商务合作
动脉网APP
可切换为仅中文
AbstractDSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive.
摘要DSR2是一种含有Sir2结构域的蛋白质,通过水解NAD+来保护细菌免受噬菌体感染。DSR2的酶活性由SPR噬菌体尾管蛋白(TTP)触发,而被SPbeta噬菌体编码的DSAD1蛋白抑制,使噬菌体能够逃避宿主防御。然而,激活和抑制DSR2的分子机制仍然难以捉摸。
Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2.
在这里,我们报告了载脂蛋白DSR2,DSR2-TTP-NAD+和DSR2-DSAD1复合物的低温EM结构。DSR2组装成由其Sir2结构域介导的头对头四聚体。DSR2的C端螺旋区域构成四个具有开放和闭合构象的伴侣结合腔。两个TTP分子与四个C末端空腔中的两个结合,诱导Sir2结构域的构象变化以激活DSR2。
Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion..
此外,DSAD1与激活剂竞争结合DSR2的C端腔,有效抑制其酶活性。我们的研究结果为DSR2介导的抗噬菌体防御系统和DSAD1依赖性噬菌体免疫逃避提供了机制上的见解。。
IntroductionFacing frequent attacks by virus, bacteria and archaea have evolved hundreds of diverse anti-phage defense systems to protect from phage infection, including the well-known restriction-modification (RM), CRISPR-Cas and abortive infection systems1,2. The RM and CRISPR-Cas systems are employed to directly degrade invaded phage DNA, providing a robust defense mechanism against phage infections3.
引言面对病毒,细菌和古细菌的频繁攻击,已经进化出数百种不同的抗噬菌体防御系统来防止噬菌体感染,包括众所周知的限制性修饰(RM),CRISPR-Cas和流产感染系统1,2。RM和CRISPR-Cas系统用于直接降解入侵的噬菌体DNA,为噬菌体感染提供了强大的防御机制3。
In contrast, the abortive infection system triggers programmed cell death in infected bacterial cells, sacrificing themselves to prevent phage propagation and ensure the survival of the bacterial population4. Bioinformatic analyses and subsequent experimental verification recently discovered plenty of anti-phage systems employing the abortive infection to inhibit phage replication, such as CBASS, toxin-antitoxin, Thoeris, Pycsar and defense-associated sirtuin (DSR) systems1,5.To combat the multilayered bacterial immune systems, phages have developed to express anti-defense proteins6,7,8,9.
相反,流产感染系统会触发受感染细菌细胞中的程序性细胞死亡,牺牲自己以防止噬菌体繁殖并确保细菌种群的存活4。生物信息学分析和随后的实验验证最近发现了许多利用流产感染抑制噬菌体复制的抗噬菌体系统,如CBASS,毒素-抗毒素,Thoeris,Pycsar和防御相关的sirtuin(DSR)系统1,5。为了对抗多层细菌免疫系统,噬菌体已经发展为表达抗防御蛋白6,7,8,9。
The most studied phage anti-defense proteins are the anti-restriction proteins and the anti-CRISPRs. The anti-restriction proteins function via directly interacting with the restriction enzymes or masking the modification sites to cope with the RM system10,11. The mechanisms utilized by anti-CRISPRs to overcome host defense systems are diverse, encompassing the inhibition of nuclease activity, induction of non-specific DNA binding, prevention of target DNA binding, and various other strategies12.
研究最多的噬菌体抗防御蛋白是抗限制蛋白和抗CRISPRs。抗限制性蛋白通过与限制性内切酶直接相互作用或掩盖修饰位点来应对RM系统10,11。抗CRISPR用于克服宿主防御系统的机制是多种多样的,包括抑制核酸酶活性,诱导非特异性DNA结合,预防靶DNA结合以及各种其他策略12。
A recent study reported four distinct families of anti-defense proteins, including the anti-Gabija system protein Gad1 and Gad2, anti-Thoeris protein Tad2 and anti-Hachiman defense protein Had17. The additional phage anti-defense mechanisms need more effort to investigate.DSR2, a sirtuin (Sir.
最近的一项研究报道了四个不同的抗防御蛋白家族,包括抗Gabija系统蛋白Gad1和Gad2,抗Thoeris蛋白Tad2和抗Hachiman防御蛋白Had17。额外的噬菌体反防御机制需要更多的努力来调查。DSR2,一种sirtuin(先生)。
Data availability
数据可用性
The cryo-EM density maps generated in this study have been deposited in the Electron Microscopy Data Bank (EMDB) under accession code EMDB-38872 [https://www.emdataresource.org/EMD-38872] (DSR2 H171A (crosslinked) partial structure); EMDB-38824 [https://www.emdataresource.org/EMD-38824] (DSR2 H171A (crosslinked) apo structure); EMDB-39925 [https://www.emdataresource.org/EMD-39925] (DSR2-TTP-NAD+ complex); EMDB-38889 [https://www.emdataresource.org/EMD-38889] (DSR2-DSAD1 (crosslinked) partial complex); EMDB-38902 [https://www.emdataresource.org/EMD-38902] (DSR2-DSAD1 complex with two DSAD1 on the same side); EMDB-38907 [https://www.emdataresource.org/EMD-38907] (DSR2-DSAD1 with two DSAD1 on the opposite side).
本研究中产生的低温电磁密度图已保存在电子显微镜数据库(EMDB)中,登录号为EMDB-38872[https://www.emdataresource.org/EMD-38872](DSR2 H171A(交联)部分结构);EMDB-38824[https://www.emdataresource.org/EMD-38824](DSR2 H171A(交联)载脂蛋白结构);EMDB-39925[https://www.emdataresource.org/EMD-39925];EMDB-38889[https://www.emdataresource.org/EMD-38889](DSR2-DSAD1(交联)部分复合物);EMDB-38902[https://www.emdataresource.org/EMD-38902](DSR2-DSAD1复合物,同一侧有两个DSAD1);EMDB-38907[https://www.emdataresource.org/EMD-38907](DSR2-DSAD1,另一侧有两个DSAD1)。
The atomic coordinates have been deposited in the Protein Data Bank (PDB) with accession number 8Y34 [https://www.rcsb.org/structure/unreleased/8Y34] (DSR2 H171A (crosslinked) partial structure); 8Y13 [https://www.rcsb.org/structure/unreleased/8Y13] (DSR2 H171A (crosslinked) apo structure); 8ZC9 [https://www.rcsb.org/structure/unreleased/8ZC9] (DSR2-TTP-NAD+ complex); 8Y3M [https://www.rcsb.org/structure/unreleased/8Y3M] (DSR2-DSAD1 (crosslinked) partial complex); 8Y3W [https://www.rcsb.org/structure/unreleased/8Y3W] (DSR2-DSAD1 complex with two DSAD1 on the same side); 8Y3Y [https://www.rcsb.org/structure/unreleased/8Y3Y] (DSR2-DSAD1complex with two DSAD1 on the opposite side). Source data are provided with this paper..
原子坐标已保存在蛋白质数据库(PDB)中,登录号为8Y34[https://www.rcsb.org/structure/unreleased/8Y34](DSR2 H171A(交联)部分结构);8Y13型[https://www.rcsb.org/structure/unreleased/8Y13](DSR2 H171A(交联)载脂蛋白结构);8ZC9[https://www.rcsb.org/structure/unreleased/8ZC9];8Y3M[https://www.rcsb.org/structure/unreleased/8Y3M](DSR2-DSAD1(交联)部分复合物);8Y3W[https://www.rcsb.org/structure/unreleased/8Y3W](DSR2-DSAD1复合物,同一侧有两个DSAD1);8Y3Y年[https://www.rcsb.org/structure/unreleased/8Y3Y](DSR2-DSAD1复合物,另一侧有两个DSAD1)。本文提供了源数据。。
ReferencesGao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).ADS
参考文献Gao,L。等人。多种酶活性介导原核生物的抗病毒免疫。科学3691077-1084(2020)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol 18, 113–119 (2020).PubMed
Bernheim,A。&Sorek,R。细菌的泛免疫系统:作为社区资源的抗病毒防御。《自然评论微生物学》18113-119(2020)。PubMed出版社
Google Scholar
谷歌学者
Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol 21, 686–700 (2023).PubMed
Georgon,H.&Bernheim,A.《细菌的高度多样化的抗噬菌体防御系统》,《微生物学报》21686-700(2023)。PubMed出版社
Google Scholar
谷歌学者
Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev. Virol. 7, 371–384 (2020).PubMed
Lopatina,A.,Tal,N。&Sorek,R。流产感染:细菌自杀作为抗病毒免疫策略。年度修订版Virol。7371-384(2020)。PubMed出版社
Google Scholar
谷歌学者
Athukoralage, J. S. & White, M. F. Cyclic ucleotide signaling in phage defense and counter-defense. Annu Rev. Virol. 9, 451–468 (2022).PubMed
Athukoralage,J.S。和White,M.F。噬菌体防御和反防御中的环状核苷酸信号传导。年度修订版Virol。9451-468(2022)。PubMed出版社
Google Scholar
谷歌学者
Hobbs, S. J. et al. Phage anti-CBASS and anti-pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).ADS
Hobbs,S.J。等人。噬菌体抗cBAS和抗pycsar核酸酶破坏细菌免疫力。自然605522-526(2022)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 625, 352–359 (2024).Antine, S. P. et al. Structural basis of gabija anti-phage defence and viral immune evasion. Nature 625, 360–365 (2024).Ho, P. et al. Bacteriophage antidefense genes that neutralize TIR and STING immune responses.
Yirmiya,E。等人。噬菌体通过多种抗防御蛋白克服细菌免疫力。《自然》625352-359(2024)。Antine,S.P.等人。gabija抗噬菌体防御和病毒免疫逃避的结构基础。自然625360-365(2024)。Ho,P。等人。中和TIR和STING免疫反应的噬菌体抗防御基因。
Cell Rep. 42, 112305 (2023).PubMed .
细胞代表42112305(2023)。PubMed。
Google Scholar
谷歌学者
Walkinshaw, M. D. et al. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9, 187–194 (2002).PubMed
Walkinshaw,M.D.等人。噬菌体T7(一种模拟B型DNA的蛋白质)的Ocr结构。摩尔细胞9187-194(2002)。PubMed出版社
Google Scholar
谷歌学者
Drozdz, M., Piekarowicz, A., Bujnicki, J. M. & Radlinska, M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res. 40, 2119–2130 (2012).PubMed
Drozdz,M.,Piekarowicz,A.,Bujnicki,J.M。&Radlinska,M。新型非特异性DNA腺嘌呤甲基转移酶。核酸研究402119-2130(2012)。PubMed出版社
Google Scholar
谷歌学者
Yin, P., Zhang, Y., Yang, L. & Feng, Y. Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems. J. Mol. Biol. 435, 167996 (2023).PubMed
Yin,P.,Zhang,Y.,Yang,L。&Feng,Y。针对I型CRISPR-Cas系统的抗CRISPR蛋白的非典型抑制策略和结构基础。J、 分子生物学。435167996(2023)。PubMed出版社
Google Scholar
谷歌学者
Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD(+) depletion. Nat. Microbiol. 7, 1849–1856 (2022).PubMed
Garb,J。等人。多种噬菌体抗性系统通过SIR2依赖性NAD(+)耗竭抑制感染。自然微生物。71849-1856(2022)。PubMed出版社
Google Scholar
谷歌学者
Sanders, B. D., Jackson, B. & Marmorstein, R. Structural basis for sirtuin function: what we know and what we don’t. Biochim Biophys. Acta 1804, 1604–1616 (2010).PubMed
Sanders,B.D.,Jackson,B。&Marmorstein,R。sirtuin功能的结构基础:我们知道什么和不知道什么。Biochim Biophys公司。Acta 18041604–1616(2010)。PubMed出版社
Google Scholar
谷歌学者
North, B. J. & Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5, 224 (2004).PubMed
North,B.J。&Verdin,E.Sirtuins:Sir2相关的NAD依赖性蛋白脱乙酰酶。基因组生物学。5224(2004)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ka, D., Oh, H., Park, E., Kim, J. H. & Bae, E. Structural and functional evidence of bacterial antiphage protection by thoeris defense system via NAD(+) degradation. Nat. Commun. 11, 2816 (2020).ADS
Ka,D.,Oh,H.,Park,E.,Kim,J.H。&Bae,E。thoeris防御系统通过NAD(+)降解保护细菌抗噬菌体的结构和功能证据。国家公社。112816(2020)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. et al. Structural insights into mechanisms of argonaute protein-associated NADase activation in bacterial immunity. Cell Res. 33, 699–711 (2023).ADS
。Cell Res.33699–711(2023)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tang, D. et al. Multiple enzymatic activities of a Sir2-HerA system cooperate for anti-phage defense. Mol. Cell 83, 4600–4613 e6 (2023).PubMed
Tang,D.等人。Sir2-HerA系统的多种酶活性协同抗噬菌体防御。分子细胞834600-4613 e6(2023)。PubMed出版社
Google Scholar
谷歌学者
Shen, Z., Lin, Q., Yang, X. Y., Fosuah, E. & Fu, T. M. Assembly-mediated activation of the SIR2-HerA supramolecular complex for anti-phage defense. Mol. Cell 83, 4586–4599 e5 (2023).PubMed
Shen,Z.,Lin,Q.,Yang,X.Y.,Fosuah,E。&Fu,T.M。组装介导的SIR2-HerA超分子复合物的激活,用于抗噬菌体防御。分子细胞834586-4599 e5(2023)。PubMed出版社
Google Scholar
谷歌学者
Tamulaitiene, G. et al. Activation of thoeris antiviral system via SIR2 effector filament assembly. Nature 627, 431–436 (2024).ADS
Tamulaitine,G。等人。通过SIR2效应丝组装激活thoeris抗病毒系统。自然627431-436(2024)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Yin, H. et al. Insights into the modulation of bacterial NADase activity by phage proteins. Nat. Commun. 15, 2692 (2024).ADS
Yin,H.等人。噬菌体蛋白对细菌NADase活性调节的见解。国家公社。152692(2024)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. T. et al. Structural basis for phage-mediated activation and repression of bacterial DSR2 anti-phage defense system. Nat. Commun. 15, 2797 (2024).ADS
Zhang,J.T.等人。噬菌体介导的细菌DSR2抗噬菌体防御系统激活和抑制的结构基础。国家公社。152797(2024)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, J. et al. Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion. Nat. Commun. 15, 3954 (2024).ADS
Huang,J.等人。细菌DSR2抗噬菌体防御和病毒免疫逃避的分子基础。国家公社。153954(2024)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).PubMed
Covarrubias,A.J.,Perrone,R.,Grozio,A。&Verdin,E。NAD(+)代谢及其在衰老过程中细胞过程中的作用。Nat。Rev。Mol。Cell Biol。22119-141(2021)。PubMed出版社
Google Scholar
谷歌学者
Kim, M. Y., Zhang, T. & Kraus, W. L. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19, 1951–1967 (2005).PubMed
Kim,M.Y.,Zhang,T。&Kraus,W.L。通过PARP-1聚(ADP-核糖基):“PAR将”NAD+置于核信号中。《基因发展》1951-1967(2005)。PubMed出版社
Google Scholar
谷歌学者
Essuman, K. et al. The SARM1 toll/Interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017).PubMed
SARM1 toll/白细胞介素-1受体结构域具有内在的NAD(+)切割活性,可促进病理性轴突变性。神经元931334-1343.e5(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Essuman, K. et al. TIR domain proteins are an ancient family of NAD(+)-consuming enzymes. Curr. Biol. 28, 421–430.e4 (2018).PubMed
Essuman,K。等人。TIR结构域蛋白是NAD(+)消耗酶的古老家族。货币。生物学28421-430.e4(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shen, Z. et al. Oligomerization-mediated activation of a short prokaryotic argonaute. Nature 621, 154–161 (2023).ADS
Shen,Z.等人。寡聚化介导的短原核argonaute的激活。自然621154-161(2023)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Ni, D., Lu, X., Stahlberg, H. & Ekundayo, B. Activation mechanism of a short argonaute-TIR prokaryotic immune system. Sci. Adv. 9, eadh9002 (2023).PubMed
Ni,D.,Lu,X.,Stahlberg,H。&Ekundayo,B。短argonaute TIR原核免疫系统的激活机制。。Adv.9,eadh9002(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morehouse, B. R. et al. Cryo-EM structure of an active bacterial TIR-STING filament complex. Nature 608, 803–807 (2022).ADS
Morehouse,B.R.等人。活性细菌TIR-STING细丝复合物的低温EM结构。自然608803-807(2022)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L. & Zhang, L. The arms race between bacteria CBASS and bacteriophages. Front Immunol. 14, 1224341 (2023).PubMed
。前免疫。141224341(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blower, T. R., Evans, T. J., Przybilski, R., Fineran, P. C. & Salmond, G. P. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet 8, e1003023 (2012).PubMed
Blower,T.R.,Evans,T.J.,Przybilski,R.,Fineran,P.C。&Salmond,G.P。通过基于RNA的分子模仿病毒逃避细菌自杀系统可以实现感染性利他主义。PLoS Genet 8,e1003023(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).ADS
Schuck,P。通过沉降速度超速离心和lamm方程建模对大分子进行尺寸分布分析。生物物理。J、 781606-1619(2000)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).PubMed
Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。PubMed出版社
Google Scholar
谷歌学者
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).PubMed
Zheng,S.Q.等人。MotionCor2:改进低温电子显微镜的束流诱导运动的各向异性校正。自然方法14331-332(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).PubMed
Bepler,T。等人。用于低温电子显微照片中粒子拾取的阳性未标记卷积神经网络。自然方法161153-1160(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).PubMed
Rubinstein,J.L。和Brubaker,M.A。通过优化图像翻译来对齐单个粒子的低温电磁电影。J、 结构。生物学192188-195(2015)。PubMed出版社
Google Scholar
谷歌学者
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).PubMed
Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。。27,14-25(2018)。PubMed出版社
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).ADS
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).ADS
Adams,P.D.等人。PHENIX:一个基于python的大分子结构解决方案综合系统。晶体学报D.Biol。Crystallogr 66213-221(2010)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D. Struct. Biol. 74, 814–840 (2018).ADS
Afonine,P.V.等人。用于分析和验证低温电磁图和原子模型的新工具。晶体学报D.结构。生物学74814-840(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).PubMed
Terwilliger,T.C.,Adams,P.D.,Afonine,P.V。&Sobolev,O.V。一种全自动方法,可从高分辨率低温电子显微镜图中产生初始模型。自然方法15905-908(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).ADS
Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。coot的特征和发展。晶体学报。D、 生物。晶体学。66486-501(2010)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. Struct. Biol. 74, 531–544 (2018).ADS
Afonine,P.V.等人,《PHENIX中用于低温电磁和晶体学的真实空间改进》。晶体学报。D、 结构。生物学74531-544(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).PubMed
Williams,C.J.等人,《MolProbity:改进的全原子结构验证的更多更好的参考数据》。。27293-315(2018)。PubMed出版社
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank the staff at the Cryo-EM Facility of Westlake University for technical assistant. This work was supported in part by the National Natural Science Foundation of China (32370742 to F.L., 32271264 to Z.S., 32200129 to R.Y., 81901168 to L.Y.), Huxiang Young Talents Program (2022RC1163 to F.L.), Natural Science Foundation of Hunan Province (2022JJ20056 to F.L., 2023JJ40437 to R.Y., 2021JJ20075 to L.Y.), Natural Science Foundation of Changsha City (kq2202088 to F.L.) and the Westlake Education Foundation (to Z.S.).Author informationAuthor notesThese authors contributed equally: Ruiwen Wang, Qi Xu.Authors and AffiliationsMOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, ChinaRuiwen Wang, Zhuoxi Wu, Hao Guo, Tianzhui Liao, Ling Yuan & Faxiang LiZhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, ChinaQi Xu, Jialu Li, Yuan Shi, Haishan Gao & Zhubing ShiWestlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, ChinaQi Xu, Jialu Li, Yuan Shi, Haishan Gao & Zhubing ShiState Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, ChinaRong YangAuthorsRuiwen WangView author publicationsYou can also search for this author in.
下载参考文献致谢我们感谢西湖大学低温电磁设施的工作人员提供技术援助。这项工作得到了国家自然科学基金(32370742至F.L.,32271264至Z.S.,32200129至R.Y.,81901168至L.Y.),湖湘青年人才计划(2022RC1163至F.L.),湖南省自然科学基金(2022JJ20056至F.L.,2023JJ40437至R.Y.,2021JJ20075至L.Y.),长沙市自然科学基金(kq2202088至F.L.)和西湖教育基金(至Z.S.)的部分支持。作者信息作者注意到这些作者做出了同样的贡献:王瑞文,齐旭。作者和单位中南大学生命科学学院医学遗传学中心罕见儿科疾病重点实验室,湖南长沙,王瑞文,吴卓喜,郭浩,廖天柱,廖凌远,李泽江西湖大学生命科学学院结构生物学重点实验室,浙江杭州,徐华琦,李嘉璐,袁石,海山高,朱炳石河子生命科学与生物医学实验室,浙江杭州,徐华琦,李嘉璐,袁石,海山高,朱炳石河子鱼发育生物学国家重点实验室,多倍体鱼繁殖工程研究中心国家教育部,湖南师范大学生命科学学院,湖南长沙,杨荣作者王瑞文作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarQi XuView author publicationsYou can also search for this author in
PubMed Google ScholarQi XuView作者出版物您也可以在
PubMed Google ScholarZhuoxi WuView author publicationsYou can also search for this author in
PubMed Google ScholarZhuoxi WuView作者出版物您也可以在
PubMed Google ScholarJialu LiView author publicationsYou can also search for this author in
PubMed Google ScholarJialu LiView作者出版物您也可以在
PubMed Google ScholarHao GuoView author publicationsYou can also search for this author in
PubMed Google ScholarHao GuoView作者出版物您也可以在
PubMed Google ScholarTianzhui LiaoView author publicationsYou can also search for this author in
PubMed Google ScholarTianzhui LiaoView作者出版物您也可以在
PubMed Google ScholarYuan ShiView author publicationsYou can also search for this author in
PubMed Google ScholarLing YuanView author publicationsYou can also search for this author in
PubMed谷歌学术元视图作者出版物您也可以在
PubMed Google ScholarHaishan GaoView author publicationsYou can also search for this author in
PubMed Google ScholarHaishan GaoView作者出版物您也可以在
PubMed Google ScholarRong YangView author publicationsYou can also search for this author in
PubMed Google ScholarRong YangView作者出版物您也可以在
PubMed Google ScholarZhubing ShiView author publicationsYou can also search for this author in
PubMed Google ScholarZhubing ShiView作者出版物您也可以在
PubMed Google ScholarFaxiang LiView author publicationsYou can also search for this author in
PubMed Google ScholarFaxiang LiView作者出版物您也可以在
PubMed Google ScholarContributionsF.L., Z.S. and R.Y. conceived and supervised the project. R.W., Q.X., T.L., Z.W. and H.G. performed plasmids construction, protein purification, and biochemical analysis. Q.X., J.L. and Y.S. performed Cryo-EM grids preparation, data collection and structure data analysis.
PubMed谷歌学术贡献。五十、 ,Z.S.和R.Y.构思并监督了该项目。R、 W.,Q.X.,T。五十、 ,Z.W.和H.G.进行了质粒构建,蛋白质纯化和生化分析。Q、 X.,J.L.和Y.S.进行了低温电磁网格制备,数据收集和结构数据分析。
L.Y. participated in biochemical assay design and manuscript preparation. F.L., Z.S. and H.G. built the structural models and wrote the manuscript.Corresponding authorsCorrespondence to.
五十、 Y.参与了生化分析设计和手稿准备。F、 L.,Z.S.和H.G.建立了结构模型并撰写了手稿。通讯作者通讯。
Rong Yang, Zhubing Shi or Faxiang Li.Ethics declarations
杨荣、石竹兵或李发祥。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Songying Ouyang, Malcolm White and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢宋莹(音译)欧阳(音译)、马尔科姆·怀特(音译)和另一位匿名审稿人(音译),感谢他们对这项工作的同行评议做出的贡献。可以获得同行评议文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationSupplementary Movie 1Supplementary Movie 2Supplementary Movie 3Supplementary Data 1Description of Additional Supplementary FilesReporting SummaryPeer Review FileSource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充电影1补充电影2补充电影3补充数据1其他补充文件的说明报告摘要同行评审文件源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, R., Xu, Q., Wu, Z. et al. The structural basis of the activation and inhibition of DSR2 NADase by phage proteins.
转载和许可本文引用本文Wang,R.,Xu,Q.,Wu,Z。等人。噬菌体蛋白激活和抑制DSR2 NADase的结构基础。
Nat Commun 15, 6185 (2024). https://doi.org/10.1038/s41467-024-50410-0Download citationReceived: 29 January 2024Accepted: 09 July 2024Published: 23 July 2024DOI: https://doi.org/10.1038/s41467-024-50410-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》156185(2024)。https://doi.org/10.1038/s41467-024-50410-0Download引文接收日期:2024年1月29日接受日期:2024年7月9日发布日期:2024年7月23日OI:https://doi.org/10.1038/s41467-024-50410-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Cryoelectron microscopyImmune evasionPhage biology
冷冻电镜免疫逃避噬菌体生物学
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。。