EN
登录

串行X射线液相色谱:用于探索微克量生物分子结构动力学的多维分析框架

Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities

Nature 等信源发布 2024-07-26 06:04

可切换为仅中文


AbstractUnderstanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups.

摘要了解生理条件下的蛋白质结构和动力学对于阐明复杂的生物过程至关重要。虽然时间分辨(TR)技术已经发展到跟踪分子作用,但由于样品利用率低和实验装置不灵活,它们在生物反应中的实际应用通常局限于有限实验参数内的可逆光反应。

Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein.

在这里,我们介绍了串行X射线液体成像(SXL),这是一种将时间分辨X射线液体成像与串行排列的微室的固定目标相结合的技术。SXL突破了前面提到的障碍,使微克级TR研究甚至是非光活性蛋白的不可逆和可逆反应成为可能。

We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity.

我们证明了它在研究广泛的生物反应方面的多功能性,突出了它作为动力学和结构表征的灵活和多维分析框架的潜力。利用X射线自由电子激光器和微聚焦X射线脉冲有望进一步提高时间分辨率并最大限度地减少样品量。

SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes..

SXL对分子作用的结构和动力学景观提供了前所未有的见解,为深入了解复杂的生物过程铺平了道路。。

IntroductionProteins play vital roles, orchestrating life’s fundamental functions including enzyme catalysis, signal transduction, and immune response. A wealth of techniques, from site-directed mutagenesis to high-throughput screening in diverse chemical libraries has enriched our understanding of protein functions, revealing regulatory pathways, unveiling protein-protein interactions, and identifying promising drug targets1,2,3,4,5.

简介蛋白质起着至关重要的作用,协调生命的基本功能,包括酶催化,信号转导和免疫反应。。

In addition, progress in structural biology using X-ray crystallography, nuclear magnetic resonance, and electron microscopy, has propelled our comprehension of protein structure and function, revealing intricate details about protein folding, conformational changes, and molecular interactions6,7,8.

此外,使用X射线晶体学,核磁共振和电子显微镜的结构生物学进展推动了我们对蛋白质结构和功能的理解,揭示了蛋白质折叠,构象变化和分子相互作用的复杂细节6,7,8。

Yet, proteins are dynamic entities continuously shifting their shapes and interactions with other cellular components, as they perform their specific functions. To grasp the essence of the dynamic nature of proteins, understanding how their structures evolve over time is crucial. Despite employing various time-resolved (TR) approaches, capturing these fleeting changes during biological reactions remains time-consuming, resource-intensive, and laborious.Unraveling the complexity of molecular interactions and orchestrated movements during biological reactions demands the ability to initiate reactions with exquisite precision and track their progression with the utmost temporal acuity.

然而,蛋白质是动态的实体,在执行其特定功能时,不断改变其形状并与其他细胞成分相互作用。为了掌握蛋白质动态性质的本质,了解其结构如何随时间演变至关重要。尽管采用了各种时间分辨(TR)方法,但在生物反应过程中捕获这些短暂的变化仍然是耗时,资源密集且费力的。解开生物反应过程中分子相互作用和协调运动的复杂性需要能够以精确的精度启动反应,并以最大的时间敏锐度跟踪其进展。

Traditional mixing methods offer a universal approach to trigger molecular reactions, but they typically demand a substantial sample quantity while offering only a modest temporal resolution9,10,11. On the other hand, laser-based techniques, particularly those using the pump-probe scheme, where a pump (optical) pulse initiates a reaction and a time-delayed probe (op.

传统的混合方法提供了一种通用的方法来触发分子反应,但它们通常需要大量的样品,同时只能提供适度的时间分辨率9,10,11。另一方面,基于激光的技术,特别是那些使用泵浦探针方案的技术,其中泵浦(光学)脉冲引发反应和延时探针(op)。

Data availability

数据可用性

The data supporting the feasibility of the SXL method for Figs. 2, 3 are provided in source data format. In-depth analysis of the data for Figs. 4–6, which demonstrate the general applicability of the SXL method but have not yet been fully analyzed at the structural level, is planned for a separate publication.

支持图2、3的SXL方法可行性的数据以源数据格式提供。图4-6的数据的深入分析证明了SXL方法的普遍适用性,但尚未在结构层面进行充分分析,计划单独发布。

To avoid redundancy and focus on key findings, we are not releasing the raw data publicly in source data format at this time. Instead, we are prepared to present processed graphical representations of the raw scattering profiles at various stages of reaction in the Supplementary Information. The datasets intended for the forthcoming publication, along with the complete original 2D scattering images, which are too extensive to include as source data, can be obtained from the corresponding author upon request. Source data are provided with this paper..

为了避免冗余并专注于关键发现,我们目前不以源数据格式公开发布原始数据。。即将出版的出版物的数据集,以及完整的原始2D散射图像,这些图像太广泛而不能作为源数据,可以根据要求从相应的作者那里获得。本文提供了源数据。。

Code availability

代码可用性

In this study, we conducted a brief kinetic analysis of each reaction using built-in plugin functions in OriginLab (for exponential fitting) and MATLAB (for SVD analysis). These functions can be utilized with the manufacturer’s manuals. The KCA codes used in this study are available from the corresponding author upon request..

在这项研究中,我们使用OriginLab(用于指数拟合)和MATLAB(用于SVD分析)中的内置插件函数对每个反应进行了简短的动力学分析。这些功能可与制造商手册一起使用。本研究中使用的KCA代码可应要求从通讯作者处获得。。

ReferencesShortle, D., Dimaio, D. & Nathans, D. Directed mutagenesis. Annu. Rev. Genet. 15, 265–294 (1981).Article

参考Shortle,D.,Dimaio,D。和Nathans,D。定向诱变。年。Genet牧师。15265-294(1981)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dahlin, J. L. & Walters, M. A. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem. 6, 1265–1290 (2014).Article

Dahlin,J.L。和Walters,M.A。化学在高通量筛选分流中的重要作用。未来医学化学。61265-1290(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kinney, J. B. & McCandlish, D. M. Massively parallel assays and quantitative sequence-function relationships. Annu. Rev. Genom. Hum. Genet. 20, 99–127 (2019).Article

Kinney,J.B。&McCandlish,D.M。大规模平行测定和定量序列功能关系。年。Genom牧师。嗯,Genet。20,99-127(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Martis, E. A., Radhakrishnan, R. & Badve, R. R. High-throughput screening: the hits and leads of drug discovery-an overview. J. Appl. Pharm. Sci. 1, 2–10 (2011).

Martis,E.A.,Radhakrishnan,R。&Badve,R.R。高通量筛选:药物发现的命中率和线索概述。J、 应用。药物科学。1,2-10(2011)。

Google Scholar

谷歌学者

Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011).Article

Macarron,R。等人。高通量筛选在生物医学研究中的影响。。10188-195(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Markosian, C. et al. Analysis of impact metrics for the protein data bank. Sci. Data 5, 180212 (2018).Article

Markosian,C.等人,《蛋白质数据库影响指标分析》。科学。数据5180212(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berman, H. M., Kleywegt, G. J., Nakamura, H. & Markley, J. L. The protein data bank at 40: reflecting on the past to prepare for the future. Structure 20, 391–396 (2012).Article

Berman,H.M.,Kleywegt,G.J.,Nakamura,H。&Markley,J.L。40岁的蛋白质数据库:反思过去,为未来做准备。结构20391-396(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burley, S. K. et al. Protein data bank: a comprehensive review of 3D structure holdings and worldwide utilization by researchers, educators, and students. Biomolecules 12, 1425 (2022).Article

Burley,S.K.等人,《蛋白质数据库:研究人员、教育工作者和学生对3D结构持有和全球利用的综合评论》。生物分子121425(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Akiyama, S. et al. Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc. Natl Acad. Sci. USA 99, 1329–1334 (2002).Article

Akiyama,S。等人。通过微秒分辨小角x射线散射研究细胞色素c折叠的构象景观。Proc。国家科学院。科学。美国991329-1334(2002)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Josts, I. et al. Structural kinetics of MsbA investigated by stopped-flow time-resolved small-angle X-ray scattering. Structure 28, 348–354 (2020).Article

Josts,I.等人,《通过停流时间分辨小角度X射线散射研究MsbA的结构动力学》。结构28348–354(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Graceffa, R. et al. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam. J. Synchrotron Radiat. 20, 820–825 (2013).Article

Graceffa,R。等人。使用连续流混合器和X射线微束的亚毫秒时间分辨SAXS。J、 同步加速器辐射。20820-825(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ihee, H. et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science 309, 1223–1227 (2005).Article

Ihee,H。等人。溶液中瞬态分子结构的超快X射线衍射。科学3091223-1227(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Levantino, M., Yorke, B. A., Monteiro, D. C., Cammarata, M. & Pearson, A. R. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr. Opin. Struct. Biol. 35, 41–48 (2015).Article

Levantino,M.,Yorke,B.A.,Monteiro,D.C.,Cammarata,M。&Pearson,A.R。使用同步加速器和XFELs进行生物分子的时间分辨X射线晶体学和溶液散射实验。货币。奥平。结构。生物学杂志35,41-48(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ki, H., Oang, K. Y., Kim, J. & Ihee, H. Ultrafast X-ray crystallography and liquidography. Annu. Rev. Phys. Chem. 68, 473–497 (2017).Article

Ki,H.,Oang,K.Y.,Kim,J。&Ihee,H。超快X射线晶体学和液相学。年。修订版物理。化学。68473-497(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, Y., Lee, H. & Ihee, H. Structural dynamics of proteins explored via time-resolved x-ray liquidography. Chem. Phys. Rev. 3, 041304 (2022).Article

Lee,Y.,Lee,H。&Ihee,H。通过时间分辨x射线液相色谱法探索蛋白质的结构动力学。化学。物理。版本3041304(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).Article

Pande,K。等人。飞秒结构动力学驱动光活性黄色蛋白中的反式/顺式异构化。科学352725-729(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fadini, A. et al. Serial femtosecond crystallography reveals that photoactivation in a fluorescent protein proceeds via the hula twist mechanism. J. Am. Chem. Soc. 145, 15796–15808 (2023).Article

Fadini,A。等人的系列飞秒晶体学揭示了荧光蛋白中的光活化通过hula扭曲机制进行。J、 美国化学。Soc.14515796–15808(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015).Article

Kim,K.H.等人,《用飞秒X射线散射直接观察溶液中的键形成》,《自然》518385–389(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, J. G. et al. Mapping the emergence of molecular vibrations mediating bond formation. Nature 582, 520–524 (2020).Article

Kim,J.G.等人绘制了介导键形成的分子振动的出现图。自然582520-524(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ki, H. et al. Photoactivation of triosmium dodecacarbonyl at 400 nm probed with time-resolved X-ray liquidography. Chem. Commun. 58, 7380 (2022).Article

Ki,H。等人。用时间分辨X射线液相色谱法探测了十二羰基三钐在400 nm处的光活化。化学。Commun公司。587380(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Choi, E. H., Lee, Y., Heo, J. & Ihee, H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem. Sci. 13, 8457 (2022).Article

Choi,E.H.,Lee,Y.,Heo,J。&Ihee,H。在X射线自由电子激光器上通过飞秒X射线液相色谱研究反应动力学。化学。科学。138457(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oang, K. Y. et al. Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution scattering. Chem. Phys. 442, 137–142 (2014).Article

Oang,K.Y.等人。通过时间分辨X射线溶液散射探测马心脏肌红蛋白的亚100-ps结构动力学。化学。物理。442137-142(2014)。文章

CAS

中科院

Google Scholar

谷歌学者

Lee, S. J. et al. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction. Cell Rep. Phys. Sci. 2, 100512 (2021).Article

Lee,S.J.等人。基于环状光活性蛋白寡聚体的可逆分子运动开关表现出意想不到的光诱导收缩。细胞代表Phys。科学。2100 512(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamada, Y., Matsuo, T., Iwamoto, H. & Yagi, N. A compact intermediate state of calmodulin in the process of target binding. Biochemistry 51, 3963–3970 (2012).Article

Yamada,Y.,Matsuo,T.,Iwamoto,H。&Yagi,N。钙调蛋白在靶标结合过程中的紧密中间状态。生物化学513963-3970(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Josts, I. et al. Photocage-initiated time-resolved solution X-ray scattering investigation of protein dimerization. IUCrJ 5, 667–672 (2018).Article

Josts,I.等人。Photoage启动了蛋白质二聚化的时间分辨溶液X射线散射研究。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rimmerman, D. et al. Revealing fast structural dynamics in pH-responsive peptides with time-resolved X-ray scattering. J. Phys. Chem. B. 123, 2016–2021 (2019).Article

Rimmerman,D.等人,《通过时间分辨X射线散射揭示pH响应肽的快速结构动力学》。J.Phys。化学。B、 1232016-2021(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cammarata, M. et al. Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nat. Methods 5, 881–886 (2008).Article

Cammarata,M.等人,《使用时间分辨广角X射线散射追踪溶液中蛋白质的结构动力学》,《自然方法》5881-886(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, T. W. et al. Protein structural dynamics of photoactive yellow protein in solution revealed by pump-probe X-ray solution scattering. J. Am. Chem. Soc. 134, 3145–3153 (2012).Article

Kim,T。W。等人。通过泵探针X射线溶液散射揭示溶液中光敏黄色蛋白的蛋白质结构动力学。美国化学杂志。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Berntsson, O. et al. Time-resolved X-ray solution scattering reveals the structural photoactivation of a light-oxygen-voltage photoreceptor. Structure 25, 933–938 (2017).Article

Berntsson,O。等人。时间分辨X射线溶液散射揭示了光氧电压光感受器的结构光活化。结构25933-938(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hunter, M. S. et al. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. 4, 6026 (2014).Article

。科学。代表46026(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lyubimov, A. Y. et al. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Cryst. D71, 928–940 (2015).

Lyubimov,A.Y.等人。微流体阱阵列中蛋白质微晶的捕获和X射线衍射研究。晶体学报。D71928-940(2015)。

Google Scholar

谷歌学者

Roedig, P. et al. High-speed fixed-target serial virus crystallography. Nat. Methods 14, 805–810 (2017).Article

Roedig,P.等人,《高速固定靶序列病毒晶体学》。自然方法14805-810(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Carrillo, M. et al. Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCrJ 10, 678–693 (2023).Article

Carrillo,M.等人,《同步加速器和XFELs系列晶体学的微结构聚合物固定靶标》。IUCrJ 10678–693(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wagner, R. et al. Silicon‐modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low‐energy solid surface. Appl. Organometal. Chem. 13, 611–620 (1999).Article

Wagner,R.等人,《硅改性表面活性剂与润湿:I.Silwet L77单组分的合成及其在低能固体表面上的铺展性能》。应用。有机金属。化学。13611-620(1999)。文章

CAS

中科院

Google Scholar

谷歌学者

Kliebenstein, D. J., Lim, J. E., Landry, L. G. & Last, R. L. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 130, 234–243 (2002).Article

Kliebenstein,D.J.,Lim,J.E.,Landry,L.G。&Last,R.L.拟南芥UVR8调节UV-B信号转导和耐受性,并包含与人类染色质浓缩调节因子1的序列相似性。植物生理学。130234-243(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (1990).Article

Rizzini,L。等人。拟南芥UVR8蛋白对UV-B的感知。科学332103-106(1990)。文章

ADS

广告

Google Scholar

谷歌学者

Christie, J. M. et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335, 1492–1496 (2012).Article

Christie,J.M.等人。植物UVR8光感受器通过色氨酸介导的交叉二聚体盐桥的破坏来感知UV-B。科学3351492-1496(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).Article

Wu,D.等人。UVR8对UV-B感知的结构基础。自然484214-219(2012)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Miyamori, Y. et al. Reaction dynamics of the UV-B photosensor UVR8. Photochem. Photobiol. Sci. 14, 995–1004 (2015).Article

Miyamori,Y。等人。UV-B光传感器UVR8的反应动力学。光化学。光生物。科学。14995-1004(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, X. et al. Dynamic crystallography reveals early signaling events in ultraviolet photoreceptor UVR8. Nat. Plants 1, 14006 (2015).Article

Zeng,X。等人。动态晶体学揭示了紫外线光感受器UVR8的早期信号事件。《自然植物》114006(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Crosson, S. & Moffat, K. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc. Natl Acad. Sci. USA 98, 2995–3000 (2001).Article

Crosson,S。&Moffat,K。黄素结合植物光感受器结构域的结构:对光介导的信号转导的见解。程序。国家科学院。科学。美国982995-3000(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harper, S., Neil, L. & Gardner, K. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).Article

Harper,S.,Neil,L。&Gardner,K。嗜光蛋白光开关的结构基础。科学3011541-1544(2003)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kennis, J. T. et al. The LOV2 domain of phototropin: a reversible photochromic switch. J. Am. Chem. Soc. 126, 4512–4513 (2004).Article

Kennis,J.T.等人。光致变色蛋白的LOV2结构域:可逆的光致变色开关。J、 美国化学。Soc.1264512–4513(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Christie, J. M. et al. Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46, 9310–9319 (2007).Article

Christie,J.M.等人。空间相互作用稳定了嗜光蛋白1 LOV2结构域的信号传导状态。生物化学469310-9319(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Takeda, K., Nakasone, Y., Zikihara, K., Tokutomi, S. & Terazima, M. Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J. Phys. Chem. B 117, 15606–15613 (2013).Article

Takeda,K.,Nakasone,Y.,Zikihara,K.,Tokutomi,S。&Terazima,M。通过瞬态光栅研究拟南芥光敏素1 LOV2的氨基末端和羧基末端螺旋的动力学。J、 物理。化学。B 11715606–15613(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kawano, F., Aono, Y., Suzuki, H. & Sato, M. Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins. PLOS One 8, e82693 (2013).Article

Kawano,F.,Aono,Y.,Suzuki,H。&Sato,M。基于荧光成像的高通量筛选快速和缓慢循环的LOV蛋白。PLOS One 8,e82693(2013)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Konold, P. E. et al. Unfolding of the C-terminal Jα helix in the LOV2 photoreceptor domain observed by time-resolved vibrational spectroscopy. J. Phys. Chem. Lett. 7, 3472–3476 (2016).Article

Konold,P.E.等人。通过时间分辨振动光谱观察LOV2感光域中C端Jα螺旋的展开。J、 物理。化学。利特。73472-3476(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Julien, H. & Crosson, S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9, 713–723 (2011).Article

Julien,H。&Crosson,S。细菌光敏LOV蛋白的功能,结构和机制。自然修订版微生物学。9713-723(2011)。文章

Google Scholar

谷歌学者

Heintz, U. & Schlichting, I. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence. Elife 5, e11860 (2016).Article

Heintz,U。&Schlichting,I。蓝光诱导的LOV结构域二聚化增强了金黄色素1a对其靶DNA序列的亲和力。Elife 5,e11860(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Magerl, K. & Dick, B. Dimerization of LOV domains of Rhodobacter sphaeroides (RsLOV) studied with FRET and stopped-flow experiments. Photochem. Photobiol. Sci. 19, 159–170 (2020).Article

Magerl,K。&Dick,B。用FRET和停流实验研究了球形红细菌(RsLOV)LOV结构域的二聚化。光化学。光生物。科学。19159-170(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barth, A. & Corrie, J. E. Characterization of a new caged proton capable of inducing large pH jumps. Biophys. J. 83, 2864–2871 (2002).Article

Barth,A。&Corrie,J.E。表征能够诱导大pH跳跃的新型笼状质子。生物物理。J、 832864-2871(2002)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abbruzzetti, S., Sottini, S., Viappiani, C. & Corrie, J. E. Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solution. J. Am. Chem. Soc. 127, 9865–9874 (2005).Article

Abbruzzetti,S.,Sottini,S.,Viappiani,C。&Corrie,J.E。1-(2-硝基苯基)乙基硫酸盐(笼状硫酸盐)在水溶液中快速光解后质子释放的动力学。J、 美国化学。Soc.1279865–9874(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Graber, T. et al. BioCARS: a synchrotron resource for time-resolved X-ray science. J. Synchrotron Radiat. 18, 658–670 (2011).Article

Graber,T.等人,《生物卡:用于时间分辨X射线科学的同步加速器资源》。J、 同步加速器辐射。18658-670(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schulz, E. C. et al. The hit-and-return system enables efficient time-resolved serial synchrotron crystallography. Nat. Methods 15, 901–904 (2018).Article

Schulz,E.C。等人。命中返回系统可以实现高效的时间分辨串行同步加速器晶体学。自然方法15901-904(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the 4 C beamline staff at Pohang Accelerator Laboratory (PAL, Korea) for assistance with SAXS data collection. This work was supported by the Institute for Basic Science (IBS-R033). The use of BioCARS Sector 14 was supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant number P41 GM118217.

下载参考文献致谢我们感谢浦项加速器实验室(PAL,韩国)的4 C光束线工作人员对SAXS数据收集的帮助。这项工作得到了基础科学研究所(IBS-R033)的支持。生物炭部门14的使用得到了美国国立卫生研究院国家普通医学科学研究所的支持,资助号为P41 GM118217。

Time-resolved set-up at Sector 14 was funded in part through a collaboration with Philip Anfinrud (NIH/NIDDK). We also thank Prof. M. Schmidt (University of Wisconsin-Milwaukee) for supporting the nanosecond laser system for time-resolved experiments at the BioCARS beamline.Author informationAuthors and AffiliationsCenter for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of KoreaSeong Ok Kim, So Ri Yun, Hyosub Lee, Junbeom Jo, Doo-Sik Ahn, Doyeong Kim, Jungmin Kim, Changin Kim, Seyoung You, Hanui Kim, Sang Jin Lee & Hyotcherl IheeDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of KoreaSeong Ok Kim, So Ri Yun, Hyosub Lee, Junbeom Jo, Doo-Sik Ahn, Doyeong Kim, Jungmin Kim, Changin Kim, Seyoung You, Hanui Kim, Sang Jin Lee & Hyotcherl IheeCenter for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USAIrina Kosheleva & Robert HenningAuthorsSeong Ok KimView author publicationsYou can also search for this author in.

第14部门的时间解决设置部分是通过与Philip Anfinrud(NIH/NIDDK)的合作获得资金的。我们还要感谢M.Schmidt教授(威斯康星大学密尔沃基分校)支持纳秒激光系统在BioCARS光束线上进行时间分辨实验。作者信息作者和附属机构大田基础科学研究所(IBS)高级反应动力学研究所(CARD),34141,大韩民国Ok Kim,So Ri Yun,Hyosb Lee,Junbeom Jo,Doo Sik Ahn,Doyeong Kim,Jungmin Kim,Changin Kim,Seyoung You,Hanui Kim,Sang Jin Lee&Hyotcherl IheedDepartment of Chemistry,韩国高级科学技术研究所(KAIST),大田,34141,大韩民国Ok Kim,So Ri Yun,Hyosb Lee,Junbeom Jo,Doo Sik Ahn,Doyeong Kim,Jungjing金敏(Min Kim)、金昌宁(Changin Kim)、尤赛英(Seyoung You)、金哈妮(Hanui Kim)、李桑进(Sang Jin Lee)和李海哲(Hyotcherl Iheeecenter for Advanced Radiation Sources),芝加哥大学,伊利诺伊州阿贡市南卡斯大道9700号,邮编60439,USAIrina Kosheleva&Robert HenningAuthorsSeong Ok KimView Author Publications,您也可以在中搜索这位作者。

PubMed Google ScholarSo Ri YunView author publicationsYou can also search for this author in

PubMed Google ScholarSo Ri YunView作者出版物您也可以在

PubMed Google ScholarHyosub LeeView author publicationsYou can also search for this author in

PubMed Google ScholarHyosub LeeView作者出版物您也可以在

PubMed Google ScholarJunbeom JoView author publicationsYou can also search for this author in

PubMed Google ScholarJunbeom JoView作者出版物您也可以在

PubMed Google ScholarDoo-Sik AhnView author publicationsYou can also search for this author in

PubMed Google ScholarDoo Sik AhnView作者出版物您也可以在

PubMed Google ScholarDoyeong KimView author publicationsYou can also search for this author in

PubMed Google ScholarDoyeong KimView作者出版物您也可以在

PubMed Google ScholarIrina KoshelevaView author publicationsYou can also search for this author in

PubMed Google Scholarina KoshelevaView作者出版物您也可以在

PubMed Google ScholarRobert HenningView author publicationsYou can also search for this author in

PubMed Google Scholarrorbert HenningView作者出版物您也可以在

PubMed Google ScholarJungmin KimView author publicationsYou can also search for this author in

PubMed Google ScholarJungmin KimView作者出版物您也可以在

PubMed Google ScholarChangin KimView author publicationsYou can also search for this author in

PubMed Google ScholarChangin KimView作者出版物您也可以在

PubMed Google ScholarSeyoung YouView author publicationsYou can also search for this author in

PubMed Google ScholarSeyoung YouView作者出版物您也可以在

PubMed Google ScholarHanui KimView author publicationsYou can also search for this author in

PubMed Google ScholarHanui KimView作者出版物您也可以在

PubMed Google ScholarSang Jin LeeView author publicationsYou can also search for this author in

PubMed Google ScholarSang Jin LeeView作者出版物您也可以在

PubMed Google ScholarHyotcherl IheeView author publicationsYou can also search for this author in

PubMed Google ScholarHyotcherl IheeView作者出版物您也可以在

PubMed Google ScholarContributionsS.O.K., D.A. and H.I. conceived the idea and developed the method. S.O.K., J.J. and D.A. designed and fabricated the S.X.L. chip. S.O.K. screened and selected the target samples, and S.O.K., S.R.Y. prepared the samples. I.K., R.H. and S.O.K. set up the beamline and developed the data collection schemes.

PubMed谷歌学术贡献。O、 K.,D.A.和H.I.构思了这个想法并开发了这个方法。S、 O.K.,J.J.和D.A.设计并制造了S.X.L.芯片。S、 O.K.筛选并选择了目标样品,S.O.K.,S.R.Y.制备了样品。一、 K.,R.H.和S.O.K.建立了光束线并制定了数据收集方案。

S.O.K., J.J., S.R.Y., H.L., D.K., D.A., C.K., S.Y., H.K. and S.L. participated in the data collection. S.O.K., S.R.Y., H.L., J.K., and D.K. processed data. S.O.K., S.R.Y., H.L. and D.K. analyzed the data. S.O.K. and H.I. wrote and edited the original drafts. HI supervised the whole project. All authors read and commented on the manuscript.Corresponding authorCorrespondence to.

S、 O.K.,J.J.,S.R.Y.,H.L.,D.K.,D.A.,C.K.,S.Y.,H.K.和S.L.参与了数据收集。S、 O.K.,S.R.Y.,H.L.,J.K。和D.K.处理了数据。S、 O.K.,S.R.Y.,H.L.和D.K.分析了数据。S、 O.K.和H.I.撰写并编辑了原始草稿。他监督了整个项目。所有作者都阅读并评论了手稿。对应作者对应。

Hyotcherl Ihee.Ethics declarations

Hyotcherl Ihee。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleKim, S.O., Yun, S.R., Lee, H. et al. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities.

转载和许可本文引用本文Kim,S.O.,Yun,S.R.,Lee,H。等人。系列X射线液相色谱:用于探索微克量生物分子结构动力学的多维测定框架。

Nat Commun 15, 6287 (2024). https://doi.org/10.1038/s41467-024-50696-0Download citationReceived: 08 February 2024Accepted: 17 July 2024Published: 26 July 2024DOI: https://doi.org/10.1038/s41467-024-50696-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》156287(2024)。https://doi.org/10.1038/s41467-024-50696-0Download引文收到日期:2024年2月8日接受日期:2024年7月17日发布日期:2024年7月26日OI:https://doi.org/10.1038/s41467-024-50696-0Share。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Enzyme mechanismsKineticsMolecular conformationSAXS

酶机制皮肤分子构象SAXS

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。。