EN
登录

靶向Smurf1阻断KRAS突变的癌症PDK1–Akt信号

Targeting Smurf1 to block PDK1–Akt signaling in KRAS-mutated colorectal cancer

Nature 等信源发布 2024-07-22 19:06

可切换为仅中文


AbstractThe phosphoinositide 3-kinase (PI3K)–Akt axis is one of the most frequently activated pathways and is demonstrated as a therapeutic target in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated colorectal cancer (CRC). Targeting the PI3K–Akt pathway has been a challenging undertaking through the decades.

摘要磷酸肌醇3-激酶(PI3K)-Akt轴是最常激活的途径之一,已被证明是Kirsten大鼠肉瘤病毒癌基因同源物(KRAS)突变的结直肠癌(CRC)的治疗靶点。几十年来,针对PI3K-Akt途径一直是一项具有挑战性的任务。

Here we unveiled an essential role of E3 ligase SMAD ubiquitylation regulatory factor 1 (Smurf1)-mediated phosphoinositide-dependent protein kinase 1 (PDK1) neddylation in PI3K–Akt signaling and tumorigenesis. Upon growth factor stimulation, Smurf1 immediately triggers PDK1 neddylation and the poly-neural precursor cell expressed developmentally downregulated protein 8 (poly-Nedd8) chains recruit methyltransferase SET domain bifurcated histone lysine methyltransferase 1 (SETDB1).

在这里,我们揭示了E3连接酶SMAD泛素化调节因子1(Smurf1)介导的磷酸肌醇依赖性蛋白激酶1(PDK1)在PI3K-Akt信号传导和肿瘤发生中的重要作用。在生长因子刺激下,Smurf1立即触发PDK1 neddylation,表达发育下调蛋白8(poly-Nedd8)链的多神经前体细胞募集甲基转移酶SET结构域分叉的组蛋白赖氨酸甲基转移酶1(SETDB1)。

The cytoplasmic complex of PDK1 assembled with Smurf1 and SETDB1 (cCOMPASS) consisting of PDK1, Smurf1 and SETDB1 directs Akt membrane attachment and T308 phosphorylation. Smurf1 deficiency dramatically reduces CRC tumorigenesis in a genetic mouse model. Furthermore, we developed a highly selective Smurf1 degrader, Smurf1-antagonizing repressor of tumor 1, which exhibits efficient PDK1–Akt blockade and potent tumor suppression alone or combined with PDK1 inhibitor in KRAS-mutated CRC.

由PDK1,Smurf1和SETDB1组成的PDK1与Smurf1和SETDB1(cCOMPASS)组装的细胞质复合物指导Akt膜附着和T308磷酸化。Smurf1缺陷显着降低了遗传小鼠模型中的CRC肿瘤发生。此外,我们开发了一种高度选择性的Smurf1降解物,Smurf1拮抗肿瘤1的阻遏物,它在KRAS突变的CRC中单独或与PDK1抑制剂联合显示出有效的PDK1-Akt阻断和有效的肿瘤抑制作用。

The findings presented here unveil previously unrecognized roles of PDK1 neddylation and offer a potential strategy for targeting the PI3K–Akt pathway and KRAS mutant cancer therapy..

这里提出的发现揭示了PDK1 neddylation以前未被认识到的作用,并为靶向PI3K-Akt途径和KRAS突变癌症治疗提供了潜在的策略。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Smurf1 drives Akt activation and CRC tumorigenesis in a neddylation-dependent manner.Fig. 2: Smurf1-mediated PDK1 neddylation at K163 triggers Akt activation.Fig. 3: PDK1 neddylation recruits SETDB1 and directs Akt membrane attachment.Fig. 4: Smurf1 is positively correlated with KRAS-mutated CRC.Fig.

图1:Smurf1以依赖于neddylation的方式驱动Akt活化和CRC肿瘤发生。图2:K163处Smurf1介导的PDK1 neddylation触发Akt激活。图3:PDK1 neddylation募集SETDB1并指导Akt膜附着。图4:Smurf1与KRAS突变的CRC呈正相关。图。

5: SMART1, a selective degrader of Smurf1, exhibits potent cytotoxicity in CRC cells.Fig. 6: SMART1 inhibits tumor growth in preclinical models of KRAS mutant CRC and synergizes with AR12..

5: SMART1是Smurf1的选择性降解物,在CRC细胞中表现出强大的细胞毒性。图6:SMART1在KRAS突变CRC的临床前模型中抑制肿瘤生长并与AR12协同作用。。

Data availability

数据可用性

The data that support the findings of this study—including clinical information—are available within the paper and its source data in Supplementary Information. The raw files of proteome datasets can be obtained from the iProX database (www.iprox.org)—interactome of PDK1 (accession PXD041705), interactome of Smurf1 (accession PXD045430), identification of Neddylation site in PDK1 (accession PXD041708) and proteome (accessions PXD041740 and PXD051870).

。蛋白质组数据集的原始文件可以从iProX数据库(www.iProX.org)-PDK1的interactome(登录号PXD041705),Smurf1的interactome(登录号PXD045430),PDK1中Neddylation位点的鉴定(登录号PXD041708)和蛋白质组(登录号PXD041740和PXD051870)。

Source data are provided with this paper..

本文提供了源数据。。

ReferencesFearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).Article

参考文献Fearon,E.R。&Vogelstein,B。结直肠肿瘤发生的遗传模型。细胞61759-767(1990)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).Article

Bos,J.L.等人。人类结直肠癌中ras基因突变的患病率。自然327293-297(1987)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).Article

Karapetis,C.S。等人,K-ras突变和西妥昔单抗在晚期结直肠癌中的益处。N、 英语。J、 医学3591757-1765(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 31, 820–832.e823 (2017).Article

Zhang,Y。等人。PI3K/AKT/mTOR途径改变的泛癌蛋白质基因组图谱。癌细胞31820-832.e823(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).Article

Moore,A.R.,Rosenberg,S.C.,McCormick,F.&Malek,S.RAS靶向治疗:不可药用的药物吗?《药物目录》修订版。19533-552(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).Article

Fruman,D.A。等人,《人类疾病中的PI3K途径》。细胞170605-635(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Voutsadakis, I. A. KRAS mutated colorectal cancers with or without PIK3CA mutations: clinical and molecular profiles inform current and future therapeutics. Crit. Rev. Oncol. Hematol. 186, 103987 (2023).Article

Voutsadakis,I.A。有或没有PIK3CA突变的KRAS突变结直肠癌:临床和分子特征为当前和未来的治疗提供了信息。暴击。修订版Oncol。血液学。186103987(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).Article

Glaviano,A。等人。PI3K/AKT/mTOR信号转导途径和癌症的靶向治疗。分子癌症22138(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vasan, N. & Cantley, L. C. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).Article

Vasan,N。&Cantley,L.C。处于十字路口:如何将PI3K在致癌和代谢信号传导中的作用转化为癌症治疗的改进。国家修订临床。Oncol公司。19471-485(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tolaney, S. M. et al. Phase Ib study of ribociclib plus fulvestrant and ribociclib plus fulvestrant plus PI3K inhibitor (alpelisib or buparlisib) for HR+ advanced breast cancer. Clin. Cancer Res. 27, 418–428 (2021).Article

Tolaney,S.M.等人对ribociclib加氟维司群和ribociclib加氟维司群加PI3K抑制剂(alpelisib或buparlisib)治疗HR+晚期乳腺癌的Ib期研究。临床。癌症研究27418-428(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banerji, U. et al. A phase I open-label study to identify a dosing regimen of the pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin. Cancer Res. 24, 2050–2059 (2018).Article

Banerji,U。等人进行了一项I期开放标签研究,以确定泛AKT抑制剂AZD5363的给药方案,用于评估实体瘤以及PIK3CA突变的乳腺癌和妇科癌症。临床。癌症研究242050-2059(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, B. J. et al. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nat. Chem. Biol. 17, 1065–1074 (2021).Article

Lee,B.J.等人。mTORC1的选择性抑制剂激活4EBP1并抑制肿瘤生长。自然化学。生物学171065-1074(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).Article

Vanhaesebroeck,B.,Perry,M.W.D.,Brown,J.R.,André,F。&Okkenhaug,K。PI3K抑制剂终于成熟了。《药物目录》修订版。20741-769(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell. Dev. Biol. 15, 161–170 (2004).Article

Mora,A.,Komander,D.,van Aalten,D.M。和Alessi,D.R。PDK1,AGC激酶信号转导的主要调节剂。塞米。细胞。开发生物。15161-170(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).Article

Manning,B.D。和Cantley,L.C。AKT/PKB信号传导:下游导航。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406–420 (2013).Article

Eser,S。等人。PI3K/PDK1信号传导对Kras癌基因驱动的胰腺细胞可塑性和癌症的选择性要求。癌细胞23406-420(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cai, W. et al. A genome-wide screen identifies PDPK1 as a target to enhance the efficacy of MEK1/2 inhibitors in NRAS mutant melanoma. Cancer Res. 82, 2625–2639 (2022).Article

Cai,W。等人。全基因组筛选将PDPK1鉴定为增强MEK1/2抑制剂在NRAS突变型黑色素瘤中的功效的靶标。癌症研究822625-2639(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Coppé, J. P. et al. Mapping phospho-catalytic dependencies of therapy-resistant tumors reveals actionable vulnerabilities. Nat. Cell. Biol. 21, 778–790 (2019).Article

Coppé,J.P.等人绘制治疗耐药肿瘤的磷酸催化依赖性揭示了可行的脆弱性。自然细胞。生物学21778-790(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peifer, C. & Alessi, D. R. Small-molecule inhibitors of PDK1. ChemMedChem 3, 1810–1838 (2008).Article

Peifer,C。&Alessi,D.R。PDK1的小分子抑制剂。ChemMedChem 31810–1838(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).Article

Zhu,H.,Kavsak,P.,Abdollah,S.,Wrana,J.L。&Thomsen,G.H。SMAD泛素连接酶靶向BMP途径并影响胚胎模式的形成。自然400687-693(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121, 101–113 (2005).Article

泛素连接酶Smurf1通过靶向MEKK2降解来控制成骨细胞活性和骨稳态。细胞121101-113(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia, Q., Li, Y., Han, D. & Dong, L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther. 28, 551–565 (2021).Article

Xia,Q.,Li,Y.,Han,D。&Dong,L。SMURF1,肿瘤细胞进展的启动子?癌症基因治疗。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).Article

Barlaam,B.等人发现(R)-8-(1-(3,5-二氟苯氨基)乙基)-N,N-二甲基-2-吗啉代-4-氧代-4H-色烯-6-甲酰胺(AZD8186):一种有效且选择性的PI3Kβ和PI3Kδ抑制剂,用于治疗PTEN缺陷型癌症。J、 医学化学。58943-962(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jo, H. et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc. Natl Acad. Sci. USA 109, 10581–10586 (2012).Article

Jo,H。等人。小分子诱导的蛋白激酶Akt的胞质激活可挽救缺血引起的神经元死亡。。国家科学院。科学。美国10910581–10586(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, P. et al. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun. 5, 3733 (2014).Article

Xie,P。等人。共价修饰剂Nedd8对于肿瘤发生中Smurf1泛素连接酶的激活至关重要。国家公社。53733(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell. Res. 31, 291–311 (2021).Article

Xie,P。等人。PTEN的Neddylation调节其核输入并促进肿瘤发展。细胞。第31291-311号决议(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lobato-Gil, S. et al. Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep. 34, 108635 (2021).Article

Lobato Gil,S。等人。NEDD8修饰位点的蛋白质组范围鉴定揭示了典型和非典型NEDDylation的不同蛋白质组。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oliveira, C. A. B., Isaakova, E., Beli, P. & Xirodimas, D. P. A mass spectrometry-based strategy for mapping modification sites for the ubiquitin-like modifier NEDD8. Methods Mol. Biol. 2602, 137–149 (2023).Article

Oliveira,C.A.B.,Isaakova,E.,Beli,P。&Xirodimas,D.P。基于质谱的策略,用于绘制泛素样修饰剂NEDD8的修饰位点。方法分子生物学。2602137-149(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schulze, J. O. et al. Bidirectional allosteric communication between the ATP-binding site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem. Biol. 23, 1193–1205 (2016).Article

Schulze,J.O.等人。PDK1蛋白激酶中ATP结合位点和调节性PIF口袋之间的双向变构通讯。细胞化学。生物学231193-1205(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).Article

Yang,W.L.等人。E3连接酶TRAF6调节Akt泛素化和活化。科学3251134-1138(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).Article

Chan,C.H。等人。Skp2 SCF E3连接酶调节Akt泛素化,糖酵解,赫赛汀敏感性和肿瘤发生。细胞1491098-1111(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, G. et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat. Cell. Biol. 21, 214–225 (2019).Article

Wang,G。等人。SETDB1介导的Akt甲基化促进其K63连接的泛素化和活化,导致肿瘤发生。自然细胞。生物学21214-225(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Castagnoli, L. et al. Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J. 286, 653–677 (2018).Article

Castagnoli,L。等人。古巴结构域在识别泛素和NEDD8中的选择性。FEBS J.286653–677(2018)。文章

Google Scholar

谷歌学者

Kwon, A., Lee, H. L., Woo, K. M., Ryoo, H. M. & Baek, J. H. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol. Cells 6, 548–555 (2013).Article

Kwon,A.,Lee,H.L.,Woo,K.M.,Ryoo,H.M。&Baek,J.H。SMURF1在EGF诱导的乳腺癌细胞迁移和侵袭中起作用。分子细胞6548-555(2013)。文章

Google Scholar

谷歌学者

Lee, H. L. et al. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation. Exp. Cell Res. 323, 276–287 (2014).Article

Lee,H.L.等人,Smurf1在EGF抑制BMP2诱导的成骨分化中起作用。Exp.Cell Res.323276–287(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Whitmarsh, A. J. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim. Biophys. Acta 1773, 1285–1298 (2007).Article

Whitmarsh,A.J。通过丝裂原活化蛋白激酶信号传导途径调节基因转录。生物化学。生物物理。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).Article

Békés,M.,Langley,D.R。&Crews,C.M。PROTAC靶向蛋白质降解物:过去是序幕。《药物目录》修订版。21181-200(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adams, C. M. et al. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discov. 13, 1210–1229 (2023).Article

Adams,C.M.等人靶向MDM2降解揭示了p53失活的三阴性乳腺癌的新脆弱性。癌症发现。131210-1229(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Powell, C. E. et al. Selective degradation-inducing probes for studying cereblon (CRBN) biology. RSC Med Chem. 12, 1381–1390 (2021).Article

Powell,C.E.等人。用于研究小脑(CRBN)生物学的选择性降解诱导探针。RSC医学化学。121381-1390(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maniaci, C. et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 8, 830 (2017).Article

Maniaci,C。等人。Homo-PROTACs:VHL E3泛素连接酶的二价小分子二聚体,可诱导自我降解。国家公社。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y., Wang, C., Cao, Y., Gu, Y. & Zhang, L. Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1. Oncotarget 8, 50521–50533 (2016).Article

Zhang,Y.,Wang,C.,Cao,Y.,Gu,Y。&Zhang,L。选择性化合物通过靶向泛素连接酶Smurf1的HECT结构域来增强成骨细胞活性。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, Y. et al. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci. Rep. 4, 4965 (2014).Article

Cao,Y。等人。选择性小分子化合物通过抑制Smurf1介导的Smad1/5降解来增加BMP-2的反应性。科学。第44965页(2014年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) (Association for Computing Machinery, 2006).Du, M. G. et al. Neddylation modification of the U3 snoRNA-binding protein RRP9 by Smurf1 promotes tumorigenesis.

Bowers,K.J.等人,《商品簇分子动力学模拟的可扩展算法》。ACM/IEEE超级计算会议论文集(SC06)(计算机械协会,2006)。Du,M.G.等人。Smurf1对U3 snoRNA结合蛋白RRP9的Neddylation修饰促进肿瘤发生。

J. Biol. Chem. 297, 101307 (2021).Article .

J.生物学。化学。297, 101307 (2021).第[UNK]条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).Article

Fischer,E.S.等人。与沙利度胺复合的DDB1-CRBN E3泛素连接酶的结构。自然512,49-53(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, J. et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res. 64, 4309–4318 (2004).Article

Zhu,J.等人从环氧合酶-2抑制剂塞来昔布到一类新型的3-磷酸肌醇依赖性蛋白激酶-1抑制剂。癌症研究644309-4318(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ziemba, B. P., Pilling, C., Calleja, V., Larijani, B. & Falke, J. J. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies. Biochemistry 52, 4820–4829 (2013).Article .

Ziemba,B.P.,Pilling,C.,Calleja,V.,Larijani,B。&Falke,J.J。磷酸肌醇依赖性激酶-1的PH结构域表现出一种新型的磷酸调节单体-二聚体平衡,对激酶结构域激活具有重要意义:单分子和整体研究。生物化学524820-4829(2013)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Levina, A., Fleming, K. D., Burke, J. E. & Leonard, T. A. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat. Commun. 13, 1874 (2022).Article

Levina,A.,Fleming,K.D.,Burke,J.E。和Leonard,T.A。通过磷酸肌醇驱动的反式自磷酸化激活必需激酶PDK1。国家公社。131874(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yue, T. et al. The aging-related risk signature in colorectal cancer. Aging 13, 7330–7349 (2021).Article

。年龄137330-7349(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756 (2018).Article

Mayakonda,A.,Lin,D.C.,Assenov,Y.,Plass,C。&Koeffler,H.P。Maftools:癌症体细胞变异的有效和全面分析。基因组研究281747-1756(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).Article

Gu,Z.,Eils,R。&Schlesner,M。复杂热图揭示了多维基因组数据中的模式和相关性。生物信息学322847–2849(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Q. et al. Immunogenomic identification for predicting the prognosis of cervical cancer patients. Int. J. Mol. Sci. 22, 2442 (2021).Article

Wang,Q。等。免疫基因组学鉴定用于预测宫颈癌患者的预后。Int.J.Mol.Sci。222442(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).Article

Koboldt,D.C.等人,VarScan 2:通过外显子组测序发现癌症中的体细胞突变和拷贝数改变。基因组研究22568-576(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the members of the proteomics platform at the National Center for Protein Sciences (Beijing) for their help with MS analysis and SPR assay. We thank P. Wang (Tongji University Cancer Center, Tongji University, Shanghai, China) for providing the Smurf1−/− mice.

下载参考文献致谢我们感谢国家蛋白质科学中心(北京)蛋白质组学平台的成员在MS分析和SPR分析方面的帮助。我们感谢P.Wang(中国上海同济大学同济大学癌症中心)提供Smurf1-/-小鼠。

We also thank P. Xie (Department of Cell Biology, Capital Medical University, Beijing, China) for the kind gift of Smurf1−/− and Smurf1C426A MEFs and X. Zheng (School of Life Sciences, Peking University, Beijing, China) for NEDP1+/+ and NEDP1−/− HEK293T cells. We thank C. H. Liu (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for the kind gift of WGA dyes.

我们还感谢P.Xie(首都医科大学细胞生物学系,中国北京)赠送Smurf1-/-和Smurf1C426A MEF以及X.Zheng(北京大学生命科学学院,中国北京)NEDP1+/+和NEDP1-/-HEK293T细胞。我们感谢C.H.Liu(中国科学院微生物研究所,中国北京)赠送WGA染料。

This study was jointly supported by the National Key R&D Program of China (2021YFA1300200 to L.Z. and 2022YFC3401500 to C.C.) and the National Science Foundation of China (32200574 to X.Z., 81974428 to L.Z. and 82273931 to C.C.).Author informationAuthor notesThese authors contributed equally: Zhiqiang Peng, Wei Fang, Bo Wu, Ming He, Shaohua Li.Authors and AffiliationsState Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, ChinaZhiqiang Peng, Wei Fang, Bo Wu, Shaohua Li, Yang Hao, Mingqiu Liu, Xin Zhang, Yange Wei, Yingwei Ge, Yinghua Wei, Yangjun Zhang, Junyi Jiang, Chun-Ping Cui & Lingqiang ZhangShanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, ChinaZhiqiang Peng, Wei Fang, Shaohua Li, Jun Wei & Xueli ZhangSchool of Medicine, Tsinghua University, Beijing, ChinaZhiqiang Peng, Yinghua Wei & Zhijie ChangMOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic.

这项研究得到了中国国家重点研发计划(2021YFA1300200至L.Z.和2022YFC3401500至C.C.)和国家科学基金(32200574至X.Z.,81974428至L.Z.和82273931至C.C.)的联合支持。作者信息作者注意到这些作者做出了同样的贡献:彭志强,魏芳,吴波,何明,李少华。作者和附属机构医学蛋白质组学国家重点实验室,北京蛋白质组研究中心,国家蛋白质科学中心(北京),北京生命组学研究所,北京,中国彭志强,彭志强,吴波,李少华,杨浩,刘明秋,张欣,魏扬戈,葛英伟,魏英华,张杨军,蒋俊义,崔春平和张凌强上海奉贤中心医院,南方医科大学第三临床医学院,上海,彭志强,魏芳,李少华,魏军和薛李章清华大学医学院,北京,彭志强,魏英华,张志杰蛋白质科学重点实验室,药物科学学院,教育部生物有机重点实验室。

PubMed Google ScholarWei FangView author publicationsYou can also search for this author in

PubMed Google ScholarWei FangView作者出版物您也可以在

PubMed Google ScholarBo WuView author publicationsYou can also search for this author in

PubMed Google ScholarBo WuView作者出版物您也可以在

PubMed Google ScholarMing HeView author publicationsYou can also search for this author in

PubMed Google ScholarMing HeView作者出版物您也可以在

PubMed Google ScholarShaohua LiView author publicationsYou can also search for this author in

PubMed Google ScholarShaohua LiView作者出版物您也可以在

PubMed Google ScholarJun WeiView author publicationsYou can also search for this author in

PubMed Google ScholarJun WeiView作者出版物您也可以在

PubMed Google ScholarYang HaoView author publicationsYou can also search for this author in

PubMed Google ScholarLujia JinView author publicationsYou can also search for this author in

PubMed Google ScholarLujia JinView作者出版物您也可以在

PubMed Google ScholarMingqiu LiuView author publicationsYou can also search for this author in

PubMed Google Scholarmamingqiu LiuView作者出版物您也可以在

PubMed Google ScholarXin ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarXin ZhangView作者出版物您也可以在

PubMed Google ScholarYange WeiView author publicationsYou can also search for this author in

PubMed Google ScholarYange WeiView作者出版物您也可以在

PubMed Google ScholarYingwei GeView author publicationsYou can also search for this author in

PubMed Google ScholarYingwei GeView作者出版物您也可以在

PubMed Google ScholarYinghua WeiView author publicationsYou can also search for this author in

PubMed Google ScholarYinghua WeiView作者出版物您也可以在

PubMed Google ScholarHaili QianView author publicationsYou can also search for this author in

PubMed Google ScholarHaili QianView作者出版物您也可以在

PubMed Google ScholarYangjun ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarYangjun ZhangView作者出版物您也可以在

PubMed Google ScholarJunyi JiangView author publicationsYou can also search for this author in

PubMed谷歌学者Junyi JiangView作者出版物您也可以在

PubMed Google ScholarZhijie ChangView author publicationsYou can also search for this author in

PubMed谷歌学者Zhijie ChangView作者出版物您也可以在

PubMed Google ScholarYu RaoView author publicationsYou can also search for this author in

PubMed Google ScholarYu RaoView作者出版物您也可以在

PubMed Google ScholarXueli ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张雪莉查看作者出版物您也可以在

PubMed Google ScholarChun-Ping CuiView author publicationsYou can also search for this author in

PubMed Google ScholarChun Ping CuiView作者出版物您也可以在

PubMed Google ScholarLingqiang ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarLingqiang ZhangView作者出版物您也可以在

PubMed Google ScholarContributionsThe project was conceived by L.Z., C.P.C., Xueli Zhang and Y.R. The experiments were designed by L.Z., C.P.C., Y.R. and Z.P. Most of the modification experiments were performed by Z.P. and W.F. The cell biology experiments were contributed by W.F., Z.P., S.L.

PubMed谷歌学术贡献该项目由L.Z.,C.P.C.,张雪莉和Y.R.构思。实验由L.Z.,C.P.C.,Y.R.和Z.P.设计。大多数修饰实验由Z.P.和W.F.进行。细胞生物学实验由W.F.,Z.P.,S.L.贡献。

and J.W. The animal experiments were contributed by W.F., Z.P., S.L., Xin Zhang and L.J. The CRC sample collection and IHC analysis were contributed by S.L., Z.P., Xueli Z. and H.Q. The PROTAC experiments were contributed by B.W., M.H., Y.R., M.L., L.J. and Yange Wei. The MS experiments were contributed by Z.P., B.W., Y.G., Yinghua Wei, W.F.

和J.W.动物实验由W.F.,Z.P.,S.L.,张欣和L.J.贡献。CRC样品采集和IHC分析由S.L.,Z.P.,薛丽Z.和H.Q.贡献。PROTAC实验由B.W.,M.H.,Y.R.,M.L.,L.J.和Yange Wei贡献。MS实验由Z.P.,B.W.,Y.G.,魏英华,W.F.贡献。

Y.Z. and J.J. The bioinformatics and statistical analysis were completed by Y.H., Z.P., S.L. and Z.C. Data were analyzed by L.Z., C.P.C. and Z.P. The manuscript was written by L.Z., C.P.C., Z.P., B.W., W.F. and S.L.Corresponding authorsCorrespondence to.

Y、 Z.和J.J.生物信息学和统计分析由Y.H.,Z.P.,S.L.和Z.C.完成。数据由L.Z.,C.P.C.和Z.P.分析。手稿由L.Z.,C.P.C.,Z.P.,B.W.,W.F.和S.L.相应的作者撰写。

Yu Rao, Xueli Zhang, Chun-Ping Cui or Lingqiang Zhang.Ethics declarations

余饶、张雪莉、崔春平或张凌强。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Chemical Biology thanks Baishan Jiang, Yi Sun and the other, anonymous, reviewers for their contribution to the peer review of this work.

《自然化学生物学》感谢白山江、孙毅和其他匿名审稿人为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Smurf1 interacts with PDK1 and activates Akt signaling.a, Immunoblot (IB) analysis of immunoprecipitate and whole-cell lysates (WCLs) derived from HEK293 cells transfected with indicated constructs.

。扩展数据扩展数据图1 Smurf1与PDK1相互作用并激活Akt信号传导。a,来自用指定构建体转染的HEK293细胞的免疫沉淀物和全细胞裂解物(WCL)的免疫印迹(IB)分析。

b, GST pull-down assay showed that PDK1 interacts with Smurf1 directly. c, IB analysis of PDK1 IP products and WCLs derived from HEK293 cells transfected with the indicated constructs treated with PI3K inhibitor AZD8166 for 12 h (1 μM) before being subjected to treatment with insulin. d, An in vitro kinase assay showed that PDK1 phosphorylated p70S6K but not Smurf1, as determined by a phosphoserine/threonine (p-S/T) antibody.

b、 GST下拉测定显示PDK1直接与Smurf1相互作用。c、 在用胰岛素治疗之前,用PI3K抑制剂AZD8166处理12小时(1μM)的指定构建体转染的HEK293细胞衍生的PDK1 IP产物和WCL的IB分析。d、 体外激酶测定显示,通过磷酸丝氨酸/苏氨酸(p-S/T)抗体测定,PDK1磷酸化p70S6K,但不磷酸化Smurf1。

e, IB analysis of WCLs derived from HEK293 cells transfected with Flag-Smurf1. f, IB analysis of WCLs derived from Smurf1 knockdown HCT116 cells. g, Immunoprecipitated Akt was incubated with PIP3 beads, and the binding was performed at 4 °C for 4 h, followed by IB analysis. h, Smurf1 WT and KO cells were starved for 24 h with glucose-free DMEM, and then glucose uptake probe-green was added in medium for 15 min.

e、 IB分析来自用Flag-Smurf1转染的HEK293细胞的WCL。f、 来自Smurf1敲低HCT116细胞的WCL的IB分析。g、 将免疫沉淀的Akt与PIP3珠孵育,并在4℃下进行结合4小时,然后进行IB分析。h、 用无葡萄糖DMEM将Smurf1 WT和KO细胞饥饿24小时,然后在培养基中加入葡萄糖摄取探针green 15分钟。

Fluorescence was recorded by microscope and quantified by ImageJ 1.8.0.345. (n = 3 independent experiments). i, Medium of WT and Smurf1 KO MEFs were quantified by the absorbance at 450 nm using microplate reader, and the standard curve of LDH activity was calculated from samples containing certain concentrations of pyruvate sodium (n = 3 independent experiments).

通过显微镜记录荧光并通过ImageJ 1.8.0.345定量。(n=3个独立实验)。i、 使用酶标仪通过450 nm处的吸光度定量WT和Smurf1 KO MEF的培养基,并从含有一定浓度丙酮酸钠的样品中计算LDH活性的标准曲线(n=3个独立实验)。

j, Medium of WT and Smurf1 KO MEFs were quantified by the absorbance at 570 nm using microplate reader, and the standard curve of lactate concentration was calculated from samples containing certain .

j、 使用酶标仪通过570 nm处的吸光度定量WT和Smurf1 KO MEF的培养基,并从含有某些的样品中计算乳酸浓度的标准曲线。

Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01683-5Download citationReceived: 25 November 2023Accepted: 23 June 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41589-024-01683-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Chem Biol(2024)。https://doi.org/10.1038/s41589-024-01683-5Download引文接收日期:2023年11月25日接收日期:2024年6月23日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41589-024-01683-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供