093/brain/awv179Article

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mitsui J, Matsukawa T, Sasaki H, Yabe I, Matsushima M, Dürr A, et al. Variants associated with Gaucher disease in multiple system atrophy. Ann Clin Transl Neurol. 2015;2:417–26. https://doi.org/10.1002/ACN3.185Article

Mitsui J,Matsukawa T,Sasaki H,Yabe I,Matsushima M,Dürr A等。多系统萎缩中与高雪氏病相关的变异。Ann Clin Transl Neurol。2015年;2: 417年至26年。https://doi.org/10.1002/ACN3.185Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Srulijes K, Hauser A-K, Guella I, Asselta R, Brockmann K, Schulte C, et al. No association of GBA mutations and multiple system atrophy. Eur J Neurol. 2013;20:e61–2. https://doi.org/10.1111/ene.12086Article

Srulijes K,Hauser A-K,Guella I,Asselta R,Brockmann K,Schulte C等。GBA突变与多系统萎缩无关。Eur J Neurol。2013年;20: 第61-2页。https://doi.org/10.1111/ene.12086Article

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wernick AI, Walton RL, Koga S, Soto-Beasley AI, Heckman MG, Gan-Or Z, et al. GBA variation and susceptibility to multiple system atrophy. Parkinsonism Relat Disord. 2020;77:64–9. https://doi.org/10.1016/j.parkreldis.2020.06.007Article

Wernick AI,Walton RL,Koga S,Soto Beasley AI,Heckman MG,Gan或Z等。GBA变异和对多系统萎缩的易感性。帕金森病相关疾病。2020年;77:64-9。https://doi.org/10.1016/j.parkreldis.2020.06.007Article

PubMed

PubMed

Google Scholar

谷歌学者

Segarane B, Li A, Paudel R, Scholz S, Neumann J, Lees A, et al. Glucocerebrosidase mutations in 108 neuropathologically confirmed cases of multiple system atrophy. Neurology. 2009;72:1185–6. https://doi.org/10.1212/01.wnl.0000345356.40399.ebArticle

Segarane B,Li A,Paudel R,Scholz S,Neumann J,Lees A等。108例经神经病理学证实的多系统萎缩病例中的葡萄糖脑苷脂酶突变。神经病学。2009年;72:1185年至1186年。https://doi.org/10.1212/01.wnl.0000345356.40399.ebArticle

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Woo EG, Tayebi N, Sidransky E. Next-generation sequencing analysis of GBA1: the challenge of detecting complex recombinant alleles. Front Genet. 2021;12:684067. https://doi.org/10.3389/fgene.2021.684067Article

Woo EG,Tayebi N,Sidransky E.GBA1的下一代测序分析:检测复杂重组等位基因的挑战。前Genet。2021年;12: 684067页。https://doi.org/10.3389/fgene.2021.684067Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chikada A, Orimo K, Mitsui J, Matsukawa T, Ishiura H, Toda T, et al. The Japan MSA registry: a multicenter cohort study of multiple system atrophy. Neurol Clin Neurosci. 2024. https://doi.org/10.1111/ncn3.12809Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al.

Chikada A,Orimo K,Mitsui J,Matsukawa T,Ishiura H,Toda T等。日本MSA登记:多系统萎缩的多中心队列研究。神经临床神经科学。2024https://doi.org/10.1111/ncn3.12809GilmanS,Wenning GK,Low PA,Brooks DJ,Mathias CJ,Trojanowski JQ等。

Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6. https://doi.org/10.1212/01.wnl.0000324625.00404.15Article .

关于多系统萎缩诊断的第二份共识声明。神经病学。2008年;71:670-6。https://doi.org/10.1212/01.wnl.0000324625.00404.15Article。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kawai Y, Watanabe Y, Omae Y, Miyahara R, Khor SS, Noiri E, et al. Exploring the genetic diversity of the Japanese population: insights from a large-scale whole genome sequencing analysis. PLoS Genet. 2023;19. https://doi.org/10.1371/journal.pgen.1010625Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM.

Kawai Y,Watanabe Y,Omae Y,Miyahara R,Khor SS,Noiri E等。探索日本人群的遗传多样性:来自大规模全基因组测序分析的见解。PLoS Genet。2023年;19https://doi.org/10.1371/journal.pgen.1010625ManichaikulA,Mychaleckyj JC,Rich SS,Daly K,Sale M,Chen WM。

Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73. https://doi.org/10.1093/bioinformatics/btq559Pedersen BS, Bhetariya PJ, Brown J, Kravitz SN, Marth G, Jensen RL, et al. Somalier: Rapid relatedness estimation for cancer and germline studies using efficient genome sketches.

全基因组关联研究中的稳健关系推断。生物信息学。2010年;26:2867-73。https://doi.org/10.1093/bioinformatics/btq559PedersenBS,Bhetariya PJ,Brown J,Kravitz SN,Marth G,Jensen RL等。索马里人:使用有效的基因组草图快速估计癌症和种系研究的相关性。

Genome Med 2020;12. https://doi.org/10.1186/s13073-020-00761-2Koprivica V, Stone DL, Park JK, Callahan M, Frisch A, Cohen IJ, et al. Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet. 2000;66:1777–86. https://doi.org/10.1086/302925Article .

;12https://doi.org/10.1186/s13073-020-00761-2KoprivicaV,Stone DL,Park JK,Callahan M,Frisch A,Cohen IJ等。1型和3型高雪氏病患者304个突变等位基因的分析和分类。我是J Hum Genet。2000年;66:1777年至86年。https://doi.org/10.1086/302925Article。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Franke KR, Crowgey EL. Accelerating next generation sequencing data analysis: an evaluation of optimized best practices for Genome Analysis Toolkit algorithms. Genom Inf. 2020;18:e10. https://doi.org/10.5808/GI.2020.18.1.e10Article

Franke KR,Crowgey EL。加速下一代测序数据分析:基因组分析工具包算法优化最佳实践的评估。Genom Inf.2020;18: e10。https://doi.org/10.5808/GI.2020.18.1.e10Article

Google Scholar

谷歌学者

Freed D, Aldana R, Weber JA, Edwards JS. The Sentieon Genomics Tools - a fast and accurate solution to variant calling from next-generation sequence data. bioRxiv [Preprint]. 2017. Available from: https://doi.org/10.1101/115717Li H. Minimap2: pairwise alignment for nucleotide sequences.

Freed D,Aldana R,Weber JA,Edwards JS。Sentieon基因组学工具-一种快速准确的解决方案,可从下一代序列数据中调用变体。bioRxiv[预印本]。2017年。可从以下网站获得:https://doi.org/10.1101/115717LiH.Minimap2:核苷酸序列的成对比对。

Bioinformatics. 2018;34:3094–100. https://doi.org/10.1093/bioinformatics/bty191Article .

生物信息学。2018年;34:3094-100。https://doi.org/10.1093/bioinformatics/bty191Article。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. https://doi.org/10.1038/nbt.1754Article

Robinson JT,Thorvaldsdóttir H,Winckler W,Guttman M,Lander ES,Getz G等。整合基因组学查看器。纳特生物技术。2011年;29:24-6。https://doi.org/10.1038/nbt.1754Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133:1–9. https://doi.org/10.1007/s00439-013-1358-4Article .

Stenson PD,Mort M,Ball EV,Shaw K,Phillips AD,Cooper DN。人类基因突变数据库:为临床和分子遗传学,诊断测试和个性化基因组医学构建全面的突变库。哼哼Genet。2014年;133:1-9。https://doi.org/10.1007/s00439-013-1358-4Article。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horowitz M, Zimran A. Mutations causing gaucher disease. Hum Mutat. 1994;3:1–11. https://doi.org/10.1002/humu.1380030102Article

Horowitz M,Zimran A.突变导致高雪氏病。嗡嗡声突变。;3: 1-11岁。https://doi.org/10.1002/humu.1380030102Article

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang Y, Shu L, Sun Q, Zhou X, Pan H, Guo J, et al. Integrated genetic analysis of racial differences of common GBA variants in Parkinson’s disease: a meta-analysis. Front Mol Neurosci. 2018;11:43. https://doi.org/10.3389/fnmol.2018.00043Article

张Y,舒L,孙Q,周X,潘H,郭J,等。帕金森病常见GBA变异种族差异的综合遗传分析:荟萃分析。前摩尔神经科学。2018年;11: 43页。https://doi.org/10.3389/fnmol.2018.00043Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Toffoli M, Chen X, Sedlazeck FJ, Lee C-Y, Mullin S, Higgins A, et al. Comprehensive short and long read sequencing analysis for the Gaucher and Parkinson’s disease-associated GBA gene. Commun Biol. 2022;5:670. https://doi.org/10.1038/s42003-022-03610-7Article

Toffoli M,Chen X,Sedlazeck FJ,Lee C-Y,Mullin S,Higgins A等。高雪氏病和帕金森氏病相关GBA基因的综合短读和长读测序分析。社区生物。2022年;5: 670页。https://doi.org/10.1038/s42003-022-03610-7Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tayebi N, Lichtenberg J, Hertz E, Sidransky E. Is Gauchian genotyping of GBA1 variants reliable? medRxiv [Preprint]. 2023. Available from: https://doi.org/10.1101/2023.10.26.23297627He GS, Grabowski GA. Gaucher disease: a G+1––A+1 IVS2 splice donor site mutation causing exon 2 skipping in the acid beta-glucosidase mRNA.

Tayebi N,Lichtenberg J,Hertz E,Sidransky E.GBA1变体的高加索基因分型可靠吗?medRxiv[预印本]。2023年。可从以下网站获得:https://doi.org/10.1101/2023.10.26.23297627HeGS,Grabowski GA.Gaucher病:G+1–a+1 IVS2剪接供体位点突变导致酸性β-葡萄糖苷酶mRNA中外显子2跳跃。

Am J Hum Genet. 1992;51:810–20.CAS .

Am J Hum Genet. 1992;51:810–20.CAS .

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52. https://doi.org/10.1016/j.cell.2011.06.001Article

Mazzulli JR,Xu YH,Sun Y,Knight AL,McLean PJ,Caldwell GA等。高雪氏病葡萄糖脑苷脂酶和α-突触核蛋白在突触核蛋白病中形成双向致病环。细胞。2011年;146:37-52。https://doi.org/10.1016/j.cell.2011.06.001Article

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, et al. Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Ann Neurol. 2011;69:940–53. https://doi.org/10.1002/ana.22400Article

Cullen V,Sardi SP,Ng J,Xu YH,Sun Y,Tomlinson JJ等。与高雪氏病,帕金森病和路易体痴呆相关的酸性β-葡萄糖苷酶突变体改变了α-突触核蛋白的加工。Ann Neurol。2011年;69:940-53。https://doi.org/10.1002/ana.22400Article

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Matsukawa T, Porto KJL, Mitsui J, Chikada A, Ishiura H, Takahashi Y, et al. Clinical and genetic features of multiplex families with multiple system atrophy and Parkinson’s disease. Cerebellum. 2024;23:22–30. https://doi.org/10.1007/s12311-022-01426-zArticle

Matsukawa T,Porto KJL,Mitsui J,Chikada A,Ishiura H,Takahashi Y等。具有多系统萎缩和帕金森氏病的多重家族的临床和遗传特征。小脑。2024年;23:22-30。https://doi.org/10.1007/s12311-022-01426-zArticle

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Mio Takeyama, Keiko Hirayama, and Zhenghong Wu for their support in laboratory experiments. This work was supported in part by KAKENHI (19H03425 and 22H02823) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants (16kk0205001h0001, 17kk0205001h0002, 18kk0205001h0003, 20ek0109491h0001, 21ek0109491h0002, 22ek0109491h0003, and 23ek0109673h0001) from the Japan Agency for Medical Research and Development (AMED) to ST.

下载参考文献致谢我们感谢Mio Takeyama,Keiko Hirayama和Zhenghong Wu在实验室实验中的支持。这项工作得到了日本教育、文化、体育、科学和技术部的KAKENHI(19H03425和22H02823)的部分支持,以及日本医学研究与发展机构(AMED)向ST.的赠款(16KK020501H0001、17KK020501H0002、18KKK020501H0003、20ek0109491h0001、21ek0109491h0002、22ek0109491h0003和23ek0109673h0001)。

This work was supported in part by Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan to ST and grants (21ek0109573h0001, 22ek0109573h0002, and 23ek0109573h0003) from the AMED to JM.FundingOpen Access funding provided by The University of Tokyo.Author informationAuthors and AffiliationsDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, JapanKenta Orimo, Takashi Matsukawa, Hiroyuki Ishiura, Tatsushi Toda & Shoji TsujiDepartment of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, JapanJun MitsuiInstitute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, JapanMasaki Tanaka, Junko Nomoto & Shoji TsujiDepartment of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, JapanHiroyuki IshiuraGenome Medical Science Project, National Center for Global Health and Medicine, 1-21-1,.

这项工作部分得到了中枢神经系统退行性疾病研究委员会、罕见和难治性疾病政策规划和评估研究、健康、劳动和福利科学研究资助、日本厚生劳动省对ST的资助,以及AMED向JM提供的赠款(21ek0109573h0001、22ek0109573h0002和23ek0109573h0003)。东京大学提供了开放获取资金。作者信息作者和附属机构东京大学医学研究生院神经病学系,东京文kyo ku Hongo 7-3-1,113-8655,日本Orimo,Takashi Matsukawa,Hiroyuki Ishura,Tatsushi Toda&Shoji Tsuji东京大学医学研究生院精准医学神经病学系,东京文kyo ku Hongo 7-3-1,113-8655,日本三井医学基因组学研究所,国际卫生福利大学,4-3,日本千叶成田市小野村,286-8686冈山大学医学、牙科和药物科学研究生院神经病学系,2-5-1,Shikata cho,Kita ku,冈山,700-8558,JapanHiroyuki IshiuraGenome医学项目,国家全球健康与医学中心,1-21-1,。

PubMed Google ScholarJun MitsuiView author publicationsYou can also search for this author in

PubMed Google ScholarJun MitsuiView作者出版物您也可以在

PubMed Google ScholarTakashi MatsukawaView author publicationsYou can also search for this author in

PubMed Google ScholarTakashi MatsukawaView作者出版物您也可以在

PubMed Google ScholarMasaki TanakaView author publicationsYou can also search for this author in

PubMed Google ScholarMasaki TanakaView作者出版物您也可以在

PubMed Google ScholarJunko NomotoView author publicationsYou can also search for this author in

PubMed Google ScholarJunko NomotoView作者出版物您也可以在

PubMed Google ScholarHiroyuki IshiuraView author publicationsYou can also search for this author in

PubMed Google ScholarHiroyuki IshiuraView作者出版物您也可以在

PubMed Google ScholarYosuke OmaeView author publicationsYou can also search for this author in

PubMed Google ScholarYosuke OmaeView作者出版物您也可以在

PubMed Google ScholarYosuke KawaiView author publicationsYou can also search for this author in

PubMed Google ScholarYosuke KawaiView作者出版物您也可以在

PubMed Google ScholarKatsushi TokunagaView author publicationsYou can also search for this author in

PubMed Google ScholarKatsushi TokunagaView作者出版物您也可以在

PubMed Google ScholarTatsushi TodaView author publicationsYou can also search for this author in

PubMed Google ScholarTatsushi TodaView作者出版物您也可以在

PubMed Google ScholarShoji TsujiView author publicationsYou can also search for this author in

PubMed Google ScholarShoji TsujiView作者出版物您也可以在

PubMed Google ScholarConsortiaNCBN Controls WGS ConsortiumHatsue Ishibashi-Ueda, Tsutomu Tomita, Michio Noguchi, Ayako Takahashi, Yu-ichi Goto, Sumiko Yoshida, Kotaro Hattori, Ryo Matsumura, Aritoshi Iida, Yutaka Maruoka, Hiroyuki Gatanaga, Akihiko Shimomura, Masaya Sugiyama, Satoshi Suzuki, Kengo Miyo, Yoichi Matsubara, Akihiro Umezawa, Kenichiro Hata, Tadashi Kaname, Kouichi Ozaki, Haruhiko Tokuda, Hiroshi Watanabe, Shumpei Niida, Eisei Noiri, Koji Kitajima, Yosuke Omae, Reiko Miyahara, Hideyuki Shimanuki, Yosuke Kawai & Katsushi TokunagaContributionsKO and ST designed and conceptualized the study, analyzed the data; wrote the draft of the manuscript.

PubMed Google ScholarConsortiaNCBN控制着WGS财团Hatsue Ishibashi Ueda、Tsutomu Tomita、Michio Noguchi、Ayako Takahashi、Yu-ichi Goto、Sumiko Yoshida、Kotaro Hattori、Ryo Matsumura、Aritoshi Iida、Yutaka Maruoka、Hiroyuki Gatanaga、Akihiko Shimomura、Masaya Sugiyama、Satoshi Suzuki、Kengo Miyo、Yoichi Matsubara、Akihiro Umezawa、Kenichiro Hata、Tadashi Kaname、Kouichi Ozaki、Haruhi Iko Tokuda,Hiroshi Watanabe,Shumpei Niida,Eisei Noiri,Koji Kitajima,Yosuke Omae,Reiko Miyahara,Hideyuki Shimanuki,Yosuke Kawai&Katsushi TokunagaContributionsKO和ST设计并概念化了这项研究,分析了数据;写了手稿的草稿。

JM designed and conceptualized the study; wrote the draft of the manuscript. MT, JN, YO, YK, and KT contributed to the whole-genome sequence analysis. TM, HI and TT wrote the draft of the manuscript. NCBN Controls WGS Consortium contributed to the collection of the control samples.Corresponding authorCorrespondence to.

JM设计并概念化了这项研究;写了手稿的草稿。MT,JN,YO,YK和KT有助于全基因组序列分析。TM,HI和TT撰写了手稿的草稿。NCBN Controls WGS Consortium为对照样品的收集做出了贡献。对应作者对应。

Shoji Tsuji.Ethics declarations

Shoji Tsuji。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethical approval

道德认可

This study was approved by the Institutional Review Board of the University of Tokyo.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary FigureSupplementary TableRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字补充表权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleOrimo, K., Mitsui, J., Matsukawa, T. et al. Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-.

转载和许可本文引用本文Orimo,K.,Mitsui,J.,Matsukawa,T。等人。基于综合序列分析的GBA1变体与MSA的关联研究-取决于人类参考基因组的短读序列分析中的缺陷。

J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01266-1Download citationReceived: 29 April 2024Revised: 22 May 2024Accepted: 07 June 2024Published: 18 July 2024DOI: https://doi.org/10.1038/s10038-024-01266-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

J Hum Genet(2024)。https://doi.org/10.1038/s10038-024-01266-1Download引文收到日期:2024年4月29日修订日期:2024年5月22日接受日期:2024年6月7日发布日期:2024年7月18日OI:https://doi.org/10.1038/s10038-024-01266-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Disease geneticsNext-generation sequencing

疾病遗传学下一代测序