商务合作
动脉网APP
可切换为仅中文
AbstractSphingosine 1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor, is required for lymphocyte trafficking, and is a promising therapeutic target in inflammatory diseases. Here, we synthesize a competitive S1PR1 antagonist, KSI-6666, that effectively suppresses pathogenic inflammation.
摘要鞘氨醇1-磷酸受体1(S1PR1)是一种G蛋白偶联受体,是淋巴细胞运输所必需的,是炎症性疾病的有希望的治疗靶点。在这里,我们合成了一种竞争性S1PR1拮抗剂KSI-6666,可有效抑制致病性炎症。
Metadynamics simulations suggest that the interaction of KSI-6666 with a methionine residue Met124 in the ligand-binding pocket of S1PR1 may inhibit the dissociation of KSI-6666 from S1PR1. Consistently, in vitro functional and mutational analyses reveal that KSI-6666 causes pseudoirreversible inhibition of S1PR1, dependent on the Met124 of the protein and substituents on the distal benzene ring of KSI-6666.
元动力学模拟表明,KSI-6666与S1PR1配体结合口袋中蛋氨酸残基Met124的相互作用可能会抑制KSI-6666与S1PR1的解离。一致地,体外功能和突变分析表明,KSI-6666引起S1PR1的假不可逆抑制,这取决于蛋白质的Met124和KSI-6666远端苯环上的取代基。
Moreover, in vivo study suggests that this pseudoirreversible inhibition is responsible for the persistent activity of KSI-6666..
此外,体内研究表明,这种假不可逆抑制是KSI-6666持续活性的原因。。
IntroductionSphingosine 1-phosphate (S1P), which is a metabolite of membrane sphingolipids, regulates cell migration, inflammatory response, angiogenesis, and neurogenesis1. The physiological functions of S1P are mediated by its binding to five subtypes of the sphingosine 1-phosphate receptor, which belongs to the G protein-coupled receptor (GPCR) family1.
简介鞘氨醇1-磷酸(S1P)是膜鞘脂的代谢产物,可调节细胞迁移,炎症反应,血管生成和神经发生1。S1P的生理功能是通过其与属于G蛋白偶联受体(GPCR)家族1的鞘氨醇1-磷酸受体的五种亚型的结合来介导的。
Among S1P receptors (S1PRs), S1P receptor 1 (S1PR1) is critical for lymphocyte trafficking and progression of immune and inflammatory responses. The binding of S1P to S1PR1 causes activation of Gi, a subunit of heterotrimeric guanine nucleotide-binding proteins (G proteins), leading to the inhibition of adenylate cyclase-induced cAMP synthesis and subsequent activation of several intracellular signaling pathways.
在S1P受体(S1PR)中,S1P受体1(S1PR1)对于淋巴细胞运输以及免疫和炎症反应的进展至关重要。S1P与S1PR1的结合导致Gi(异源三聚体鸟嘌呤核苷酸结合蛋白(G蛋白)的亚基)的激活,从而抑制腺苷酸环化酶诱导的cAMP合成并随后激活几种细胞内信号传导途径。
The binding also induces the phosphorylation-dependent recruitment of β-arrestin and subsequent cellular internalization of the ligand–receptor complex.Given its roles in lymphocyte trafficking, S1PR1 is a target for the treatment of autoimmune and inflammatory diseases. FTY720, also named fingolimod, is a first-generation S1PR1 modulator that was approved as a drug for the treatment of multiple sclerosis (MS)2,3.
这种结合还诱导β-抑制蛋白的磷酸化依赖性募集以及随后配体-受体复合物的细胞内化。鉴于其在淋巴细胞运输中的作用,S1PR1是治疗自身免疫性和炎性疾病的靶标。FTY720,也称为芬戈莫德,是第一代S1PR1调节剂,被批准作为治疗多发性硬化症(MS)的药物2,3。
Mechanistically, FTY720 is phosphorylated in vivo into FTY720-phosphate (FTY720-P), which serves as a functional antagonist of S1PRs including S1PR12. Thus, the binding of FTY720-P activates S1PR1 signaling, leading to the internalization and subsequent degradation of S1PR1. As a result, administration of FTY720 causes long-lasting inhibition of S1PR1 signaling through the depletion of cell surface S1PR1.
从机理上讲,FTY720在体内被磷酸化为FTY720磷酸盐(FTY720-P),FTY720-P可作为S1PR(包括S1PR12)的功能性拮抗剂。因此,FTY720-P的结合激活S1PR1信号传导,导致S1PR1的内在化和随后的降解。结果,FTY720的施用通过细胞表面S1PR1的消耗引起S1PR1信号传导的持久抑制。
However, in addition to lymphocyte trafficking, S1PR1 controls the function of cardiac cells4. Therefore, the agonistic activity of FTY720-P provokes bradycardia4,5,6, a temporal reduction of the h.
然而,除了淋巴细胞运输外,S1PR1还控制心脏细胞的功能4。因此,FTY720-P的激动活性引起心动过缓4,5,6,即h的时间减少。
Data availability
数据可用性
Source data are provided within this paper. The MD simulation data including input files and final output configurations have been deposited to GitHub depository, https://github.com/CHEMINFO-tsukuba/Nat.Comm.2024.git. Photo image data generated in the current study are available in the Zenodo database, https://doi.org/10.5281/zenodo.11260928. Source data are provided with this paper..
本文提供了源数据。MD模拟数据(包括输入文件和最终输出配置)已保存到GitHub depository,https://github.com/CHEMINFO-tsukuba/Nat.Comm.2024.git.Zenodo数据库中提供了当前研究中生成的照片图像数据,https://doi.org/10.5281/zenodo.11260928.本文提供了源数据。。
ReferencesCartier, A. & Hla, T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science 366, eaar5551 (2019).Chun, J., Kihara, Y., Jonnalagadda, D. & Blaho, V. A. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu. Rev. Pharmacol.
参考文献Cartier,A。&Hla,T。鞘氨醇1-磷酸:病理学和治疗中的脂质信号传导。科学366,eaar5551(2019)。Chun,J.,Kihara,Y.,Jonnalagadda,D。&Blaho,V.A。Fingolimod:经验教训和治疗多发性硬化症和其他疾病的新机会。年。药理学杂志。
Toxicol. 59, 149–170 (2019).Article .
有毒物质。59, 149-170 (2019).第[UNK]条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).Article
Brinkmann,V。等人。Fingolimod(FTY720):一种治疗多发性硬化症的口服药物的发现和开发。《药物目录》修订版。9883-897(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jozefczuk, E., Guzik, T. J. & Siedlinski, M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol. Res. 156, 104793 (2020).Article
Jozefczuk,E.,Guzik,T.J。&Siedlinski,M。鞘氨醇-1-磷酸在心血管生理学和病理学中的意义。。第156104793(2020)号决议。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Camm, J., Hla, T., Bakshi, R. & Brinkmann, V. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am. Heart J. 168, 632–644 (2014).Article
Camm,J.,Hla,T.,Bakshi,R。&Brinkmann,V。芬戈莫德的心脏和血管作用:机制基础和临床意义。《美国心脏杂志》168632-644(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fryer, R. M. et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PLoS ONE 7, e52985 (2012).Article
Fryer,R.M.等人。临床测试的S1P受体激动剂FTY720和BAF312在大鼠中表现出亚型特异性心动过缓(S1P(1))和高血压(S1P(3))。《公共科学图书馆·综合》第7期,第52985页(2012年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sanna, M. G. et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat. Chem. Biol. 2, 434–441 (2006).Article
Sanna,M.G.等人。手性S1P1拮抗剂在体内增强毛细血管渗漏和恢复淋巴细胞出口。自然化学。生物学2434-441(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tarrason, G. et al. The sphingosine-1-phosphate receptor-1 antagonist, W146, causes early and short-lasting peripheral blood lymphopenia in mice. Int. Immunopharmacol. 11, 1773–1779 (2011).Article
Tarrason,G。等人。鞘氨醇-1-磷酸受体-1拮抗剂W146引起小鼠早期和短暂的外周血淋巴细胞减少症。国际免疫药理学。111773-1779(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marciniak, A., Camp, S. M., Garcia, J. G. N. & Polt, R. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg. Med. Chem. Lett. 28, 3585–3591 (2018).Article
Marciniak,A.,Camp,S.M.,Garcia,J.G.N。和Polt,R。鞘氨醇-1-磷酸受体1调节剂的最新进展。生物组织医学化学。利特。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quancard, J. et al. A potent and selective S1P(1) antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem. Biol. 19, 1142–1151 (2012).Article
Quancard,J。等人。一种有效的选择性S1P(1)拮抗剂,对实验性自身免疫性脑脊髓炎有效。。生物学191142-1151(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006).Article
Copeland,R.A.,Pompliano,D.L。和Meek,T.D。药物目标停留时间及其对铅优化的影响。《药物目录》修订版。5730-739(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Copeland, R. A. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15, 87–95 (2016).Article
Copeland,R.A。药物目标停留时间模型:10年回顾。《药物目录》修订版。15,87-95(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tautermann, C. S. Impact, determination and prediction of drug-receptor residence times for GPCRs. Curr. Opin. Pharmacol. 30, 22–26 (2016).Article
Tautermann,C.S。GPCR药物受体停留时间的影响,确定和预测。货币。奥平。。30,22-26(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bernetti, M., Cavalli, A. & Mollica, L. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. Medchemcomm 8, 534–550 (2017).Article
Bernetti,M.,Cavalli,A。&Mollica,L。蛋白质-配体(un)结合动力学作为实验和建模之间十字路口药物发现的新范例。Medchemcomm 8534-550(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sykes, D. A. et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat. Commun. 8, 763 (2017).Article
抗精神病药物的锥体外系副作用与多巴胺D2受体的缔合动力学有关。国家公社。8763(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sykes, D. A. et al. Fevipiprant (QAW039), a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol. Pharmacol. 89, 593–605 (2016).Article
Sykes,D.A。等人,Fevipiprant(QAW039),一种缓慢解离的CRTh2拮抗剂,具有改善临床疗效的潜力。摩尔药理学。89593-605(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Agren, R. et al. Ligand with two modes of interaction with the dopamine D2 receptor—an induced-fit mechanism of insurmountable antagonism. ACS Chem. Neurosci. 11, 3130–3143 (2020).Article
Agren,R。等人。与多巴胺D2受体具有两种相互作用模式的配体-一种不可克服的拮抗作用的诱导拟合机制。ACS化学。神经科学。113130–3143(2020)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Vauquelin, G., Van Liefde, I., Birzbier, B. B. & Vanderheyden, P. M. New insights in insurmountable antagonism. Fundam. Clin. Pharmacol. 16, 263–272 (2002).Article
Vauquelin,G.,Van Liefde,I.,Birzbier,B.B。&Vanderheyden,P.M。关于不可逾越的对抗的新见解。Fundam公司。临床。。16263-272(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lew, M. J., Ziogas, J. & Christopoulos, A. Dynamic mechanisms of non-classical antagonism by competitive AT(1) receptor antagonists. Trends Pharmacol. Sci. 21, 376–381 (2000).Article
Lew,M.J.,Ziogas,J。&Christopoulos,A。竞争性AT(1)受体拮抗剂的非经典拮抗作用的动态机制。趋势药理学。科学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hale, J. J. et al. Structural optimization affording 2-(R)-(1-(R)-3, 5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4- (3-oxo-1,2,4-triazol-5-yl)methylmorpholine, a potent, orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J. Med. Chem. 41, 4607–4614 (1998).Article .
Hale,J.J.等人。结构优化提供2-(R)-(1-(R)-3,5-双(三氟甲基)苯乙氧基)-3-(S)-(4-氟)苯基-4-(3-氧代-1,2,4-三唑-5-基)甲基吗啉,一种有效的,口服活性的长效吗啉缩醛人NK-1受体拮抗剂。J、 医学化学。414607-4614(1998)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tiwary, P., Limongelli, V., Salvalaglio, M. & Parrinello, M. Kinetics of protein-ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc. Natl Acad. Sci. USA 112, E386–E391 (2015).Article
Tiwary,P.,Limongelli,V.,Salvalaglio,M。&Parrinello,M。蛋白质配体解结合的动力学:预测途径,速率和限速步骤。程序。国家科学院。科学。美国112,E386–E391(2015)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buch, I., Giorgino, T. & De Fabritiis, G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl Acad. Sci. USA 108, 10184–10189 (2011).Article
Buch,I.,Giorgino,T。&De Fabritiis,G。通过分子动力学模拟完全重建酶抑制剂结合过程。程序。国家科学院。科学。美国10810184–10189(2011)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tiwary, P., Mondal, J. & Berne, B. J. How and when does an anticancer drug leave its binding site? Sci. Adv. 3, e1700014 (2017).Article
Tiwary,P.,Mondal,J。&Berne,B.J。抗癌药物如何以及何时离开其结合位点?科学。Adv.3,e1700014(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kokh, D. B. et al. Estimation of drug-target residence times by tau-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 14, 3859–3869 (2018).Article
Kokh,D.B.等人。通过tau随机加速分子动力学模拟估算药物靶标停留时间。J、 化学。理论计算。143859-3869(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cavalli, A., Spitaleri, A., Saladino, G. & Gervasio, F. L. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms. Acc. Chem. Res. 48, 277–285 (2015).Article
Cavalli,A.,Spitaleri,A.,Saladino,G。&Gervasio,F.L。使用基于元动力学的算法研究药物-靶标关联和解离机制。根据化学。第48277-285号决议(2015年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Callegari, D. et al. Metadynamics simulations distinguish short- and long-residence-time inhibitors of cyclin-dependent kinase 8. J. Chem. Inf. Model 57, 159–169 (2017).Article
Callegari,D。等人。元动力学模拟区分了细胞周期蛋白依赖性激酶8的短期和长期停留时间抑制剂。J、 化学。Inf.模型57159-169(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Decherchi, S. & Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev. 120, 12788–12833 (2020).Article
Decherchi,S。&Cavalli,A。通过分子模拟药物靶标结合的热力学和动力学。。版本12012788–12833(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sledz, P. & Caflisch, A. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol. 48, 93–102 (2018).Article
Sledz,P。&Caflisch,A。基于蛋白质结构的药物设计:从对接到分子动力学。货币。奥平。结构。生物学48,93-102(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).Article
Laio,A。和Parrinello,M。逃避自由能最小值。程序。国家科学院。科学。美国9912562-12566(2002)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ibrahim, M. A. et al. Discovery of a novel class of potent and orally bioavailable sphingosine 1-phosphate receptor 1 antagonists. J. Med. Chem. 55, 1368–1381 (2012).Article
Ibrahim,M.A.等人发现了一类新型有效且口服生物可利用的鞘氨醇1-磷酸受体1拮抗剂。J、 医学化学。551368-1381(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stewart, G. D., Sexton, P. M. & Christopoulos, Inverse Agonists: Encyclopedia of Psychopharmacology (ed. Stolerman, I. P.) (Springer, Berlin, Heidelberg, 2015).Rey, M. et al. Desensitization by progressive up-titration prevents first-dose effects on the heart: guinea pig study with ponesimod, a selective S1P1 receptor modulator.
Stewart,G.D.,Sexton,P.M。和Christopoulos,《反向激动剂:精神药理学百科全书》(ed.Stolerman,I.P.)(施普林格,柏林,海德堡,2015)。Rey,M.等人。通过渐进式滴定进行脱敏可防止首次剂量对心脏的影响:使用选择性S1P1受体调节剂ponesimod进行的豚鼠研究。
PLoS ONE 8, e74285 (2013).Article .
PLoS ONE 8,e74285(2013)。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimizu, H. et al. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111, 222–229 (2005).Article
Shimizu,H。等人。KRP-203是一种新型合成免疫抑制剂,可延长移植物存活时间并减轻大鼠皮肤和心脏同种异体移植物的慢性排斥反应。发行量111222–229(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brudzewsky, D. et al. Genome-wide gene expression profiling of SCID mice with T-cell-mediated Colitis. Scand. J. Immunol. 69, 437–446 (2009).Article
Brudzewsky,D。等人。具有T细胞介导的结肠炎的SCID小鼠的全基因组基因表达谱。斯堪的纳维亚。J、 免疫。69437-446(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012).Article
Hanson,M.A.等人。脂质G蛋白偶联受体的晶体结构。科学335851-855(2012)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, Z. et al. Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism. Nat. Chem. Biol. 18, 281–288 (2022).Article
Xu,Z.等人。鞘氨醇-1-磷酸受体1激活和偏倚激动的结构基础。自然化学。生物学18281-288(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guo, D., Hillger, J. M., IJzerman, A. P. & Heitman, L. H. Drug-target residence time-a case for G protein-coupled receptors. Med. Res. Rev. 34, 856–892 (2014).Article
Guo,D.,Hillger,J.M.,IJzerman,A.P。&Heitman,L.H。药物目标停留时间-G蛋白偶联受体的情况。《医学决议》第34856-892版(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dahl, G. & Akerud, T. Pharmacokinetics and the drug-target residence time concept. Drug Discov. Today 18, 697–707 (2013).Article
Dahl,G。&Akerud,T。药代动力学和药物目标停留时间概念。药物发现。今天18697-707(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lu, H. & Tonge, P. J. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14, 467–474 (2010).Article
Lu,H。&Tonge,P。J。药物目标停留时间:铅优化的关键信息。货币。奥平。。生物学14467-474(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, D., Mulder-Krieger, T., IJzerman, A. P. & Heitman, L. H. Functional efficacy of adenosine A(2)A receptor agonists is positively correlated to their receptor residence time. Br. J. Pharmacol. 166, 1846–1859 (2012).Article
Guo,D.,Mulder Krieger,T.,IJzerman,A.P。&Heitman,L.H。腺苷A(2)A受体激动剂的功能功效与其受体停留时间呈正相关。Br.J.药理学。1661846-1859(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schneider, E. V., Bottcher, J., Huber, R., Maskos, K. & Neumann, L. Structure-kinetic relationship study of CDK8/CycC specific compounds. Proc. Natl Acad. Sci. USA 110, 8081–8086 (2013).Article
Schneider,E.V.,Bottcher,J.,Huber,R.,Maskos,K。&Neumann,L。CDK8/CycC特异性化合物的结构动力学关系研究。程序。国家科学院。科学。美国1108081–8086(2013)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Knockenhauer, K. E. & Copeland, R. A. The importance of binding kinetics and drug-target residence time in pharmacology. Br. J. Pharmacol. https://doi.org/10.1111/bph.16104. (2023). Online ahead of print.Fujiwara, Y. et al. Identification of the hydrophobic ligand binding pocket of the S1P1 receptor.
Knockenhauer,K.E。&Copeland,R.A。结合动力学和药物目标停留时间在药理学中的重要性。Br.J.药理学。https://doi.org/10.1111/bph.16104.(2023年)。在线印刷前。Fujiwara,Y。等人。S1P1受体疏水配体结合口袋的鉴定。
J. Biol. Chem. 282, 2374–2385 (2007).Article .
J.生物学。化学。282, 2374-2385 (2007).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cohen, J. A. et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 18, 1021–1033 (2019).Article
Cohen,J.A.等人,《奥扎尼莫与干扰素β-1a在复发性多发性硬化症(RADIANCE)中的安全性和有效性:一项多中心,随机,24个月,3期试验。。181021-1033(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tran, J. Q. et al. Results from the first-in-human study with ozanimod, a novel, selective sphingosine-1-phosphate receptor modulator. J. Clin. Pharmacol. 57, 988–996 (2017).Article
Tran,J.Q.等人首次使用新型选择性鞘氨醇-1-磷酸受体调节剂ozanimod进行人体研究。J、 临床。。57988-996(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).Article
Sandborn,W.J。等人。奥扎尼莫作为溃疡性结肠炎的诱导和维持疗法。N、 英语。J、 医学3851280-1291(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sandborn, W. J. et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology 158, 550–561 (2020).Article
Sandborn,W.J.等人。依曲莫特在溃疡性结肠炎患者2期随机试验中的疗效和安全性。胃肠病学158550-561(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ray, D. & Parrinello, M. Kinetics from metadynamics: principles, applications, and outlook. J. Chem. Theory Comput. 19, 5649–5670 (2023).Article
Ray,D。&Parrinello,M。来自metadynamics的动力学:原理,应用和展望。J、 化学。理论计算。195649-5670(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Raniolo, S. & Limongelli, V. Ligand binding free-energy calculations with funnel metadynamics. Nat. Protoc. 15, 2837–2866 (2020).Article
Raniolo,S。&Limongelli,V。配体结合自由能计算与漏斗元动力学。自然协议。152837-2866(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Al-Shamma, H. et al. The selective sphingosine 1-phosphate receptor modulator etrasimod regulates lymphocyte trafficking and alleviates experimental colitis. J. Pharmacol. Exp. Ther. 369, 311–317 (2019).Article
。J、 药理学。实验温度。369311-317(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).Article
Sastry,G.M.,Adzhigirey,M.,Day,T.,Annabhimoju,R。&Sherman,W。蛋白质和配体制备:参数,方案以及对虚拟筛选富集的影响。J、 计算机。。27221-234(2013)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A. & Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49, 534–553 (2006).Article
Sherman,W.,Day,T.,Jacobson,M.P.,Friesner,R.A。&Farid,R。用于建模配体/受体诱导的拟合效应的新程序。J、 医学化学。49534-553(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Roos, K. et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15, 1863–1874 (2019).Article
Roos,K。等。OPLS3e:扩展药物样小分子的力场覆盖范围。J、 化学。理论计算。151863-1874(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kurki, M., Poso, A., Bartos, P. & Miettinen, M. S. Structure of POPC lipid bilayers in OPLS3e force field. J. Chem. Inf. Model 62, 6462–6474 (2022).Download referencesAcknowledgementsThis work was supported by the Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]) from AMED (grant number JP22ama121029j0001 to T.H.), Grants-in-Aid for Scientific Research from JSPS (17H04038, 17K08622, 20K07332, and 20H03441 to T.A.
Kurki,M.,Poso,A.,Bartos,P。&Miettinen,M.S。OPLS3e力场中POPC脂质双层的结构。J、 化学。参考模型626462–6474(2022)。下载参考文献致谢这项工作得到了AMED生命科学和药物发现研究支持项目(支持创新药物发现和生命科学研究的基础[BINDS])的支持(T.H.的资助号JP22ama121029j0001),JSPS的科学研究资助(17H04038、17K08622、20K07332和20H03441至T.A)。
and N.A.), Grants-in-Aid for Scientific Research in Innovative Areas from MEXT (18H04989 and 19H04821 to T.A. and N.A.) and by CREST from the Japan Science and Technology Agency (JPMJCR2011 to T.A.). We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.Author informationAuthors and AffiliationsLaboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, JapanYuya Maruyama, Wataru Muramatsu, Kano Namiki, Naho Hagiwara, Maki Miyauchi, Takahisa Miyao, Tatsuya Ishikawa, Kenta Horie, Mio Hayama, Nobuko Akiyama & Taishin AkiyamaImmunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, JapanYuya Maruyama, Wataru Muramatsu, Kano Namiki, Maki Miyauchi, Tatsuya Ishikawa, Mio Hayama, Nobuko Akiyama & Taishin AkiyamaCentral Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, JapanYuya Maruyama, Yusuke Ohsawa, Takayuki Suzuki, Yuko Yamauchi, Kohsuke Ohno, Hitoshi Inoue, Akitoshi Yamamoto, Morimichi Hayashi & Yuji OkuharaDivision of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, JapanTakatsugu HirokawaTransborder Medical Research Center, Univ.
和N.A.),MEXT(18H04989和19H04821授予T.A.和N.A.)和CREST(日本科学技术厅(JPMJCR2011授予T.A.)的创新领域科学研究补助金。我们感谢Edanz(https://jp.edanz.com/ac)编辑这份手稿的草稿。作者信息作者和附属机构免疫稳态实验室,日本理研综合医学科学中心,横滨,230-0045,日本丸山,村松渡,Kano Namiki,Naho Hagiwara,Maki Miyauchi,Miyao Tatsuya Ishikawa,Kenta Horie,Mio Hayama,Nobuko Akiyama和Taishin AkiyamaImmunobiology,横滨城市大学医学生命科学研究生院,横滨,230-0045,日本丸山渡,村松渡,Kano Namiki,Maki Miyama内町,石川达也,宫山弥生,秋山信子和秋山太新中央研究实验室,基西制药有限公司,4365-1和田,长野阿祖米诺,399-8304,日本丸山,大泽佑介,铃木,山内幸子,大野广介,井上春树,山本明敏,林下和冈原裕二筑波大学医学院生物医学科学系,筑波田纳西1-1-1茨城县,305-8575,日本广川县医学研究中心,大学。
PubMed Google ScholarYusuke OhsawaView author publicationsYou can also search for this author in
PubMed Google ScholarYusuke OhsawaView作者出版物您也可以在
PubMed Google ScholarTakayuki SuzukiView author publicationsYou can also search for this author in
PubMed Google ScholarYuko YamauchiView author publicationsYou can also search for this author in
PubMed Google ScholarYuko YamauchiView作者出版物您也可以在
PubMed Google ScholarKohsuke OhnoView author publicationsYou can also search for this author in
PubMed Google ScholarKohsuke OhnoView作者出版物您也可以在
PubMed Google ScholarHitoshi InoueView author publicationsYou can also search for this author in
PubMed Google ScholarHitoshi InoueView作者出版物您也可以在
PubMed Google ScholarAkitoshi YamamotoView author publicationsYou can also search for this author in
PubMed Google ScholarAkitoshi YamamotoView作者出版物您也可以在
PubMed Google ScholarMorimichi HayashiView author publicationsYou can also search for this author in
PubMed Google Scholarmarmichi HayashiView作者出版物您也可以在
PubMed Google ScholarYuji OkuharaView author publicationsYou can also search for this author in
PubMed Google ScholarYuji OkuharaView作者出版物您也可以在
PubMed Google ScholarWataru MuramatsuView author publicationsYou can also search for this author in
PubMed Google ScholarWataru MuramatsuView作者出版物您也可以在
PubMed Google ScholarKano NamikiView author publicationsYou can also search for this author in
PubMed Google ScholarKano NamikiView作者出版物您也可以在
PubMed Google ScholarNaho HagiwaraView author publicationsYou can also search for this author in
PubMed Google ScholarNaho HagiwaraView作者出版物您也可以在
PubMed Google ScholarMaki MiyauchiView author publicationsYou can also search for this author in
PubMed谷歌ScholarMaki MiyauchiView作者出版物您也可以在
PubMed Google ScholarTakahisa MiyaoView author publicationsYou can also search for this author in
PubMed Google ScholarTatsuya IshikawaView author publicationsYou can also search for this author in
PubMed Google ScholarTatsuya IshikawaView作者出版物您也可以在
PubMed Google ScholarKenta HorieView author publicationsYou can also search for this author in
PubMed Google ScholarKenta HorieView作者出版物您也可以在
PubMed Google ScholarMio HayamaView author publicationsYou can also search for this author in
PubMed Google ScholarMio HayamaView作者出版物您也可以在
PubMed Google ScholarNobuko AkiyamaView author publicationsYou can also search for this author in
PubMed Google ScholarNobuko AkiyamaView作者出版物您也可以在
PubMed Google ScholarTakatsugu HirokawaView author publicationsYou can also search for this author in
PubMed Google ScholarTakatsugu HirokawaView作者出版物您也可以在
PubMed Google ScholarTaishin AkiyamaView author publicationsYou can also search for this author in
PubMed Google ScholarTaishin AkiyamaView作者出版物您也可以在
PubMed Google ScholarContributionsY.M., Y. Ohsawa, T.S., M.M., T.M., N.A., W.M., K.N. and N.H. performed the experiments. K.O. and H.I. synthesized the chemicals. A.Y. performed LC-MS analysis. M.H. and Y. Okuhara performed histological analysis. Y.Y. and T.H. performed in silico calculations.
PubMed谷歌学术贡献。M、 ,Y.Ohsawa,T.S.,M.M.,T.M.,N.A.,W.M.,K.N.和N.H.进行了实验。K、 O.和H.I.合成了这些化学品。A、 Y.进行LC-MS分析。M、 H.和Y.Okuhara进行了组织学分析。Y、 Y.和T.H.进行了计算机计算。
Y.M., Y.Y., T.I., K.H., M.H., T.H. and T.A. analyzed the MetaD data. Y.M. and T.A. designed the study and wrote the paper.Corresponding authorCorrespondence to.
Y、 M.,Y.Y.,T.I.,K.H.,M.H.,T.H.和T.A.分析了MetaD数据。Y、 M.和T.A.设计了这项研究并撰写了论文。对应作者对应。
Taishin Akiyama.Ethics declarations
Taishin Akiyama。道德宣言
Competing interests
相互竞争的利益
YM, Y. Ohsawa, TS, YY, KO, HI, AY, MH, and Y. Okuhara are employees of Kissei Pharmaceutical Co., Ltd. and may hold stock in the company. The remaining authors declare no competing interests.
YM、Y.Ohsawa、TS、YY、KO、HI、AY、MH和Y.Okuhara是Kissei Pharmaceutical Co.,Ltd.的员工,可能持有公司股票。其余作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Timothy Hla, Tibor Stračina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢Timothy Hla,Tibor Stračina和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Movie 1Supplementary Movie 2Supplementary Movie 3Reporting SummarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充电影1补充电影2补充电影3报告摘要源数据源数据权限和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleMaruyama, Y., Ohsawa, Y., Suzuki, T. et al. Pseudoirreversible inhibition elicits persistent efficacy of a sphingosine 1-phosphate receptor 1 antagonist.
转载和许可本文引用本文Maruyama,Y.,Ohsawa,Y.,Suzuki,T。等人。假不可逆抑制引起鞘氨醇1-磷酸受体1拮抗剂的持续功效。
Nat Commun 15, 5743 (2024). https://doi.org/10.1038/s41467-024-49893-8Download citationReceived: 18 April 2023Accepted: 19 June 2024Published: 19 July 2024DOI: https://doi.org/10.1038/s41467-024-49893-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》155743(2024)。https://doi.org/10.1038/s41467-024-49893-8Download引文接收日期:2023年4月18日接收日期:2024年6月19日发布日期:2024年7月19日OI:https://doi.org/10.1038/s41467-024-49893-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。