商务合作
动脉网APP
可切换为仅中文
AbstractParasitic diseases, particularly malaria (caused by Plasmodium falciparum) and theileriosis (caused by Theileria spp.), profoundly impact global health and the socioeconomic well-being of lower-income countries. Despite recent advances, identifying host metabolic proteins essential for these auxotrophic pathogens remains challenging.
摘要寄生虫病,特别是疟疾(由恶性疟原虫引起)和泰勒虫病(由泰勒虫属引起),深刻影响全球健康和低收入国家的社会经济福祉。尽管最近取得了进展,但鉴定这些营养缺陷型病原体所必需的宿主代谢蛋白仍然具有挑战性。
Here, we generate a novel metabolic model of human hepatocytes infected with P. falciparum and integrate it with a genome-wide CRISPR knockout screen targeting Theileria-infected cells to pinpoint shared vulnerabilities. We identify key host metabolic enzymes critical for the intracellular survival of both of these lethal hemoparasites.
在这里,我们产生了一种感染恶性疟原虫的人类肝细胞的新型代谢模型,并将其与靶向泰勒虫感染细胞的全基因组CRISPR敲除筛选相结合,以查明共享的漏洞。我们确定了对这两种致命血液寄生虫的细胞内存活至关重要的关键宿主代谢酶。
Remarkably, among the metabolic proteins identified by our synergistic approach, we find that host purine and heme biosynthetic enzymes are essential for the intracellular survival of P. falciparum and Theileria, while other host enzymes are only essential under certain metabolic conditions, highlighting P.
值得注意的是,在我们的协同方法鉴定的代谢蛋白中,我们发现宿主嘌呤和血红素生物合成酶对于恶性疟原虫和泰勒虫的细胞内存活至关重要,而其他宿主酶仅在某些代谢条件下才是必需的,突出了P。
falciparum’s adaptability and ability to scavenge nutrients selectively. Unexpectedly, host porphyrins emerge as being essential for both parasites. The shared vulnerabilities open new avenues for developing more effective therapies against these debilitating diseases, with the potential for broader applicability in combating apicomplexan infections..
恶性疟原虫的适应性和选择性清除营养物质的能力。出乎意料的是,宿主卟啉对这两种寄生虫都是必不可少的。这些共同的漏洞为开发针对这些衰弱性疾病的更有效疗法开辟了新途径,并有可能在对抗apicomplexan感染方面具有更广泛的适用性。。
IntroductionApicomplexa are unicellular parasites that can cause severe and life-threatening diseases in humans and other animals. The malaria-causing Plasmodium falciparum (P. falciparum) is the most impactful human parasite, with more than 245 million malaria cases and more than 600,000 deaths reported annually1.
简介Apicomplexa是单细胞寄生虫,可在人类和其他动物中引起严重且威胁生命的疾病。引起疟疾的恶性疟原虫(恶性疟原虫)是影响最大的人类寄生虫,每年报告的疟疾病例超过2.45亿,死亡人数超过60万1。
Other socio-economically significant apicomplexans include the related bovine parasites in the genus Theileria, which are responsible for the deaths of more than 1 million cattle annually, significantly impacting livestock productivity, especially in small-scale cattle farming in the Global South2,3.
其他具有社会经济意义的apicomplexans包括泰勒虫属的相关牛寄生虫,每年导致100多万头牛死亡,严重影响牲畜生产力,特别是在全球南方的小型养牛业中2,3。
Notably, highly virulent Theileria species have the unique ability among eukaryotic pathogens to induce cancer-like transformation of host cells, characterized by sustained proliferation and invasiveness4,5,6.A hallmark of apicomplexan parasites is their auxotrophy for multiple metabolites, meaning they lack the ability to synthesize essential nutrients and rely on their host cells.
值得注意的是,高毒力泰勒虫在真核病原体中具有诱导宿主细胞癌症样转化的独特能力,其特征在于持续增殖和侵袭4,5,6。apicomplexan寄生虫的一个标志是它们对多种代谢物的营养缺陷型,这意味着它们缺乏合成必需营养素并依赖宿主细胞的能力。
In recent years, our understanding of apicomplexan metabolism has significantly advanced, revealing significant variation in dependencies among different parasite genera7,8. However, due to the complex interactions with the host cell and the manipulation of key biological processes9,10,11, there remains a lack of comprehensive understanding and detailed insight into the essential metabolic dependencies.
近年来,我们对apicomplexan代谢的理解显着提高,揭示了不同寄生虫基因之间依赖性的显着差异7,8。然而,由于与宿主细胞的复杂相互作用以及关键生物过程的操纵9,10,11,仍然缺乏对基本代谢依赖性的全面理解和详细了解。
We hypothesized that these auxotrophs, depending on their life cycle stage, rely on common host cell-derived metabolites for intracellular survival. Therefore, we explored the potential of targeting a single host metabolic pathway to block infection. Focusing on arguably the two most impactful genera globally, Plasmodium and Theileria, we investigated shared dependencies on key host me.
我们假设这些营养缺陷型依赖于它们的生命周期阶段,依赖于常见的宿主细胞衍生的代谢物进行细胞内存活。因此,我们探索了靶向单一宿主代谢途径以阻断感染的潜力。。
Plasmodium and Theileria schizont survival depend on a core set of shared host enzymesP. falciparum liver-stage infection remains one of the least characterized but most attractive targets for malaria prevention as it represents a bottleneck in parasite development. Experimental limitations, such as the low infection rate and strict biosafety requirements, necessitate the use of metabolic modeling to study the host interplay of the hepatic schizont stages of the human malaria parasite.
疟原虫和泰勒虫裂殖体的存活取决于一组核心的共享宿主酶。恶性疟原虫肝期感染仍然是疟疾预防中特征最少但最具吸引力的目标之一,因为它是寄生虫发展的瓶颈。实验限制,例如低感染率和严格的生物安全要求,需要使用代谢模型来研究人类疟疾寄生虫肝裂殖体阶段的宿主相互作用。
Conversely, T. annulata is well suited for in vitro culturing, as demonstrated by successful CRISPR screening in Theileria-infected macrophages. We investigated whether these pathogens rely on the same host metabolic pathways. We identified 99 metabolic enzymes in our Theileria essentialome and we searched for overlaps with the predicted host gene essentiality for liver stage P.
相反,T.annulata非常适合体外培养,如在泰勒虫感染的巨噬细胞中成功进行CRISPR筛选所证明的。。我们在Theileria essentialome中鉴定了99种代谢酶,并搜索了与预测的肝P期宿主基因必要性的重叠。
falciparum in the auxotrophic and partial prototrophic scenarios. To this end, we identified common host genes that are essential for at least one of the alternative metabolic configurations simulated for liver stage P. falciparum, as well as the list of common host genes essential for all simulated metabolic configurations of P.
营养缺陷型和部分原养型情况下的恶性疟原虫。为此,我们确定了对肝期恶性疟原虫模拟的至少一种替代代谢构型至关重要的常见宿主基因,以及对所有模拟的恶性疟原虫代谢构型至关重要的常见宿主基因列表。
falciparum (Fig. 6). We identified 28 host genes that are commonly essential for Theileria and Plasmodium in at least one of the simulated metabolic configurations, including genes encoding mitochondrial complex II subunits (SDHA, SDHB, SDHC, SDHD) and genes involved in polyamine (AMD1, SRM) and glutathione (GCLC, GSS) biosynthesis (Fig. 6).
恶性疟原虫(图6)。。
Of these only seven genes, belonging to the heme and purine biosynthetic pathways, were identified as commonly essential for Theileria and all simulated metabolic configurations of P. falciparum. This suggests that when metabolites such as polyamines .
在这七个基因中,属于血红素和嘌呤生物合成途径的基因被确定为泰勒虫和恶性疟原虫的所有模拟代谢构型的常见必需基因。这表明当代谢物如多胺时。
The liver-iPfa model was reconstructed from the published iPfa genome-scale model for P. falciparum26 by blocking the reactions that transport in and out of the parasite compounds that are not present in the liver model. By mapping the extra-parasitic metabolites from iPfa to the cytosolic metabolites from the hepatocyte model, we found that from the 241 metabolites that the parasite can transport in the iPfa model, 165 (Supplementary data 1) are present in the cytosol of the liver model.
通过阻断肝脏模型中不存在的寄生虫化合物进出的反应,从已发表的恶性疟原虫iPfa基因组规模模型26重建肝脏iPfa模型。通过将来自iPfa的额外寄生虫代谢物映射到来自肝细胞模型的胞质代谢物,我们发现从寄生虫可以在iPfa模型中运输的241种代谢物中,肝脏模型的胞质溶胶中存在165种(补充数据1)。
We then blocked the transport reactions for the 76 metabolites that are not found in the hepatocyte model and performed flux variability analysis to remove the reactions that could not carry flux in iPfa, resulting in a liver-iPfa model of 737 metabolites, 889 reactions, 210 genes, and a growth of 0.073 h−1 (doubling time of 9.48 h).Minimal nutritional requirements for liver-stage Plasmodium falciparum.
然后,我们阻断了肝细胞模型中未发现的76种代谢物的转运反应,并进行了通量变异性分析,以消除iPfa中不能携带通量的反应,从而产生了737种代谢物,889种反应,210个基因的肝脏iPfa模型,生长为0.073h-1(倍增时间为9.48h)。肝期恶性疟原虫的最低营养需求。
In order to investigate the minimal set of nutrients that the liver-stage P. falciparum needs to sustain growth, we applied the in silico minimal medium (iMM) method30 to the liver-iPfa model. The iMM method identifies the minimal set of nutrients that are required to satisfy a specific growth rate.
为了研究肝脏恶性疟原虫维持生长所需的最小营养成分,我们将计算机模拟基本培养基(iMM)方法30应用于肝脏iPfa模型。iMM方法确定了满足特定生长速度所需的最小营养素组。
In this case, we identified that parasites need a minimum of 31 nutrients to grow. Given the flexibility of the intracellular metabolism to synthesize the required precursors for biomass, there exist alternative sets of nutrients that could serve to achieve the same growth rate. In this case, using iMM we found 1792 alternative sets of 31 nutrients, leading to a total of 47 unique nutrients across sets.
在这种情况下,我们发现寄生虫至少需要31种营养才能生长。鉴于细胞内代谢的灵活性,可以合成生物质所需的前体,因此存在替代营养素组,可以实现相同的生长速度。在这种情况下,使用iMM,我们发现了1792组31种营养素的替代组,导致每组共有47种独特的营养素。
By classifying the presence of these nutrients in the corresponding 1792 sets, we identified 23 nutrients that appear in all sets, which we call constitutive, and 24 nutrients that are not appearing systematically in all sets because they can substitute each other, as they contribute with the same backbone moieties (Fig. S1a and Supplementary data 1).In this scenario, when considering a liver-stage P.
通过对相应1792组中这些营养素的存在进行分类,我们确定了所有组中出现的23种营养素,我们称之为组成型营养素,以及24种营养素,这些营养素在所有组中都没有系统地出现,因为它们可以相互替代,因为它们具有相同的骨架部分(图S1a和补充数据1)。在这种情况下,当考虑肝脏阶段P时。
falciparum that takes up the minimal number of metabolites from its host cell, we are simulating a partial prototrophic parasite. Such a parasite can synthesize the maximum number of biomass precursors and will only scavenge from the host those that it cannot synthesize itself.The parasitosome as a representation of the metabolic state of Plasmodium falciparum.
。这样的寄生虫可以合成最大数量的生物质前体,并且只能从宿主身上清除那些它无法自行合成的前体。寄生虫体作为恶性疟原虫代谢状态的代表。
The parasitosome is a unidirectional metabolic reaction defined by the following steps:
寄生虫体是由以下步骤定义的单向代谢反应:
1.
1.
Set the extracellular composition in the parasite model. We considered two cases: (i) parasites in an auxotrophic mode, which take up the available nutrients from the host cytosol, (ii) parasites in a partial prototrophic mode, which take up the minimum amount of nutrients from the host and use their intracellular metabolism to synthesize the rest of the compounds required for growth..
在寄生虫模型中设置细胞外成分。我们考虑了两种情况:(i)营养缺陷型寄生虫,它从宿主细胞质中吸收可用的营养,(ii)部分原养型寄生虫,它从宿主中吸收最少量的营养,并利用它们的细胞内代谢来合成生长所需的其余化合物。。
2.
2.
Use the lumpGEM method51 in the liver-iPfa model to identify the set of intracellular reactions that must be active to simulate parasite growth. This subnetwork is known as minimal network (MiN).
在肝脏iPfa模型中使用lumpGEM方法51来鉴定必须活跃以模拟寄生虫生长的一组细胞内反应。该子网称为最小网络(MiN)。
3.
3.
Then, lumpGEM generates a lumped reaction by collapsing the subnetwork into one reaction (see original publication for more details). In the resulting reaction, substrates represent the nutrients that the parasite takes up from the host’s cytosol, and products represent the by-products that the parasite must secrete into the host’s cytosol..
然后,lumpGEM通过将子网折叠成一个反应来生成一个集总反应(有关更多详细信息,请参见原始出版物)。在由此产生的反应中,底物代表寄生虫从宿主细胞质中吸收的营养物质,产物代表寄生虫必须分泌到宿主细胞质中的副产物。。
It is important to note that the subnetwork generated by lumpGEM contains the details of the metabolic reactions active for the corresponding metabolic configuration as well as the biomass reaction of the parasite. As a result, one of the metabolites in the parasitosome reaction is the parasite biomass.
重要的是要注意,由lumpGEM生成的子网络包含对相应代谢构型以及寄生虫的生物量反应活跃的代谢反应的细节。因此,寄生虫体反应中的代谢物之一是寄生虫生物量。
Therefore, the optimized flux through the parasitosome in the integrated model represents the overall growth of the parasite by uptake and secretion of compounds from and to the host cytosol. Note that the parasitosome can support growth up to the maximum value but it can also capture suboptimal growth.The directionality of each parasitosome, as well as the directionality of the reactions composing the underlying subnetwork are determined by lumpGEM.
因此,在综合模型中通过寄生虫体的优化通量代表了寄生虫通过从宿主细胞质和向宿主细胞质摄取和分泌化合物的总体生长。请注意,寄生体可以支持生长达到最大值,但也可以捕获次优生长。每个寄生体的方向性以及组成底层子网的反应的方向性由lumpGEM确定。
The algorithm finds the optimal configuration of fluxes that maximize biomass production in the parasite model, taking into account the directionality and thermodynamic feasibility of the reactions as defined in the curated GEM.Note also that the alternative biochemistry of the parasite leads to alternative metabolic configurations (subnetworks) and thus to alternative parasitosomes.In the case that we simulate an auxotrophic parasite, a minimum of 248 reactions are required and there exist 151 alternative MiNs (Fig. S1c).
该算法考虑到策划的GEM中定义的反应的方向性和热力学可行性,找到了在寄生虫模型中最大化生物量产生的通量的最佳配置。还请注意,寄生虫的替代生物化学导致替代代谢构型(子网),从而导致替代寄生虫体。在我们模拟营养缺陷型寄生虫的情况下,至少需要248个反应,并且存在151个替代分钟(图S1c)。
By lumping the MiNs into individual reactions, we generated 151 parasitosomes that use a total of 75 nutrients and secrete a total of 27 products (Fig. S1b). In the case where the parasite is in a partial prototrophic mode, the size of the MiNs is 307 reactions and there exist 8 alternatives (Fig. S1c), resulting in 8 alternative parasitosomes that take up a total of 36 nutrients and secrete 36 products (Fig. S1b).Reconstruction of a hepatocyte-parasite integrated metabolic modelThe generated parasitosome .
。在寄生虫处于部分原养模式的情况下,MiNs的大小为307个反应,存在8个替代物(图S1c),产生8个替代寄生虫体,共吸收36种营养素并分泌36种产物(图S1b)。肝细胞-寄生虫整合代谢模型的重建产生的寄生虫体。
Plasmodium berghei infectionHAP1 cells were cultured in IMDM (Bioconcept, containing 10% FCS, 4 mM L-glutamine, 100 U penicillin, 100 µg/ml streptomycin) at 37 °C, 5% CO2. To infect confluent cultures, 70,000 cells were seeded in 96 well plates. The next day, the cultures were infected with 20,000 freshly isolated sporozoites.
伯氏疟原虫感染HAP1细胞在IMDM(Bioconcept,含有10%FCS,4 mM L-谷氨酰胺,100 U青霉素,100µg/ml链霉素)中于37℃,5%CO2下培养。为了感染融合培养物,将70000个细胞接种在96孔板中。第二天,培养物被20000个新鲜分离的子孢子感染。
To allow development over 48 h, cultures were expanded by passaging with accutase (Innovative Cell Technologies) at 2 hpi. Cells were reseeded into 96 well plates (Greiner µClear, 655090). Each infected well was divided into 12 wells. At 48 hpi, cells were imaged with a Nikon Ti2 inverted fluorescence microscope Plan Apo λD 10× (NA 0.45) objective, Spectra X light engine (555 nm line, Lumencor), acquired with a Kinetix22 camera (Photometrix), Pinkel quad and Sedat quad filter sets (MXR00244 and MXR00254, Semrock).
为了使发育超过48小时,通过在2 hpi下用accutase(Innovative Cell Technologies)传代来扩增培养物。将细胞重新接种到96孔板中(GreinerµClear,655090)。将每个感染的孔分成12个孔。在48 hpi时,用尼康Ti2倒置荧光显微镜Plan ApoλD 10x(NA 0.45)物镜,Spectra X光引擎(555nm线,Lumencor)对细胞成像,用Kinetix22相机(Photometrix),Pinkel quad和Semat quad滤光片组(MXR00244和MXR00254,Semrock)采集。
Parasite sizes were segmented and analyzed using the General Analysis Module of NIS-Elements 5.42.02. Graphs were generated with Prism 9 (GraphPad) and indicate medians with interquartile range. One-way ANOVA with Dunnett’s multiple comparison was used as statistical evaluation, adjusted p values are presented directly in the graph.Software for data analyses and computationThe metabolic modeling computational analyses were performed using Matlab (MathWorks, v2021b) and CPLEX (IBM, v12.10).
使用NIS Elements 5.42.02的通用分析模块对寄生虫大小进行分割和分析。使用Prism 9(GraphPad)生成图形,并指示具有四分位间距的中位数。使用Dunnett多重比较的单因素方差分析作为统计评估,调整后的p值直接显示在图中。数据分析和计算软件使用Matlab(MathWorks,v2021b)和CPLEX(IBM,v12.10)进行代谢建模计算分析。
Data analyses and associated graphs were generated with Rstudio, Microsoft Excel, FlowJo, and Prism 9 (GraphPad).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..
。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。
Data availability
数据可用性
CRISPR screen data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB73635 and accession numbers for the RNA-seq data for uninfected macrophages (ERS16273013, ERS16273014, ERS16273015) and TaC12 cells (ERS18408949, ERS18408950, ERS18408951) (https://www.ebi.ac.uk/ena/).
这项研究的CRISPR筛选数据已保存在EMBL-EBI的欧洲核苷酸档案(ENA)中,登录号为PRJEB73635,未感染巨噬细胞(ERS16273013,ERS16273014,ERS16273015)和TaC12细胞(ERS18408949,ERS18408950,ERS18408951)的RNA-seq数据的登录号(https://www.ebi.ac.uk/ena/)。
Chip files for the genome wide bovine library (CP1273, 85155 distinct barcodes) and the sublibrary (CP1504, 17596 distinct barcodes) have been uploaded as supplementary files. Source data are provided with this paper..
全基因组牛文库(CP127385155个不同条形码)和子文库(CP150417596个不同条形码)的芯片文件已作为补充文件上传。本文提供了源数据。。
Code availability
代码可用性
The code to generate the results for this paper is available under the APACHE 2.0 license at https://github.com/EPFL-LCSB/host_parasite_interactions. The code for TFA is available at https://github.com/EPFL-LCSB/mattfa. The code to identify minimal nutrients (iMM) is available at https://github.com/EPFL-LCSB/redhuman..
生成本文结果的代码可在APACHE 2.0许可证下获得,网址为https://github.com/EPFL-LCSB/host_parasite_interactions.https://github.com/EPFL-LCSB/mattfa.识别最低营养素(iMM)的代码可在https://github.com/EPFL-LCSB/redhuman..
ReferencesWHO. WHO World Malaria Report 2021. Geneva: World Health Organization (2021)Minjauw, B. & McLeod, A. Tick-borne diseases and poverty: the impact of ticks and tick-borne diseases on the livelihoods of small-scale and marginal livestock owners in India and eastern and southern Africa. UK: Research Report, DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh.
参考WHO。世卫组织《2021年世界疟疾报告》。日内瓦:世界卫生组织(2021)Minjauw,B。&McLeod,A。蜱传疾病与贫困:蜱和蜱传疾病对印度以及东非和南部非洲小型和边缘牲畜主人生计的影响。英国:爱丁堡大学热带兽医中心DFID动物健康计划研究报告。
(2003).Marsh, T. L., Yoder, J., Deboch, T., McElwain, T. F. & Palmer, G. H. Livestock vaccinations translate into increased human capital and school attendance by girls. Sci. Adv. 2, e1601410 (2016).Article .
。马什(Marsh),T.L.,约德(Yoder),T。德博赫(Deboch),T。麦克尔万(McElwain),T。F。和帕尔默(Palmer),G。H。牲畜疫苗接种转化为增加人力资本和女孩入学率。科学。Adv.2,e1601410(2016)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobbelaere, D. A. & Rottenberg, S. Theileria-induced leukocyte transformation. Curr. Opin. Microbiol. 6, 377–382 (2003).Article
Dobbelaere,D.A。和Rottenberg,S.Theileria诱导的白细胞转化。货币。奥平。微生物。6377-382(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tretina, K., Gotia, H. T., Mann, D. J. & Silva, J. C. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol. 31, 306–314 (2015).Article
Tretina,K.,Gotia,H.T.,Mann,D.J。&Silva,J.C。泰勒虫转化的牛白细胞具有癌症标志。趋势寄生虫。31306-314(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nene, V. et al. The biology of Theileria parva and control of East Coast fever - Current status and future trends. Ticks Tick. Borne Dis. 7, 549–564 (2016).Article
细小泰勒虫的生物学和东海岸热的控制-现状和未来趋势。滴答滴答。携带Dis。7549-564(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Krishnan, A. & Soldati-Favre, D. Amino acid metabolism in apicomplexan parasites. Metabolites 11, 61 (2021).Article
Krishnan,A。&Soldati Favre,D。apicomplexan寄生虫中的氨基酸代谢。代谢物11,61(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kloehn, J., Harding, C. R. & Soldati-Favre, D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J. 288, 382–404 (2021).Article
Kloehn,J.,Harding,C.R。&Soldati-Favre,D。Apicomplexa的供需血红素合成,抢救和利用。FEBS J.288382–404(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guerin, A. & Striepen, B. The biology of the intestinal intracellular parasite Cryptosporidium. Cell Host Microbe 28, 509–515 (2020).Article
Guerin,A。&Striepen,B。肠道细胞内寄生虫隐孢子虫的生物学。细胞宿主微生物28509-515(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Krishnan, A. et al. Functional and computational genomics reveal unprecedented flexibility in stage-specific Toxoplasma Metabolism. Cell Host Microbe 27, 290–306.e211 (2020).Article
Krishnan,A。等人,《功能和计算基因组学》揭示了阶段特异性弓形虫代谢的前所未有的灵活性。细胞宿主微生物27290–306.e211(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Olszewski, K. L. et al. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5, 191–199 (2009).Article
Olszewski,K.L.等人。恶性疟原虫代谢组学揭示的宿主-寄生虫相互作用。细胞宿主微生物5191-199(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wagner, J. C., Platt, R. J., Goldfless, S. J., Zhang, F. & Niles, J. C. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat. Methods 11, 915–918 (2014).Article
Wagner,J.C.,Platt,R.J.,Goldfless,S.J.,Zhang,F。&Niles,J.C。恶性疟原虫中有效的CRISPR-Cas9介导的基因组编辑。自然方法11915-918(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sidik, S. M. et al. A genome-wide CRISPR Screen in Toxoplasma identifies essential apicomplexan genes. Cell 166, 1423–1435.e1412 (2016).Article
Sidik,S.M。等人。弓形虫的全基因组CRISPR筛选鉴定了必需的apicomplexan基因。细胞1661423-1435.e1412(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stanway, R. R. et al. Genome-scale identification of essential metabolic processes for targeting the Plasmodium Liver Stage. Cell 179, 1112–1128.e1126 (2019).Article
Stanway,R.R.等人。基因组规模鉴定靶向疟原虫肝脏阶段的基本代谢过程。细胞1791112-1128.e1126(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vijayan, K. et al. A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chem. Biol. 29, 1419–1433.e1415 (2022).Article
Vijayan,K。等人。全基因组CRISPR-Cas9筛选将CENPJ鉴定为疟原虫肝脏感染期间微管组织改变的宿主调节剂。细胞化学。生物学291419-1433.e1415(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, S. Z. et al. Genome-Wide CRISPR screen identifies host factors required by Toxoplasma gondii Infection. Front. Cell Infect. Microbiol. 9, 460 (2019).Article
Wu,S.Z.等人。全基因组CRISPR筛选鉴定弓形虫感染所需的宿主因子。正面。细胞感染。微生物。9460(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gibson, A. R. et al. A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition. PLoS Pathog. 18, e1010003 (2022).Article
吉布森(Gibson,A.R.)等人的基因筛查确定了对隐孢子虫的保护性III型干扰素反应,需要TLR3依赖性识别。PLoS Pathog。18,e1010003(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).Article
Thiele,I。&Palsson,B.O。用于产生高质量基因组规模代谢重建的方案。自然协议。5,93-121(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sen, P. & Oresic, M. Integrating Omics data in genome-scale metabolic modeling: a methodological perspective for precision medicine. Metabolites 13, 855 (2023).Article
Sen,P。&Oresic,M。将组学数据整合到基因组规模的代谢建模中:精准医学的方法论观点。代谢物13855(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).Article
Bordbar,A.,Lewis,N.E.,Schellenberger,J.,Palsson,B.O。&Jamshidi,N。通过代谢重建洞察人肺泡巨噬细胞和结核分枝杆菌的相互作用。分子系统。生物学6422(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carey, M. A. et al. Comparative analyses of parasites with a comprehensive database of genome-scale metabolic models. PLoS Comput. Biol. 18, e1009870 (2022).Article
Carey,M.A.等人。寄生虫与基因组规模代谢模型综合数据库的比较分析。PLoS计算机。生物学18,e1009870(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plata, G., Hsiao, T. L., Olszewski, K. L., Llinas, M. & Vitkup, D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol. Syst. Biol. 6, 408 (2010).Article
Plata,G.,Hsiao,T.L.,Olszewski,K.L.,Llinas,M。和Vitkup,D。恶性疟原虫代谢网络的重建和通量平衡分析。分子系统。生物学杂志6408(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bazzani, S., Hoppe, A. & Holzhutter, H. G. Network-based assessment of the selectivity of metabolic drug targets in Plasmodium falciparum with respect to human liver metabolism. BMC Syst. Biol. 6, 118 (2012).Article
。BMC系统。生物学6118(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huthmacher, C., Hoppe, A., Bulik, S. & Holzhutter, H. G. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst. Biol. 4, 120 (2010).Article
Huthmacher,C.,Hoppe,A.,Bulik,S。&Holzhutter,H.G。通过阶段特异性代谢网络分析预测恶性疟原虫中的抗疟药物靶标。BMC系统。生物学4120(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carey, M. A., Papin, J. A. & Guler, J. L. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance. BMC Genom. 18, 543 (2017).Article
Carey,M.A.,Papin,J.A。&Guler,J.L。新型恶性疟原虫代谢网络重建确定了与临床抗疟抗性相关的变化。BMC基因组。。文章
Google Scholar
谷歌学者
Chiappino-Pepe, A., Tymoshenko, S., Ataman, M., Soldati-Favre, D. & Hatzimanikatis, V. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks. PLoS Comput. Biol. 13, e1005397 (2017).Article .
Chiappino-Pepe,A.,Tymoshenko,S.,Ataman,M.,Soldati-Favre,D。&Hatzimanikatis,V。基于生物能量学的恶性疟原虫代谢建模揭示了其基本基因,营养需求和热力学瓶颈。PLoS计算机。生物学杂志13,e1005397(2017)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).Article
Karlsson,M。等人。人体组织的单细胞型转录组学图谱。科学。。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).Article
Mardinoglu,A。等人。肝细胞的基因组规模代谢模型揭示了非酒精性脂肪肝病患者的丝氨酸缺乏症。国家公社。53083(2014)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).Article
Gille,C。等。HepatoNet1:用于肝脏生理学分析的人肝细胞的全面代谢重建。分子系统。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Masid, M., Ataman, M. & Hatzimanikatis, V. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nat. Commun. 11, 2821 (2020).Article
Masid,M.,Ataman,M。&Hatzimanikatis,V。通过使用redHUMAN降低基因组规模模型的复杂性来分析人类代谢。国家公社。112821(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).Article
Brunk,E。等人的Recon3D可以实现人类新陈代谢中基因变异的三维视图。美国国家生物技术公司。36272-281(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobbelaere, D. & Heussler, V. Transformation of leukocytes by Theileria parva and T. annulata. Annu Rev. Microbiol. 53, 1–42 (1999).Article
Dobbelere,D。&Heussler,V。通过Theileria parva和T.annulata转化白细胞。微生物年鉴。53,1-42(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).Article
Hart,T.,Brown,K.R.,Sircoulomb,F.,Rottapel,R。&Moffat,J。测量基因组扰动筛选中的错误率:人类功能基因组学的金标准。分子系统。生物学杂志10733(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Griffith, O. W. & Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254, 7558–7560 (1979).Article
Griffith,O.W。&Meister,A。丁硫氨酸亚砜亚胺(S-n-丁基高半胱氨酸亚砜亚胺)对谷胱甘肽合成的有效和特异性抑制。J、 生物。化学。2547558-7560(1979)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464 (2001).Article
Bauer,P.M.,Buga,G.M.,Fukuto,J.M.,Pegg,A.E。和Ignarro,L.J。一氧化氮通过酶活性位点中半胱氨酸360的S-亚硝基化抑制鸟氨酸脱羧酶。J、 生物。化学。27634458–34464(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gupta, V. et al. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity. Mol. Pharm. 84, 824–833 (2013).Article
Gupta,V。等人。水杨酸通过抑制铁螯合酶血红素生物合成活性诱导线粒体损伤。分子药理学84824-833(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Fox, B. A. & Bzik, D. J. Biochemistry and metabolism of Toxoplasma gondii: purine and pyrimidine acquisition in Toxoplasma gondii and other Apicomplexa. In: Toxoplasma gondii The Model Apicomplexan. (Eds. Weiss, L. M. & Kim, K. 397–449 (San Diego: Elsevier Academic Press, 2020).Caldelari, R.
Fox,B.A。&Bzik,D.J。弓形虫的生物化学和代谢:弓形虫和其他Apicomplexa中嘌呤和嘧啶的获得。在:弓形虫模型Apicomplexan。(编辑:Weiss,L.M。&Kim,K。397-449(圣地亚哥:爱思唯尔学术出版社,2020)。卡尔德拉里,R。
et al. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar. J. 18, 330 (2019).Article .
等。外红细胞发育过程中伯氏疟原虫的转录组分析。马拉尔。J、 18330(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rathnapala, U. L., Goodman, C. D. & McFadden, G. I. A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite.
Rathnapala,U.L.,Goodman,C.D。和McFadden,G.I。伯氏疟原虫的一种新的遗传技术可以对蚊子阶段发育所需的基因进行肝脏阶段分析,并证明从头血红素合成对于疟疾寄生虫的肝脏阶段发育至关重要。
PLoS Pathog. 13, e1006396 (2017).Article .
PLoS Pathog。13,e1006396(2017)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Niu, B. et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 277, 121110 (2021).Article
Niu,B.等人。谷胱甘肽耗竭在癌症治疗中的应用:基于ROS的增强治疗,铁浓化和化疗。生物材料27712110(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. Imidazole Ketone Erastin induces ferroptosis and slows tumor growth in a mouse Lymphoma Model. Cell Chem. Biol. 26, 623–633.e629 (2019).Article
Zhang,Y。等人。咪唑酮Erastin在小鼠淋巴瘤模型中诱导铁浓化并减缓肿瘤生长。细胞化学。生物学26623-633.e629(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cruz, A. et al. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants 9, 133 (2020).Article
Cruz,A。等人。聚脲树枝状大分子叶酸靶向纳米递送l-丁硫氨酸亚砜亚胺作为解决卵巢癌化学抗性的工具。抗氧化剂9133(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rizopoulos, Z., Matuschewski, K. & Haussig, J. M. Distinct prominent roles for enzymes of Plasmodium berghei heme biosynthesis in sporozoite and liver stage maturation. Infect. Immun. 84, 3252–3262 (2016).Article
Rizopoulos,Z.,Matuschewski,K。&Haussig,J.M。伯氏疟原虫血红素生物合成酶在子孢子和肝脏阶段成熟中的独特突出作用。感染。免疫。843252-3262(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nagaraj, V. A. et al. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 9, e1003522 (2013).Article
Nagaraj,V.A。等人。疟疾寄生虫合成的血红素在蚊子和肝脏阶段至关重要,并在感染的血液阶段补充宿主血红素。PLoS Pathog。9,e1003522(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ke, H. et al. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 289, 34827–34837 (2014).Article
Ke,H。等人。血红素生物合成途径对于蚊子阶段的恶性疟原虫发育至关重要,但在血液阶段则不然。J、 生物。化学。28934827–34837(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sigala, P. A., Crowley, J. R., Henderson, J. P. & Goldberg, D. E. Deconvoluting heme biosynthesis to target blood-stage malaria parasites. Elife 4, e09143 (2015).Article
Sigala,P.A.,Crowley,J.R.,Henderson,J.P。&Goldberg,D.E。解卷积血红素生物合成以靶向血液阶段疟疾寄生虫。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wei, L. et al. Host-directed therapy, an untapped opportunity for antimalarial intervention. Cell Rep. Med. 2, 100423 (2021).Article
。细胞代表医学2100423(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vijayan, K. et al. Host-targeted interventions as an exciting opportunity to combat malaria. Chem. Rev. 121, 10452–10468 (2021).Article
Vijayan,K.等人,《宿主针对性干预作为抗击疟疾的一个令人兴奋的机会》。化学。修订版12110452-10468(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tweedell, R. E. et al. The selection of a hepatocyte cell line susceptible to Plasmodium falciparum Sporozoite invasion that is associated with expression of Glypican-3. Front. Microbiol. 10, 127 (2019).Article
Tweedell,R.E.等人。选择易受恶性疟原虫子孢子侵袭的肝细胞系,该细胞系与磷脂酰肌醇蛋白聚糖-3的表达有关。正面。微生物。10127(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kilburn, D. G., Lilly, M. D. & Webb, F. C. The energetics of mammalian cell growth. J. Cell Sci. 4, 645–654 (1969).Article
Kilburn,D.G.,Lilly,M.D。和Webb,F.C。哺乳动物细胞生长的能量学。J、 细胞科学。4645-654(1969)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ataman, M. & Hatzimanikatis, V. lumpGEM: systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites. PLoS Comput. Biol. 13, e1005513 (2017).Article
Ataman,M。&Hatzimanikatis,V。lumpGEM:系统生成子网和元素平衡的集总反应,用于目标代谢物的生物合成。PLoS计算机。生物学13,e1005513(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2, 727–738 (2007).Article
Becker,S.A.等人,《基于约束模型的细胞代谢定量预测:COBRA工具箱》。自然协议。2727-738(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020).Article
Robinson,J.L.等人,《人类新陈代谢图谱》。科学。信号。13,eaaz1482(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).Article
Lieven,C。等人。用于标准化基因组规模代谢模型测试的备忘录。美国国家生物技术公司。38272-276(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stabel, J. R. & Stabel, T. J. Immortalization and characterization of bovine peritoneal macrophages transfected with SV40 plasmid DNA. Vet. Immunol. Immunopathol. 45, 211–220 (1995).Article
。兽医。免疫。免疫病理学。45211-220(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Galmozzi, A. et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576, 138–142 (2019).Article
Galmozzi,A。等人,PGRMC2是一种对脂肪细胞功能至关重要的细胞内血红素伴侣。自然576138-142(2019)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe would like to express our gratitude to Francis Brühlmann for providing the IFA image of Theileria annulata used in Fig. 1. We thank the Flow Cytometry and Cell Sorting Facility (FCCS) of the Department for BioMedical Research (DBMR) of the University of Bern, Switzerland.
下载参考文献致谢我们要感谢Francis Brühlmann提供图1中使用的Theileria annulata的IFA图像。我们感谢瑞士伯尔尼大学生物医学研究系(DBMR)的流式细胞仪和细胞分选设备(FCCS)。
Financial support came from the University of Bern (UniBe ID grant to S.R. and V.He.) and the Swiss National Science Foundation (198543 to S.R., V.He., V.Ha., 189127 to S.R., 173972 to P.O.). Figures were created with the help of BioRender.FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthor notesThese authors contributed equally: Marina Maurizio, Maria Masid.Authors and AffiliationsInstitute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, SwitzerlandMarina Maurizio, Kerry Woods, Arunasalam Naguleswaran, Martín González-Fernández, Jonas Zemp, Sven Rottenberg & Philipp OliasLudwig Institute for Cancer Research, Department of Oncology, University of Lausanne and Lausanne University Teaching Hospital (CHUV), Lausanne, SwitzerlandMaria MasidLaboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandMaria Masid, Denis Joly, Mélanie Borteele & Vassily HatzimanikatisInstitute of Cell Biology, University of Bern, Bern, SwitzerlandReto Caldelari, Jonas Zemp & Volker HeusslerBroad Institute of MIT and Harvard, Cambridge, MA, USAJohn G.
财政支持来自伯尔尼大学(UniBe ID授予S.R.和V.He。)和瑞士国家科学基金会(198543授予S.R.,V.He.,V.Ha.,189127授予S.R.,173972授予P.O.)。数字是在BioRender的帮助下创建的。资金开放获取资金由Projekt交易启用和组织。作者信息作者注意到这些作者做出了同样的贡献:Marina Maurizio,Maria Masid。作者和附属机构伯尔尼大学兽医学院动物病理学研究所,伯尔尼,瑞士马里纳·莫里齐奥,克里·伍兹,阿鲁纳萨兰·纳古列斯瓦兰,马丁冈萨雷斯·费尔南德斯,乔纳斯·泽姆,斯文·罗滕贝格和菲利普·奥利亚斯路德维希癌症研究所,洛桑大学肿瘤系和洛桑大学教学医院(CHUV),洛桑,瑞士马西德计算系统生物技术实验室,洛桑理工学院(EPFL),洛桑Tzerlandmaria Masid,Denis Joly,Mélanie Borteele&Vassily HatzimanikatisInstitute of Cell Biology,伯尔尼大学,瑞士人Caldelari,Jonas Zemp&Volker HeusslerBroad Institute of MIT和哈佛大学,剑桥,马萨诸塞州,美国约翰·G。
DoenchInstitute of Veterinary Pathology, Justus Liebig University, Giessen, GermanyPhilipp OliasAuthorsMarina MaurizioView author publicationsYou can also search for this author in.
DoenchInstitute of Veterinary Pathology,Justus Liebig University,Giessen,GermanyPhilipp OliasAuthorsMarina MaurizioView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarMaria MasidView author publicationsYou can also search for this author in
PubMed Google ScholarMaria MasidView作者出版物您也可以在
PubMed Google ScholarKerry WoodsView author publicationsYou can also search for this author in
PubMed谷歌ScholarKerry WoodsView作者出版物您也可以在
PubMed Google ScholarReto CaldelariView author publicationsYou can also search for this author in
PubMed Google ScholarReto CaldelariView作者出版物您也可以在
PubMed Google ScholarJohn G. DoenchView author publicationsYou can also search for this author in
PubMed谷歌学者John G.DoenchView作者出版物您也可以在
PubMed Google ScholarArunasalam NaguleswaranView author publicationsYou can also search for this author in
PubMed Google ScholarArunasalam NaguleswaranView作者出版物您也可以在
PubMed Google ScholarDenis JolyView author publicationsYou can also search for this author in
PubMed Google ScholarDenis JolyView作者出版物您也可以在
PubMed Google ScholarMartín González-FernándezView author publicationsYou can also search for this author in
PubMed谷歌奖学金Martín González Fernández查看作者出版物您也可以在
PubMed Google ScholarJonas ZempView author publicationsYou can also search for this author in
PubMed Google ScholarJonas ZempView作者出版物您也可以在
PubMed Google ScholarMélanie BorteeleView author publicationsYou can also search for this author in
PubMed Google Scholarmanélanie BorteeleView作者出版物您也可以在
PubMed Google ScholarVassily HatzimanikatisView author publicationsYou can also search for this author in
PubMed Google ScholarVassily HatzimanikatisView作者出版物您也可以在
PubMed Google ScholarVolker HeusslerView author publicationsYou can also search for this author in
PubMed Google ScholarVolker HeusslerView作者出版物您也可以在
PubMed Google ScholarSven RottenbergView author publicationsYou can also search for this author in
PubMed Google ScholarSven RottenbergView作者出版物您也可以在
PubMed Google ScholarPhilipp OliasView author publicationsYou can also search for this author in
PubMed Google ScholarPhilipp OliasView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization, K.W., S.R., P.O.; methodology, J.G.D., K.W., V.Hr., V.Ha., S.R., P.O.; investigation, M.Mr., M.Ms., K.W., R.C., A.N., D.J., J.Z., M.B.; formal analysis, M.Mr., M.Ms., K.W., R.C., A.N., M.G.F., P.O.; writing – original draft, M.Mr., M.Ms.; writing – review & editing, K.W., R.C., J.G.D., A.N., V.Hr., V.Ha., S.R., P.O.; funding acquisition, V.Ha., V.Hr., S.R., P.O.; resources, V.Ha., V.Hr., S.R., P.O.; supervision, V.Ha., V.Hr., S.R., P.O.Corresponding authorsCorrespondence to.
PubMed谷歌学术贡献概念化,K.W.,S.R.,P.O。;方法论,J.G.D.,K.W.,V.Hr.,V.Ha。,S、 R.,P.O。;调查,M.Mr.,M.Ms.,K.W.,R.C.,A.N.,D.J.,J.Z.,M.B。;正式分析,M.Mr.,M.Ms.,K.W.,R.C.,A.N.,M.G.F.,P.O。;写作-原稿,M.Mr.,M.Ms。;写作-评论与编辑,K.W.,R.C.,J.G.D.,A.N.,V.Hr.,V.Ha。,S、 R.,P.O。;资金收购,V.Ha。,五、 人力资源,S.R.,P.O。;资源,V.Ha。,五、 人力资源,S.R.,P.O。;监督,V.Ha。,五、 Hr。,S.R。,P.O。通讯作者通讯。
Sven Rottenberg or Philipp Olias.Ethics declarations
斯文·罗滕伯格或菲利普·奥利亚斯。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Jennifer Guler and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢詹妮弗·古勒(JenniferGuler)和其他匿名审稿人对这项工作的同行评议做出的贡献。可以获得同行评议文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationTransparent Peer Review fileDescription of Additional Supplementary FilesSupplementary Dataset 1Supplementary Dataset 2Supplementary Dataset 3Supplementary Dataset 4Supplementary Dataset 5Supplementary Dataset 6Reporting SummarySource dataSource Data FileRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息透明同行评审文件其他补充文件的描述补充数据集1补充数据集2补充数据集3补充数据集4补充数据集5补充数据集6报告摘要源数据源数据文件权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleMaurizio, M., Masid, M., Woods, K. et al. Host cell CRISPR genomics and modelling reveal shared metabolic vulnerabilities in the intracellular development of Plasmodium falciparum and related hemoparasites.
转载和许可本文引用本文Maurizio,M.,Masid,M.,Woods,K。等人。宿主细胞CRISPR基因组学和建模揭示了恶性疟原虫和相关血液寄生虫的细胞内发育中共有的代谢脆弱性。
Nat Commun 15, 6145 (2024). https://doi.org/10.1038/s41467-024-50405-xDownload citationReceived: 01 November 2023Accepted: 01 July 2024Published: 21 July 2024DOI: https://doi.org/10.1038/s41467-024-50405-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》156145(2024)。https://doi.org/10.1038/s41467-024-50405-xDownload引文接收日期:2023年11月1日接收日期:2024年7月1日发布日期:2024年7月21日OI:https://doi.org/10.1038/s41467-024-50405-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。