EN
登录

天然多糖醛改性抗菌快速吸收止血海绵

Antibacterial and rapidly absorbable hemostatic sponge by aldehyde modification of natural polysaccharide

Nature 等信源发布 2024-07-21 23:26

可切换为仅中文


AbstractMassive hemorrhage following tissue trauma has high mortality owing to the lack of timely intervention. However, research on utilizing hemostats for humans is limited; therefore, developing an efficient emergency hemostatic agent is imperative. We developed a hemostatic sponge using natural polysaccharide riclin, theoretically modified with 50% aldehyde content (AR50).

摘要由于缺乏及时干预,组织创伤后大出血死亡率很高。然而,对人类使用止血剂的研究是有限的;因此,开发一种有效的紧急止血剂势在必行。我们使用天然多糖riclin开发了一种止血海绵,理论上用50%醛含量(AR50)修饰。

The AR50 sponge, with quasi-honeycomb channels and appropriate aldehyde content, exhibits ultra-high blood absorption (59.4 g·g−1) and rapidly targets erythrocytes and platelets to form a stable barrier. It surpasses most commercial hemostats in porcine artery scission (reducing hemostasis time and blood loss by 53 s and 4.2 g), hepatic bleeding laceration (68 s and 2.6 g), and perforation models (140 s and 4.9 g).

AR50海绵具有准蜂窝状通道和适当的醛含量,具有超高的血液吸收(59.4 g·g-1),并迅速靶向红细胞和血小板以形成稳定的屏障。它超过了猪动脉断裂(止血时间和失血量分别减少53 s和4.2 g),肝出血撕裂(68 s和2.6 g)和穿孔模型(140 s和4.9 g)中大多数商业止血剂。

The AR50 sponge is easily removed post hemostasis, exhibits antibacterial properties by destroying bacterial cell walls, and is safely absorbed by day 5, making it an ideal emergency hemostatic agent for massive hemorrhages in humans..

AR50海绵在止血后很容易去除,通过破坏细菌细胞壁表现出抗菌性能,并在第5天安全吸收,使其成为治疗人类大出血的理想紧急止血剂。。

IntroductionMilitary conflicts, accidents, and clinical surgeries resulting in severe tissue trauma can lead to uncontrollable hemorrhaging and wound infection, pivotal factors that may contribute to mass fatalities1,2. Ideal hemostatic agents for emergencies, battlefield scenarios, and pre-hospital situations should possess characteristics such as rapid hemostasis, anti-infection properties, easy removal, promotion of healing, stability, affordability, and biocompatibility3,4.

引言导致严重组织创伤的军事冲突,事故和临床手术可能导致无法控制的出血和伤口感染,这是可能导致大规模死亡的关键因素1,2。用于紧急情况,战场场景和院前情况的理想止血剂应具有快速止血,抗感染特性,易于去除,促进愈合,稳定性,可负担性和生物相容性等特征3,4。

In clinical applications, achieving hemostasis poses a significant challenge owing to high blood flow3,5 and is currently addressed with the use of a high-expansion sponge4,5. Sponges, with porous structures and liquid absorption capacities, based on characteristics such as shape memory, light weight, portability, stability, and ease of operation, sponges offer advantages in treating moderate and severe arterial and visceral bleeding3,5.Polysaccharides have gained attention as clinical frontier hemostatic materials owing to their outstanding biological activities, abundant sources, high biosafety levels, and easily modifiable structures3,6,7,8.

在临床应用中,由于高血流量3,5,实现止血是一个重大挑战,目前正在使用高膨胀海绵4,5来解决。海绵具有多孔结构和液体吸收能力,基于形状记忆,重量轻,便携性,稳定性和易操作性等特点,海绵在治疗中重度动脉和内脏出血方面具有优势3,5。多糖作为临床前沿止血材料因其优异的生物活性,丰富的来源,高生物安全水平和易于修饰的结构而备受关注3,6,7,8。

Polysaccharides and their derivatives, including dextran (Bloxx®), cellulose (Surgicel®, BloodSTOP®), alginate (Algosteril®, KALTOSTAT®), chitosan (HemCon®, Celox®, Chito SAMTM 100), and starch (TraumaDEX®), are widely used in preparing commercial hemostats3,4,8. While most polysaccharide-based hemostatic agents exhibit excellent biological safety, they face challenges such as low hemostatic activity, a short shelf life, a high contamination risk, low coagulation and anti-infection capacities, limiting their application in treating massive bleeding in clinical settings4,9.

多糖及其衍生物,包括葡聚糖(Bloxx®),纤维素(Surgicel®,BloodSTOP®),藻酸盐(Algosteril®,KALTOSTAT®),壳聚糖(HemCon®,Celox®,Chito SAMTM 100)和淀粉(TraumaDEX®),广泛用于制备商业止血剂3,4,8。虽然大多数基于多糖的止血剂表现出优异的生物安全性,但它们面临着诸如止血活性低,保质期短,污染风险高,凝血和抗感染能力低等挑战,限制了它们在临床环境中治疗大出血的应用4,9。

Regrettably, limited research has been reported on effective polysaccharide hemostat.

遗憾的是,关于有效多糖止血剂的研究报道有限。

(1)

(1)

The speed of liquid absorption was determined by calculating the slope of the initial 5 s of the NS or blood absorptive capacity versus time curve10,32.Blood samples for in vitro experimentsAll of the fresh blood used in coagulation experiments was obtained from healthy human volunteers, in accordance with the Regulations of the People’s Republic of China on the Administration of Blood Products, Nuremberg Code, and Ethical Principles of Human Experimentation.

液体吸收的速度是通过计算NS或血液吸收能力的初始5 s与时间曲线10,32的斜率来确定的。用于体外实验的血液样本凝血实验中使用的所有新鲜血液均来自健康人体志愿者,符合中华人民共和国血液制品管理条例,纽伦堡法规和人体实验伦理原则。

Informed written consents were obtained from volunteers. Approval was granted by the Ethics Committee of Bengbu Medical College (BBMCEC2020025).In vitro calcification clotting timeTen milligrams of AR sponge were added to a test tube, followed by immediate mixing of 1 mL of blood (ACD-anticoagulant) and 80 µL of CaCl2 (0.25 M).

从志愿者那里获得了知情的书面同意。蚌埠医学院伦理委员会(BBMCEC2020025)批准。体外钙化凝血时间将10毫克AR海绵加入试管中,然后立即混合1毫升血液(ACD抗凝剂)和80微升CaCl2(0.25M)。

The mixture was then shaken gently for 5 s. The test tube was tilted to the horizontal plane at an angle of 60° every 2–3 s until the liquid level stopped changing and the blood clotting time was determined.Whole-blood clotting kineticsA 25 mg sponge sample was positioned in the center of the petri dish and treated with a mixture of 250 µL of blood (ACD-anticoagulant) and 25 µL of CaCl2 (0.2 M) at 37 °C.

然后将混合物轻轻摇动5秒。将试管每2-3秒以60°的角度倾斜至水平面,直到液位停止变化并确定凝血时间。全血凝固动力学将25mg海绵样品置于培养皿的中心,并在37℃下用250μL血液(ACD抗凝剂)和25μlCaCl2(0.2M)的混合物处理。

This was followed by the addition of 20 mL of deionized water to ensure complete submersion at various periods (0, 15, 30, 60, 120, 180, and 240 s). Unbound blood cells were lysed by setting the shaker at 60 rpm for 10 min. The absorbance of the lysed cell solution (optical density [OD] experiment) was determined at 540 nm using a microplate reader (BioTek Epoch), with deionized water and the whole-blood mixture serving as the control (OD control).

然后加入20毫升去离子水,以确保在不同时期(0,15,30,60120180和240秒)完全浸没。通过将振荡器置于60 rpm下10分钟来裂解未结合的血细胞。使用酶标仪(BioTek Epoch)在540 nm处测定裂解细胞溶液的吸光度(光密度[OD]实验),去离子水和全血混合物作为对照(OD对照)。

The BCI was then calculated according to the following equation36:$${{\rm{BCI}}}\,( \% )=\frac{{{{\rm{OD}}}}_{{{\rm{experiment}}}.

(2)

(2)

To further observe the process of the blood cells changing on the sponge, 20 µL of blood was applied to 2 mg of the AR50 sponge and washed thrice with PBS at specified time points. The sample was then fixed in 2.5% glutaraldehyde for 15 min, followed by a sequential dehydration process with alcohol solutions of increasing strengths (30%, 50%, 70%, 90%, 100%) for 5 min each time.

为了进一步观察血细胞在海绵上的变化过程,将20μL血液施加到2mg AR50海绵上,并在指定的时间点用PBS洗涤三次。然后将样品在2.5%戊二醛中固定15分钟,然后用强度增加的酒精溶液(30%,50%,70%,90%,100%)进行连续脱水过程,每次5分钟。

After natural drying, the blood contact interface was observed using SEM, with spongy riclin serving as the control.Thromboelastography (TEG) analysisTEG was determined using the Thrombelastography Analyzer (CFMSLEPU-8800)24,37. Owing to the specificity of the TEG test, no kaolin activator was added, and the powdered sample was pre-made.

自然干燥后,使用SEM观察血液接触界面,以海绵状riclin作为对照。血栓弹力图(TEG)分析使用血栓弹力图分析仪(CFMSLEPU-8800)24,37测定TEG。由于TEG测试的特异性,不添加高岭土活化剂,并预先制备粉末样品。

Subsequently, 340 µL of blood (ACD-anticoagulant) was homogeneously mixed with 5 mg of the sample in the TEG test cup at 37 °C, followed by the addition of 20 µL of 0.25 M CaCl2. Finally, the sample cups were loaded for measurement.PPP analysisPlasma clotting kinetics were determined, as previously reported22,34.

随后,将340μL血液(ACD抗凝剂)与5 mg样品在37℃下在TEG测试杯中均匀混合,然后加入20μl0.25M CaCl2。最后,装入样品杯进行测量。PPP分析如先前报道22,34,测定血浆凝血动力学。

Specifically, in a 96-well plate, 60 µL AR (2 wt.%) was evenly mixed with 60 µL of PPP, followed by adding and mixing 60 µL of 0.25 M CaCl2. The absorbance of the plasma mixture was recorded at 405 nm every minute for 1 h, and a dynamic curve was drawn. The plasma procoagulant efficiency of each group was compared according to the trends of their kinetic curves and the slopes of their linear range.Erythrocyte adhesion and morphologyThe blood (ACD-anticoagulant) was centrifuged at 200 × g for 10 min at room temperature, the plasma was replaced with an equal volume of PBS, and subsequently, the erythrocytes were obtained; approximately 45 µL of these cells were added to 5 mg of the sponge and incubated in a 24-well plate at 37 °C for 15 mi.

具体而言,在96孔板中,将60μlAr(2重量%)与60μlPPP均匀混合,然后加入60μl0.25M CaCl2并混合。在每分钟405nm处记录血浆混合物的吸光度1小时,并绘制动态曲线。。红细胞粘附和形态将血液(ACD抗凝剂)在室温下以200×g离心10分钟,用等体积的PBS代替血浆,随后获得红细胞;将大约45μL这些细胞加入到5mg海绵中,并在24孔板中于37℃温育15分钟。

(3)

(3)

Rabbit skin irritation testMultiple topical applications of the AR solution (2 wt.%) were administered to assess skin irritation. The dorsal skin was shaved, exposed (5 × 5 cm), and sterilized using UV light before application. A 1 mL solution of the materials was applied to the exposed skin three times a day at 2 h intervals.

。将背部皮肤剃毛,暴露(5×5厘米),并在施用前使用紫外线灭菌。将1mL材料溶液以2小时的间隔每天三次施用于暴露的皮肤。

The condition of the sensitized skin was continuously observed and histopathologically examined after 3 days.Cytotoxicity and cellular ROS assayNIH3T3 cells were incubated with PBS and AR50 (100, 200, 400, 800 µg) for 24 h, respectively. The cells were fixed and stained using Actin-Tracker Green and 4ʹ,6-diamidino-2-phenylindole (DAPI).

。细胞毒性和细胞ROS测定将NIH3T3细胞分别与PBS和AR50(100200400800μg)孵育24小时。将细胞固定并使用肌动蛋白追踪器Green和4',6-二脒基-2-苯基吲哚(DAPI)染色。

The antioxidant effect of riclin with different degrees of oxidation was evaluated using ROS probes and ROS detection kits. NIH3T3 cells were treated as described above. The extracellular ROS scavenging of different groups was initially detected using DCFH-DA. The intracellular ROS scavenging ability of AR was then measured with an ROS assay kit.

使用ROS探针和ROS检测试剂盒评估具有不同氧化程度的riclin的抗氧化作用。如上所述处理NIH3T3细胞。首先使用DCFH-DA检测不同组的细胞外ROS清除率。然后用ROS测定试剂盒测量AR的细胞内ROS清除能力。

The images of samples were obtained using a Zeiss LSM880 confocal laser-scanning microscope, with constant settings maintained within the same experimental batch.Statistical analysisData from at least three samples per experiment are expressed as means ± standard deviation; statistical significance was set at P < 0.05.

使用Zeiss LSM880共聚焦激光扫描显微镜获得样品的图像,并在同一实验批次内保持恒定设置。统计分析每个实验至少三个样本的数据表示为平均值±标准偏差;统计学显着性设定为P<0.05。

Statistical analyses were performed using one-way or two-way analysis of variance and Tukey’s post-hoc test, using GraphPad Prism 6.0 and Origin Lab 8.0 software.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..

使用GraphPad Prism 6.0和Origin Lab 8.0软件,使用单向或双向方差分析和Tukey事后检验进行统计分析。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。

Data availability

The data supporting the results of this study are available from the corresponding author on reasonable request.

支持本研究结果的数据可根据合理要求从通讯作者处获得。

ReferencesFisher, A. D., Bulger, E. M. & Gestring, M. L. Stop the bleeding: educating the public. JAMA 320, 589–590 (2018).Article

参考文献Fisher,A.D.,Bulger,E.M。和Gestring,M.L。停止流血:教育公众。JAMA 320589-590(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rossaint, R. et al. The STOP the Bleeding Campaign. Crit. Care. 17, 136 (2013).Article

Rossaint,R。等人,《止血运动》。暴击。小心。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hickman, D. S. A., Pawlowski, C. L., Sekhon, U. D. S., Marks, J. & Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 30, 1700859 (2018).Article

Hickman,D.S.A.,Pawlowski,C.L.,Sekhon,U.D.S.,Marks,J.&Gupta,A.S。生物材料和止血管理出血的先进技术。高级材料。301700859(2018)。文章

Google Scholar

谷歌学者

Li, X. et al. Emerging materials for hemostasis. Coord. Chem. Rev. 475, 214823 (2023).Article

Li,X。等人。止血新材料。协调。化学。。文章

CAS

中科院

Google Scholar

谷歌学者

Nepal, A., Tran, H., Nguyen, N. T. & Thu Ta, H. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact. Mater. 27, 231–256 (2023).CAS

Nepal,A.,Tran,H.,Nguyen,N.T。&Thu Ta,H。止血海绵的进展:快速止血的特征和潜在机制。生物CT。马特。27231-256(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simpson, A., Shukla, A. & Brown, A. C. Biomaterials for hemostasis. Annu. Rev. Biomed. Eng. 24, 111–135 (2022).Article

Simpson,A.,Shukla,A。&Brown,A.C。止血生物材料。年。生物医学评论。工程24111-135(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, X. et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 5, 2357–2368 (2017).Article

Yang,X。等。多糖止血材料的设计和开发及其止血机理。生物计。科学。52357-2368(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Y. et al. Polysaccharide based hemostatic strategy for ultrarapid hemostasis. Macromol. Biosci. 20, e1900370 (2020).Article

Chen,Y.等。基于多糖的超快速止血策略。大分子。生物科学。20,e1900370(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Guo, B., Dong, R., Liang, Y. & Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5, 773–791 (2021).Article

Guo,B.,Dong,R.,Liang,Y。&Li,M。用于伤口愈合应用的止血材料。自然化学修订版。5773-791(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Du, X. et al. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nat. Commun. 12, 4733 (2021).Article

Du,X。等人。微通道烷基化壳聚糖海绵用于治疗不可压缩的出血并促进伤口愈合。国家公社。124733(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, F., Liu, X., Chen, F. & Fu, Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog. Polym. Sci. 123, 101472 (2021).Article

Liu,F.,Liu,X.,Chen,F。&Fu,Q。贻贝启发化学:天然多糖在生物医学应用中的有前景的策略。程序。Polym公司。科学。。文章

CAS

中科院

Google Scholar

谷歌学者

Sun, X. et al. Diatom-inspired bionic hydrophilic polysaccharide adhesive for rapid sealing hemostasis. Acs. Nano. 17, 19121–19135 (2023).Article

Sun,X。等人。硅藻启发的仿生亲水性多糖粘合剂,用于快速密封止血。Acs公司。纳米。1719121-19135(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jiao, S. et al. Recent advances in biomimetic hemostatic materials. Mater. Today Bio. 19, 100592 (2023).Article

焦,S。等。仿生止血材料的最新进展。马特。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, X. et al. Antibacterial anti-oxidative electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017).Article

Zhao,X。等人。抗菌抗氧化电活性可注射水凝胶作为具有止血和粘附性的自愈伤口敷料,用于皮肤伤口愈合。生物材料122,34-47(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Teng, L. et al. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 31, 2105628 (2021).Article

Teng,L.等人。仿生糖多肽水凝胶,具有可调节的粘附力和微孔结构,可快速止血和高效伤口愈合。高级职能。马特。。文章

CAS

中科院

Google Scholar

谷歌学者

Pan, G. et al. Mussel- and barnacle cement proteins-inspired dual-bionic bioadhesive with repeatable wet-tissue adhesion, multimodal self-healing, and antibacterial capability for nonpressing hemostasis and promoted wound healing. Adv. Funct. Mater. 32, 2200908 (2022).Article

Pan,G。等人。贻贝和藤壶水泥蛋白激发了双重仿生生物粘附剂,具有可重复的湿组织粘附,多模式自愈和抗菌能力,可用于非压迫性止血和促进伤口愈合。高级职能。马特。322200908(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Yang, Y. et al. Anti-tumor activity and immunogenicity of a succinoglycan riclin. Carbohydr. Polym. 255, 117370 (2021).Article

Yang,Y。等人。琥珀酰聚糖riclin的抗肿瘤活性和免疫原性。碳水化合物。Polym公司。255117370(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ding, Z. et al. Dietary succinoglycan riclin improves glycemia control in mice with type 2 diabetes. J. Agric. Food Chem. 70, 1819–1829 (2022).Article

Ding,Z.等人。膳食琥珀酰甘油riclin可改善2型糖尿病小鼠的血糖控制。J、 农业。食品化学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cheng, R. et al. In vitro and in vivo anti-inflammatory activity of a succinoglycan riclin from Agrobacterium sp. ZCC3656. J. Appl. Microbiol. 127, 1716–1726 (2019).Article

Cheng,R.等人。来自农杆菌属ZCC3656的琥珀酰聚糖riclin的体外和体内抗炎活性。J、 。微生物。1271716-1726(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kristiansen, K. A., Potthast, A. & Christensen, B. E. Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 345, 1264–1271 (2010).Article

Kristiansen,K.A.,Potthast,A。&Christensen,B.E。高碘酸盐氧化多糖以改变化学和物理性质。碳水化合物。第3451264-1271号决议(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, H. & Heindel, N. D. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res. 8, 400–402 (1991).Article

Zhao,H。&Heindel,N.D。用盐酸羟胺法测定聚甲醛-葡聚糖中甲酰基的取代度。Pharm.Res.8400–402(1991)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, C. et al. A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials 205, 23–37 (2019).Article

Liu,C.等人。一种用于快速止血的高效原位湿粘葡聚糖衍生物海绵。生物材料205,23-37(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, Y. et al. Multifunctional oxidized succinoglycan/poly) N-isopropylacrylamide-co-acrylamide) hydrogels for drug delivery. Polymers. 15, 122 (2022).Sanz-Horta, R. et al. Preparation and characterization of plasma-derived fibrin hydrogels modified by alginate di-aldehyde. Int. J. Mol.

Hu,Y。等人。用于药物递送的多功能氧化琥珀酰聚糖/聚)N-异丙基丙烯酰胺-共丙烯酰胺)水凝胶。聚合物。15122(2022年)。Sanz-Horta,R。等人。海藻酸二醛修饰的血浆衍生纤维蛋白水凝胶的制备和表征。内景J.摩尔。

Sci. 23, 4296 (2022).Article .

科学。234296(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, W. et al. A novel pullulan oxidation approach to preparing a shape memory sponge with rapid reaction capability for massive hemorrhage. Chem. Eng. J. 447, 137482 (2022).Article

Zheng,W。等人。一种新型普鲁兰多糖氧化方法,用于制备具有快速反应能力的大出血形状记忆海绵。化学。《工程杂志》447137482(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Mullay, J. Atomic and group electronegativities. J. Am. Chem. Soc. 106, 5842–5847 (1984).Article

Mullay,J。原子和基团电负性。J、 美国化学。Soc.1065842–5847(1984)。文章

CAS

中科院

Google Scholar

谷歌学者

Ding, W., Wang, Y. N., Zhou, J. & Shi, B. Effect of structure features of polysaccharides on properties of dialdehyde polysaccharide tanning agent. Carbohydr. Polym. 201, 549–556 (2018).Article

Ding,W.,Wang,Y.N.,Zhou,J。&Shi,B。多糖结构特征对双醛多糖鞣剂性能的影响。碳水化合物。Polym公司。201549-556(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Legay, L., Budtova, T. & Buwalda, S. Hyaluronic Acid Aerogels Made Via Freeze–Thaw-Induced Gelation. Biomacromolecules 24, 4502–4509 (2023).Article

Legay,L.,Buttova,T。&Buwalda,S。通过冻融诱导凝胶化制备的透明质酸气凝胶。生物大分子244502-4509(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Corte, A. E. Particle sorting by repeated freezing and thawing. Science 142, 499–501 (1963).Article

Corte,A.E。通过反复冷冻和解冻进行颗粒分选。科学142499-501(1963)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, P. et al. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage. Biomater. Adv. 134, 112698 (2022).Article

Li,P。等人。聚乙烯醇/海藻酸钠复合海绵,具有3D有序/无序多孔结构,可快速控制不可压缩的出血。生物计。Adv.134112698(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Antibacterial porous sponge fabricated with capric acid-grafted chitosan and oxidized dextran as a novel hemostatic dressing. Carbohydr. Polym. 277, 118782 (2022).Article

Wang,X。等人。用癸酸接枝壳聚糖和氧化葡聚糖制成的抗菌多孔海绵作为新型止血敷料。碳水化合物。Polym公司。277118782(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiao, Y. et al. Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomater. 99, 220–235 (2019).Article

Xiao,Y。等人。肽固定化淀粉/PEG海绵,具有快速形状恢复和双重功能,可用于不受控制和不可压缩的出血。生物计量学报。99220-235(2019)。文章

Google Scholar

谷歌学者

Wang, H. et al. A super tough, rapidly biodegradable, ultrafast hemostatic bioglue. Adv. Mater. 35, e2208622 (2023).Article

Wang,H.等人。一种超坚韧,可快速生物降解,超快止血的生物胶。高级材料。35,e2208622(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Guo, Y. et al. Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light. Sci. Adv. 7, eabf9635 (2021).Article

郭,Y。等。蛇提取物负载的止血生物粘附凝胶通过可见光交联。科学。Adv.7,eabf9635(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Artzi, N., Shazly, T., Baker, A. B., Bon, A. & Edelman, E. R. Aldehyde-amine chemistry enables modulated biosealants with tissue-specific adhesion. Adv. Mater. 21, 3399–3403 (2009).Article

Artzi,N.,Shazly,T.,Baker,A.B.,Bon,A。&Edelman,E.R。醛胺化学使调节生物天平具有组织特异性粘附。高级材料。213399-3403(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mahmoodzadeh, A. et al. Biodegradable cellulose-based superabsorbent as potent hemostatic agent. Chem. Eng. J. 418, 129252 (2021).Article

。化学。《工程杂志》418129252(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Cui, Y. et al. Robust hemostatic bandages based on nanoclay electrospun membranes. Nat. Commun. 12, 5922 (2021).Article

Cui,Y.等人。基于纳米粘土电纺膜的坚固止血绷带。国家公社。125922(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalathottukaren, M. T. et al. A universal heparin antidote with negligible effect on fibrin(ogen) and plasma coagulation. Blood 124, 4231 (2014).Article

Kalathottukaren,M.T.等人。一种通用肝素解毒剂,对纤维蛋白(ogen)和血浆凝血的影响可忽略不计。血液1244231(2014)。文章

Google Scholar

谷歌学者

Mosesson, M. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3, 1894–1904 (2005).Article

Mosesson,M。纤维蛋白原和纤维蛋白的结构和功能。J、 血栓。血友病。31894-1904(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Z. et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. commun. 10, 5562 (2019).Article

Li,Z.等人。用于快速凝固和最小粘附的超疏水止血纳米纤维复合材料。国家公社。105562(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cines, D. B. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedral and redistribution of platelets and fibrin. Blood 123, 1596–1603 (2014).Article

Cines,D.B.等人,《凝块收缩:红细胞压缩成紧密堆积的多面体,血小板和纤维蛋白重新分布》,《血液》1231596-1603(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, J. B., Gupta, N. & Mittal, S. Creation of neovagina using oxidized cellulose (surgical) as a surgical treatment of vaginal agenesis. Arch. Gynecol. Obstet. 275, 231–235 (2007).Article

Sharma,J.B.,Gupta,N。&Mittal,S。使用氧化纤维素(手术)作为阴道发育不全的手术治疗来创建新阴道。拱门。妇科。障碍。275231-235(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

White, J. G., Burris, S. M. & Escolar, G. Platelet adhesion plaques: anchors for contraction of the hemostatic plug. Blood 114, 5128 (2009).Article

White,J.G.,Burris,S.M。和Escolar,G。血小板粘附斑块:止血塞收缩的锚。血液1145128(2009)。文章

Google Scholar

谷歌学者

Cate, J. W. T. & De Vries, S. I. Platelet adhesiveness and haemostatic defects. Lancet 296, P1196 (1970).Article

Cate,J.W.T。&De Vries,S.I。血小板粘附性和止血缺陷。柳叶刀296,P1196(1970)。文章

Google Scholar

谷歌学者

Akkerman, J. W. & Holmsen, H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood 57, 956–966 (1981).Article

Akkerman,J。W。&Holmsen,H。血小板反应之间的相互关系:研究血小板聚集和Ca2+分泌过程中质子释放,乳酸产生和氧摄取的爆发。血液57956-966(1981)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wong, C. S. et al. Adhesion protein GMPl40 inhibits superoxiderelease by human neut rophils. PNAS 88, 2397–2401 (1991).Article

Wong,C.S.等人。粘附蛋白GMPl40通过人中性粒细胞抑制超氧化物歧化酶。PNAS 882397-2401(1991)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, H. et al. Chitin/corn stalk pith sponge stimulated hemostasis with erythrocyte absorption, platelet activation, and Ca2+-binding capabilities. Carbohydr. Polym. 284, 118953 (2022).Article

Cheng,H。等人。几丁质/玉米茎髓海绵通过红细胞吸收,血小板活化和Ca2+结合能力刺激止血。碳水化合物。Polym公司。284118953(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Menter, D. G. et al. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis. Rev. 36, 199–213 (2017).Article

Menter,D.G.等人。血小板在伤口反应、癌症和转移中的“第一反应者”。癌症转移。修订版36199–213(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bouchareb, R. et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur. Heart J. 40, 1362–1373 (2019).Article

Bouchareb,R。等人。活化的血小板促进成骨程序和钙化性主动脉瓣狭窄的进展。《欧洲心脏杂志》401362-1373(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Danaee, A. et al. Patients with splanchnic vein thrombosis demonstrate significantly increased platelet activity. Blood 128, 1430 (2016).Article

Danaee,A。等人,内脏静脉血栓形成患者表现出血小板活性显着增加。。文章

Google Scholar

谷歌学者

Liu, J. et al. Abnormal platelet phenotypes in patients with myelodysplastic syndromes. Blood 134, 5408 (2019).Article

Liu,J.等人。骨髓增生异常综合征患者的异常血小板表型。血液1345408(2019)。文章

Google Scholar

谷歌学者

Maher, K. N., Han, X., Neeves, K. B., Nieman, M. T. & Di Paola, J. Modulation of thrombin-induced platelet activation by defibrotide. Blood. 134, 3614 (2019).Sturm, A., Hebestreit, H. & Grossmann, R. Platelet proinflammatory and hemostatic function is differentially regulated in cystic fibrosis.

Maher,K.N.,Han,X.,Neeves,K.B.,Nieman,M.T。&Di Paola,J。去纤维蛋白多核苷酸对凝血酶诱导的血小板活化的调节。血。1343614(2019)。Sturm,A.,Hebestreit,H。&Grossmann,R。血小板促炎和止血功能在囊性纤维化中受到差异调节。

Blood 108, 3948 (2006).Article .

血液1083948(2006)。文章。

Google Scholar

谷歌学者

Panteleev, M. A., Ananyeva, N. M., Greco, N. J., Ataullakhanov, F. I. & Saenko, E. L. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553 (2005).Article

Panteleev,M.A.,Ananyeva,N.M.,Greco,N.J.,Ataullakhanov,F.I。&Saenko,E.L。凝血酶激活血小板的两个亚群在结合内在因子X激活复合物的成分方面不同。J、 血栓。血友病。32545-2553(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feng, Y. et al. Assembly of clay nanotubes on cotton fibers mediated by biopolymer for robust and high-performance hemostatic dressing. Adv. Healthc. Mater. 12, e2202265 (2023).Article

Feng,Y.等人。由生物聚合物介导的粘土纳米管在棉纤维上的组装,用于坚固和高性能的止血敷料。健康顾问。马特。12,e2202265(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Leonhardt, E. E., Kang, N., Hamad, M. A., Wooley, K. L. & Elsabahy, M. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan. Nat. Commun. 10, 2307 (2019).Article

Leonhardt,E.E.,Kang,N.,Hamad,M.A.,Wooley,K.L。&Elsabahy,M。可吸收止血水凝胶,包括牺牲模板和壳聚糖蜂窝状纳米纤维垫的复合材料。国家公社。102307(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, H. et al. Efficient, biosafe and tissue adhesive hemostatic cotton gauze with controlled balance of hydrophilicity and hydrophobicity. Nat. Commun. 13, 552 (2022).Article

He,H。等人。高效,生物安全和组织粘附止血棉纱布,具有亲水性和疏水性的受控平衡。国家公社。13552(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tan, L. et al. Dynamic hydrogel with environment-adaptive autonomous wound-compressing ability enables rapid hemostasis and inflammation amelioration for hemorrhagic wound healing. Nano. Today 52, 101962 (2023).Article

。纳米。今天52101962(2023)。文章

Google Scholar

谷歌学者

Wei, X. et al. Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges. Carbohydr. Polym. 264, 118028 (2021).Article

Wei,X。等人。多糖改性壳聚糖作为改进的快速止血泡沫海绵。碳水化合物。Polym公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zgurskaya, H. I. Introduction: transporters, porins, and efflux pumps. Chem. Rev. 121, 5095–5097 (2021).Article

Zgurskaya,H.I。简介:转运蛋白,孔蛋白和外排泵。化学。修订版1215095-5097(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aziz, M. A., Cabral, J. D., Brooks, H. J. L., Moratti, S. C. & Hanton, L. R. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob. Agents Chemother. 56, 280–287 (2012).Article

Aziz,M.A.,Cabral,J.D.,Brooks,H.J.L.,Moratti,S.C。&Hanton,L.R。外科用壳聚糖-葡聚糖水凝胶的抗菌性能。抗菌剂。化学试剂。56280–287(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simons, C., Walsh, S. E., Maillard, J. Y. & Russell, A. D. A note: ortho-phthalaldehyde: proposed mechanism of action of a new antimicrobial agent. Appl. Microbiol. 31, 299–302 (2000).Article

Simons,C.,Walsh,S.E.,Maillard,J.Y。&Russell,A.D。注:邻苯二甲醛:一种新型抗菌剂的拟议作用机制。应用。微生物。31299-302(2000)。文章

CAS

中科院

Google Scholar

谷歌学者

Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. & Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192 (2019).Article

Pang,Z.,Raudonis,R.,Glick,B.R.,Lin,T.J。&Cheng,Z。铜绿假单胞菌的抗生素耐药性:机制和替代治疗策略。生物技术。Adv.37177–192(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bremer, E. & Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 73, 313–334 (2019).Article

Bremer,E。&Krämer,R。微生物对渗透胁迫的反应。年。微生物修订版。73313-334(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Blount, P., Schroeder, M. J. & Kung, C. Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272, 32150–32157 (1997).Article

Blount,P.,Schroeder,M.J。&Kung,C。细菌机械敏感通道中的突变改变了细胞对渗透压的反应。J、 生物。化学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bisset, K. A. & Vickerstaff, J. Significance of the characteristic chemical pattern of Gram positive and Gram negative bacterial cell walls. Nature 215, 1286 (1967).Article

Bisset,K.A。&Vickerstaff,J。革兰氏阳性和革兰氏阴性细菌细胞壁特征化学模式的意义。自然2151286(1967)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qi, G., Zhang, D., Liu, F. H., Qiao, Z. Y. & Wang, H. An “on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 29, 1703461 (2017).Article

Qi,G.,Zhang,D.,Liu,F.H.,Qiao,Z.Y。&Wang,H。治疗细菌感染的“现场转化”策略。高级材料。291703461(2017)。文章

Google Scholar

谷歌学者

Chu, X. et al. Brush polymer coatings with hydrophilic main-chains for improving surface antibacterial properties. Acs. Macro. Lett. 12, 428–432 (2023).Article

Chu,X.等人用亲水主链刷涂聚合物涂层,以改善表面抗菌性能。Acs公司。宏。利特。12428–432(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sut, T. N. et al. Engineered lipid bicelle nanostructures for membrane-disruptive antibacterial applications. Appl. Mater. Today 22, 100947 (2021).Article

Sut,T.N.等人设计了脂质双细胞纳米结构,用于膜破坏性抗菌应用。应用。马特。今天22100947(2021)。文章

Google Scholar

谷歌学者

Dalheim, M. Ø. et al. Degradation kinetics of peptide-coupled alginates prepared via the periodate oxidation reductive amination route. Carbohydr. Polym. 157, 1844–1852 (2017).Article

达尔海姆,M。等。通过高碘酸盐氧化还原胺化途径制备的肽偶联藻酸盐的降解动力学。碳水化合物。Polym公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qiao, Z. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 13, 7164 (2022).Article

Qiao,Z.等人。包含生姜衍生的细胞外囊泡的仿生电动纳米颗粒,用于协同抗感染治疗。国家公社。137164(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ito, T., Yeo, Y., Highley, C. B., Bellas, E. & Kohane, D. S. Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28, 3418–3426 (2007).Article

Ito,T.,Yeo,Y.,Highley,C.B.,Bellas,E。&Kohane,D.S。基于葡聚糖的原位交联可注射水凝胶,以防止腹膜粘连。生物材料283418-3426(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Miao, Y. et al. Exopolysaccharide riclin and anthocyanin-based composite colorimetric indicator film for food freshness monitoring. Carbohydr. Polym. 314, 120882 (2023).Article

Miao,Y。等。用于食品新鲜度监测的胞外多糖riclin和花青素基复合比色指示膜。Carbohydr。Polym公司。314120882(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Deng, T. et al. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 14, 396 (2023).Article

Deng,T。等人。一种来自蜗牛粘液的天然生物粘合剂,用于伤口修复。国家公社。14396(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bao, G. et al. Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage. Nat. Commun. 13, 5035 (2022).Article

Bao,G.等人。液体注入微结构生物粘接剂可阻止不可压缩性出血。国家公社。135035(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe extend our gratitude to Dr. Jianfa Zhang for providing the riclin exopolysaccharides. This work received primary support from a research project of Anhui Provincial Key Research and Development Project (No. 202104j07020017), Natural Science Research Project of Anhui Educational Committee (No.

下载参考文献致谢我们感谢张建发博士提供riclin胞外多糖。这项工作得到了安徽省重点研究发展项目(编号202104J0702017)研究项目,安徽省教委自然科学研究项目(编号202104J0702017)的初步支持。

2022AH030139, No. 2022AH051498, No. 2023AH051923), Natural Science Foundation of Anhui Province (No. 2308085QH251), and National Natural Science Foundation of China (No. 32000822).Author informationAuthor notesThese authors contributed equally: Jinrun Zhang, Zenghui Chen, Dejie Zeng.Authors and AffiliationsDepartment of Physiology, Bengbu Medical University, Bengbu, 233030, ChinaJinrun Zhang, Zenghui Chen, Yuman Xia, Yizhuo Fan, Xinyu Zhang, Nan Li, Xiaofen Liu, Xiaqing Sun, Junhao Liu & Qi SunAnhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233030, ChinaJinrun Zhang & Qi SunDepartment of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, ChinaDejie Zeng & Shibing ZhaoCenter for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, ChinaJianfa ZhangAuthorsJinrun ZhangView author publicationsYou can also search for this author in.

2022AH030139,编号2022AH051498,编号2023AH051923),安徽省自然科学基金(编号2308085QH251)和国家自然科学基金(编号3200822)。作者信息作者注意到这些作者做出了同样的贡献:张金润,陈增辉,曾德杰。作者及所属单位蚌埠医科大学生理学系,蚌埠,233030,中国张金润,陈增辉,夏玉满,范一卓,张新宇,李楠,刘晓芬,孙夏青,刘俊浩,齐孙楠安徽省慢性病免疫学重点实验室,蚌埠医科大学,233030,中国张金润,齐孙楠蚌埠医科大学第一附属医院重症医学科,233004,南京科技大学分子代谢中心,南京,210094,中国张建发作者张金润查看作者出版物您也可以在中搜索此作者。

PubMed Google ScholarZenghui ChenView author publicationsYou can also search for this author in

PubMed Google ScholarZenghui ChenView作者出版物您也可以在

PubMed Google ScholarDejie ZengView author publicationsYou can also search for this author in

PubMed Google ScholarDejie ZengView作者出版物您也可以在

PubMed Google ScholarYuman XiaView author publicationsYou can also search for this author in

PubMed Google ScholarYuman XiaView作者出版物您也可以在

PubMed Google ScholarYizhuo FanView author publicationsYou can also search for this author in

PubMed Google Scholaryizhou FanView作者出版物您也可以在

PubMed Google ScholarXinyu ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张新宇查看作者出版物您也可以在

PubMed Google ScholarNan LiView author publicationsYou can also search for this author in

PubMed Google ScholarNan LiView作者出版物您也可以在

PubMed Google ScholarXiaofen LiuView author publicationsYou can also search for this author in

PubMed Google ScholarXiaofen LiuView作者出版物您也可以在

PubMed Google ScholarXiaqing SunView author publicationsYou can also search for this author in

PubMed谷歌学者夏青SunView作者出版物您也可以在

PubMed Google ScholarShibing ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarShibing ZhaoView作者出版物您也可以在

PubMed Google ScholarJianfa ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张建发查看作者出版物您也可以在

PubMed Google ScholarJunhao LiuView author publicationsYou can also search for this author in

PubMed谷歌学者刘俊浩查看作者出版物您也可以在

PubMed Google ScholarQi SunView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsJ.Z. (Jinrun Zhang), Q.S., and J.L. conceived the project, designed the experiments, and wrote the paper; J.Z. (Jinrun Zhang), Z.C., and D.Z. conducted the synthesis and characterization of the samples; Z.C., X.Z., and N.L. obtained scanning electron microscopy and transmission electron microscopy images; J.Z.

PubMed谷歌学术贡献。Z、 (张金润),Q.S。和J.L.构思了该项目,设计了实验并撰写了论文;J、 Z.(张金润),Z.C。和D.Z.进行了样品的合成和表征;Z、 C.,X.Z。和N.L.获得了扫描电子显微镜和透射电子显微镜图像;J、 Z。

(Jinrun Zhang), J.L., Y.X., and Y.F. carried out all the in vitro and in vivo experiments; D.Z., Y.X., and J.Z. (Jinrun Zhang) performed the antibacterial experiments; Q.S. and J.Z. (Jianfa Zhang) revised the draft; Y.F., X.L., X.S., S.Z., and J.Z. (Jianfa Zhang) analyzed the data and contributed to interpretation of the results.

(张金润),J.L.,Y.X。和Y.F.进行了所有的体外和体内实验;D、 Z.,Y.X。和J.Z。(张金润)进行了抗菌实验;Q、 S.和J.Z.(张建发)修订了草案;Y、 F.,X.L.,X.S.,S.Z。和J.Z.(张建发)分析了数据,并为结果的解释做出了贡献。

All authors discuss and approved the final manuscript.Corresponding authorsCorrespondence to.

。通讯作者通讯。

Junhao Liu or Qi Sun.Ethics declarations

刘俊浩或孙琦。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Communications Materials thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Steven Caliari and Jet-Sing Lee. A peer review file is available.

通讯材料感谢匿名审稿人对这项工作的同行评审做出的贡献。主要处理编辑:Steven Caliari和Jet Sing Lee。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationPeer Review FileSupplementary InformationDescription Of Additional Supplementary FileSupplemental Movie 1Supplemental Movie 2Supplemental Movie 3Supplemental Movie 4Supplemental Movie 5Supplemental Movie 6Supplemental Movie 7Supplemental Movie 8Supplemental Movie 9Supplemental Movie 10Supplemental Movie 11Supplemental Movie 12Supplemental Movie 13Supplemental Movie 14Supplemental Movie 15Supplemental Movie 16Reporting SummaryRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息同行评审文件补充信息其他补充文件的描述补充电影1补充电影2补充电影3补充电影4补充电影5补充电影6补充电影7补充电影8补充电影9补充电影10补充电影11补充电影12补充电影13补充电影14补充电影15补充电影16报告摘要权利和权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, J., Chen, Z., Zeng, D. et al. Antibacterial and rapidly absorbable hemostatic sponge by aldehyde modification of natural polysaccharide.

转载和许可本文引用本文Zhang,J.,Chen,Z.,Zeng,D。等人。通过天然多糖的醛改性抗菌和快速可吸收止血海绵。

Commun Mater 5, 129 (2024). https://doi.org/10.1038/s43246-024-00579-0Download citationReceived: 10 March 2024Accepted: 17 July 2024Published: 21 July 2024DOI: https://doi.org/10.1038/s43246-024-00579-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Commun Mater 5129(2024)。https://doi.org/10.1038/s43246-024-00579-0Download引文收到日期:2024年3月10日接受日期:2024年7月17日发布日期:2024年7月21日OI:https://doi.org/10.1038/s43246-024-00579-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Biomedical materialsTranslational research

生物医学材料转化研究