商务合作
动脉网APP
可切换为仅中文
AbstractThe continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combine monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein.
。在这里,我们将单克隆抗体(mAb)分离与用融合前稳定的棘突糖蛋白免疫的恒河猴的深B细胞受体(BCR)库测序相结合。
Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrates increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes.
在多个免疫区室中对尖峰分选的B细胞谱系的纵向追踪表明,在引流和非引流淋巴区室(包括骨髓,脾脏,最明显的是主动脉周围淋巴结)中,体细胞超突变增加,疫苗诱导的B细胞广泛传播。
Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineates extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provides a molecular basis for the observed differences in neutralization breadth between clonally related antibodies.
通过深度库测序鉴定的穗特异性单克隆抗体谱系的系统发育分析描绘了形成中和活性的广泛克隆内多样化。具有广泛中和mAb的加标复合物的结构分析为观察到的克隆相关抗体之间中和宽度的差异提供了分子基础。
Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered..
我们的研究结果强调,免疫导致广泛的克隆内B细胞进化,其中同一谱系的成员既可以保留原始表位特异性,又可以进化为识别以前未遇到的其他尖峰变体。。
IntroductionHumoral immune responses against viral spike glycoproteins stimulated by infection or vaccination are characterized by polyclonal repertoires of antibodies that target distinct spike epitopes. Of these, a proportion mediates virus neutralization, and blocking viral entry into target cells.
引言针对感染或疫苗接种刺激的病毒刺突糖蛋白的体液免疫应答的特征在于靶向不同刺突表位的抗体的多克隆库。其中,一部分介导病毒中和,并阻止病毒进入靶细胞。
Viruses that cause chronic infections such as HIV-1, or globally persistent viruses such as Influenza virus, have evolved immune evasion strategies to circumvent host antibody responses, ensuring their continued transmission. Such escape mechanisms include sequence variations that abolish epitope recognition, as well as glycan and conformational shielding that limit access to functionally conserved epitopes targeted by broadly neutralizing antibodies1.During the SARS-CoV-2 pandemic, antibody escape mutations have increasingly evolved in the spike glycoprotein, curtailing population immunity established by previous infections and vaccinations2,3,4,5,6.
导致HIV-1等慢性感染的病毒或流感病毒等全球持久性病毒已经进化出免疫逃避策略,以规避宿主抗体反应,确保其持续传播。这种逃逸机制包括消除表位识别的序列变异,以及限制获得广泛中和抗体靶向的功能保守表位的聚糖和构象屏蔽1。在SARS-CoV-2大流行期间,抗体逃逸突变在棘突糖蛋白中越来越多地进化,削弱了先前感染和疫苗接种所建立的群体免疫力2,3,4,5,6。
All variants known to be currently circulating in humans are descendants of Omicron, carrying multiple immune escape mutations whose molecular basis is typically well understood7,8,9. Many such mutations were independently acquired in different sub-lineages through convergent evolution10.Following repeated or prolonged exposure to antigen, the host antibody response evolves via B cell diversification through somatic hypermutation (SHM) in germinal center (GC) reactions11,12.
目前已知在人类中传播的所有变体都是Omicron的后代,携带多种免疫逃逸突变,其分子基础通常被很好地理解7,8,9。许多这样的突变是通过趋同进化在不同的亚谱系中独立获得的10。在反复或长时间暴露于抗原后,宿主抗体反应通过生发中心(GC)反应中的体细胞超突变(SHM)通过B细胞多样化进化11,12。
Studies have shown that SHM-mediated affinity maturation of SARS-CoV-2 neutralizing antibodies can to some degree overcome immune escape13,14. How antigen-specific B cell lineages evolve following prime-boost immunizations with the ancestral D614G SARS-CoV-2 spike (lineage B.1), and how this influences the development of neutralization breadth, is of inte.
研究表明,SHM介导的SARS-CoV-2中和抗体的亲和力成熟可以在一定程度上克服免疫逃逸13,14。在用祖先D614G SARS-CoV-2尖峰(谱系B.1)进行初次增强免疫后,抗原特异性B细胞谱系如何进化,以及这如何影响中和广度的发展,是至关重要的。
Data availability
数据可用性
NGS repertoire sequencing data have been deposited in the European nucleotide archive (ENA) with the following accession numbers: from ERR12544449 to ERR12544478. Single-cell repertoire sequencing data have been deposited in the ENA with the following accession numbers: from OZ032182 to OZ034681. Monoclonal antibody sequences are deposited at GenBank with the following accession numbers: from PP208826 to PP208901.
NGS曲目测序数据已保存在欧洲核苷酸档案馆(ENA)中,登录号如下:从ERR12544449到ERR12544478。单细胞库测序数据已保存在ENA中,登录号如下:从OZ032182到OZ034681。单克隆抗体序列以以下登录号保藏在GenBank中:从PP208826到PP208901。
The associated accession numbers, coordinates and structure factors of the cryo-EM data reported in this paper are available from the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB) under the accession codes PDB: 8Q5Y and 8P5M, and EMDB: EMD-18180, EMD-17451. Source data are provided in this paper..
本文报道的低温电磁数据的相关登录号,坐标和结构因子可从蛋白质数据库(PDB)和电子显微镜数据库(EMDB)获得,登录号为PDB:8Q5Y和8P5M,EMDB:EMD-18180,EMD-17451。本文提供了源数据。。
Code availability
代码可用性
IgDiscover22 v1.0.0 is available at https://gitlab.com/gkhlab/igdiscover22, Scripts used to generate all results in the paper are available at: https://gitlab.com/gkhlab/Multi-compartmental_diversification_of_neutralizing_antibody_lineages_dissected_in_SARS-CoV-2_spike-immunized_macaques and https://doi.org/10.5281/zenodo.11104687.
IGDiscovery22 v1.0.0可在https://gitlab.com/gkhlab/igdiscover22,用于生成论文中所有结果的脚本可从以下网站获得:https://gitlab.com/gkhlab/Multi-compartmental_diversification_of_neutralizing_antibody_lineages_dissected_in_SARS-CoV-2_spike-immunized_macaques和https://doi.org/10.5281/zenodo.11104687.
The HMM code for chimera identification is available at https://github.com/MurrellGroup/CHMMera..
嵌合体识别的HMM代码可在https://github.com/MurrellGroup/CHMMera..
ReferencesKarlsson Hedestam, G. B. et al. The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat. Rev. Microbiol. 6, 143–155 (2008).Article
。自然修订版微生物学。6143-155(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bq, O. et al. Enhanced neutralization resistance of SARS-CoV-2 Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants. Cell Host Microbe https://doi.org/10.1016/j.chom.2022.11.012 (2022).Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.
Bq,O。等人。增强SARS-CoV-2的中和抗性增强SARS-CoV-2 Omicron亚变体的中和抗性。细胞宿主微生物https://doi.org/10.1016/j.chom.2022.11.012(2022年)。Tuekprakhon,A。等人。SARS-CoV-2 Omicron BA.4和BA.5从疫苗和BA.1血清中的抗体逃逸。
Cell 185, 2422–2433.e13 (2022).Article .
细胞1852422–2433.e13(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hachmann, N. P. et al. Neutralization escape by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 387, 86–88 (2022).Article
。N、 。J、 医学387,86-88(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shrestha, L. B., Foster, C., Rawlinson, W., Tedla, N. & Bull, R. A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission. Rev. Med. Virol. 32, e2381 (2022).Article
Shrestha,L.B.,Foster,C.,Rawlinson,W.,Tedla,N。&Bull,R.A。SARS-CoV-2 omicron变体BA.1至BA.5的进化:对免疫逃逸和传播的影响。医学博士Virol。32,e2381(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, Y. et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe 30, 1527–1539.e5 (2022).Article
Cao,Y.等人。Omicron BA.2.75增强的感染性和抗体逃避的表征。细胞宿主微生物301527-1539.e5(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sheward, D. J. et al. Sensitivity of the SARS-CoV-2 BA.2.86 variant to prevailing neutralising antibody responses. Lancet Infect. Dis. 23, e462–e463 (2023).Article
Sheward,D.J.等人。SARS-CoV-2 BA.2.86变体对普遍中和抗体反应的敏感性。柳叶刀感染。。23,e462–e463(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sheward, D. J. et al. Evasion of neutralising antibodies by omicron sublineage BA.2.75. Lancet Infect. Dis. 22, 1421–1422 (2022).Article
Sheward,D.J.等人。omicron子系BA.2.75逃避中和抗体。柳叶刀感染。。221421-1422(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sheward, D. J. et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Lancet Infect. Dis. 22, 1538–1540 (2022).Article
Sheward,D.J.等人的Omicron子系BA.2.75.2表现出广泛的中和抗体逃逸。柳叶刀感染。。221538-1540(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roemer, C. et al. SARS-CoV-2 evolution in the Omicron era. Nat. Microbiol. 8, 1952–1959 (2023).Article
Roemer,C。等人。Omicron时代的SARS-CoV-2进化。。81952-1959(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tas, J. M. J. et al. Visualizing antibody affinity maturation in germinal centers. Science 351, 1048–1054 (2016).Article
Tas,J.M.J.等人。在生发中心可视化抗体亲和力成熟。科学3511048-1054(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).Article
Victora,G.D.等人。通过多光子显微镜和可光激活荧光报告基因揭示生发中心动力学。细胞143592-605(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sheward, D. J. et al. Structural basis of Omicron neutralization by affinity-matured public antibodies. bioRxiv https://doi.org/10.1101/2022.01.03.474825 (2022).Korenkov, M. et al. Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants.
Sheward,D.J.等人。亲和成熟公共抗体中和Omicron的结构基础。生物十四https://doi.org/10.1101/2022.01.03.474825(2022年)。Korenkov,M。等人。体细胞超突变引入旁观者突变,为新出现的变异制备SARS-CoV-2抗体。
Immunity https://doi.org/10.1016/j.immuni.2023.11.004 (2023).Chernyshev, M. et al. Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages. Nat. Commun. 14, 2249 (2023).Article .
免疫https://doi.org/10.1016/j.immuni.2023.11.004(2023年)。。国家公社。142249(2023)。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Phad, G. E. et al. Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. J. Exp. Med. 217, e20191155 (2020).Article
Phad,G.E.等人。HIV Env疫苗诱导的B细胞反应的广泛传播和克隆内成熟。J、 实验医学217,e20191155(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sacks, D. et al. Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathog. 15, 1–20 (2019).Article
Sacks,D。等人。体细胞超突变以对抗全球罕见的病毒免疫型,在CAP256-VRC26 HIV-1 V2指导的bNAb谱系中驱动了偏离轨道的抗体。PLoS Pathog。15,1-20(2019)。文章
Google Scholar
谷歌学者
Bhiman, J. N. et al. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat. Med. 21, 1332–1336 (2015).Article
Bhiman,J.N.等人。启动并驱动V1V2导向的HIV-1广泛中和抗体成熟的病毒变体。《自然医学》211332-1336(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sok, D. et al. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog. 9, e1003754 (2013).Article
Sok,D。等人。体细胞超突变对广泛中和HIV抗体的PGT121家族中和和结合的影响。PLoS Pathog。9,e1003754(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Turner, J. S. et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 595, 421–425 (2021).Article
Turner,J.S.等人。SARS-CoV-2感染可诱导人类骨髓浆细胞长寿。自然595421-425(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schulz, A. R. et al. SARS-CoV-2 specific plasma cells acquire long-lived phenotypes in human bone marrow. EBioMedicine 95, 104735 (2023).Article
。EBioMedicine 95104735(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prabhakaran, M. et al. Adjuvanted SARS- 2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Sci. Transl. Med. 16, 5960 (2024).Mandolesi, M. et al. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses.
Prabhakaran,M。等人。佐剂SARS-2刺突蛋白疫苗在非人灵长类动物中引发长寿浆细胞。科学。翻译。医学165960(2024)。Mandolesi,M。等人。小鼠和恒河猴的SARS-CoV-2蛋白亚基疫苗接种引发有效且持久的中和抗体应答。
Cell Rep. Med. 2, 100252 (2021).Article .
细胞代表医学2100252(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Corcoran, M. M. et al. Production of individualized v gene databases reveals high levels of immunoglobulin genetic diversity. Nat. Commun. 7, 13642 (2016).Article
Corcoran,M.M.等人。个体化v基因数据库的产生揭示了高水平的免疫球蛋白遗传多样性。国家公社。713642(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chernyshev, M., Kaduk, M., Corcoran, M. & Karlsson Hedestam, G. B. VDJ gene usage in IgM repertoires of rhesus and cynomolgus macaques. Front. Immunol. 12, 815680 (2022).Article
Chernyshev,M.,Kaduk,M.,Corcoran,M。&Karlsson-Hedestam,G.B。VDJ基因在恒河猴和食蟹猴IgM库中的使用。正面。免疫。12815680(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gangavarapu, K. et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 20, 512–522 (2023).Article
Gangavarapu,K。等人,《爆发信息基因组报告:SARS-CoV-2变异和突变的可扩展和动态监测》。自然方法20512-522(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, D. et al. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nat. Commun. 13, 6309 (2022).Rappaport, A. R. et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection.
Li,D。等人。纳米颗粒疫苗诱导的SARS-CoV-2中和和保护的广度。国家公社。136309(2022年)。Rappaport,A.R.等人。低剂量自扩增mRNA COVID-19疫苗在非人灵长类动物中对SARS-CoV-2感染具有强大的保护性免疫力。
Nat. Commun. 13, 1–10 (2022).Article .
Nat.普通。13,1-10(2022年)。文章。
Google Scholar
谷歌学者
Corbett, K. S. et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).Article
Corbett,K.S.等人在非人灵长类动物中评估针对SARS-CoV-2的mRNA-1273疫苗。N、 。J、 医学3831544-1555(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
King, H. A. D. et al. Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article
King,H.A.D.等人。佐剂SARS-CoV-2受体结合域纳米颗粒疫苗在猕猴中的功效和广度。程序。国家科学院。科学。美国118,1-11(2021)。文章
Google Scholar
谷歌学者
van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020).Article
van Doremalen,N。等人,ChAdOx1 nCoV-19疫苗可预防恒河猴SARS-CoV-2肺炎。。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Waickman, A. T. et al. mRNA-1273 vaccination protects against SARS-CoV-2-elicited lung inflammation in nonhuman primates. JCI Insight 7, e160039 (2022).Guebre-Xabier, M. et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine 38, 7892–7896 (2020).Article .
Waickman,A.T.等人mRNA-1273疫苗接种可预防非人灵长类动物SARS-CoV-2引起的肺部炎症。JCI Insight 7,e160039(2022)。NVX-CoV2373疫苗保护食蟹猴上呼吸道和下呼吸道免受SARS-CoV-2攻击。疫苗387892-7896(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yadav, P. D. et al. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nat. Commun. 12, 1–11 (2021).Article
Yadav,P.D.等人。灭活SARS-CoV-2候选疫苗BBV152在恒河猴中的免疫原性和保护效力。国家公社。12,1-11(2021)。文章
ADS
广告
Google Scholar
谷歌学者
Francica, J. R. et al. Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Sci. Transl. Med. 13, 1–18 (2021).Article
Francica,J.R.等人。非人灵长类动物受到攻击后,SARS-CoV-2刺突蛋白疫苗接种引发的保护性抗体在肺部得到增强。科学。翻译。医学杂志13,1-18(2021)。文章
Google Scholar
谷歌学者
Joyce, M. G. et al. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Sci. Transl. Med. 14, 1–16 (2022).Article
Joyce,M.G.等人,SARS-CoV-2铁蛋白纳米颗粒疫苗在非人灵长类动物中引发保护性免疫反应。科学。翻译。医学14,1-16(2022)。文章
Google Scholar
谷歌学者
Corbett, K. S. et al. Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science (1979) 374, 1343–1353 (2021).CAS
Corbett,K.S.等人。在mRNA-1273疫苗增强的非人灵长类动物中预防SARS-CoV-2β变体。科学(1979)3741343-1353(2021)。中科院
Google Scholar
谷歌学者
Liu, J. et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Sci. Immunol. 7, eabq7647 (2022).Garrido, C. et al. SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Sci. Immunol. 6, 1–17 (2021).Article
Liu,J。等人。CD8 T细胞有助于猕猴对SARS-CoV-2的疫苗保护。科学。免疫。7,eabq7647(2022)。SARS-CoV-2疫苗在婴儿恒河猴中引发持久的免疫反应。科学。免疫。6,1-17(2021)。文章
Google Scholar
谷歌学者
Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nat. Immunol. 22, 1306–1315 (2021).Article
Corbett,K.S.等人,mRNA-1273在非人灵长类动物中预防SARS-CoV-2β感染。自然免疫。221306-1315(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science (1979) 369, 806–811 (2020).CAS
Yu,J。等人。恒河猴中针对SARS-CoV-2的DNA疫苗保护。《科学》(1979)369806-811(2020)。中科院
Google Scholar
谷歌学者
Vázquez Bernat, N. et al. Rhesus and cynomolgus macaque immunoglobulin heavy-chain genotyping yields comprehensive databases of germline VDJ alleles. Immunity 54, 355-366.e4 (2021).He, W. T. et al. Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques.
Vázquez-Bernat,N。等人。恒河猴和食蟹猴免疫球蛋白重链基因分型产生种系VDJ等位基因的综合数据库。免疫力54355-366.e4(2021)。He,W.T。等人。在恒河猴中可以容易地诱导针对SARS相关病毒的广泛中和抗体。
Sci. Transl. Med. 14, eabl9605 (2022).Feng, Y. et al. Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine. Sci. Transl. Med. 15, eadg7404 (2023).Sankhala, R. S. et al. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques.
科学。翻译。。Feng,Y。等人。用AS03佐剂COVID-19疫苗免疫猕猴产生的广泛中和针对沙伯病毒的抗体。科学。翻译。医学杂志15,eadg7404(2023)。Sankhala,R.S.等人。在恒河猴中接种尖峰铁蛋白纳米颗粒疫苗后引发的多种中和抗体。
Nat. Commun. 15, 1–19 (2024).Article .
Nat.普通。15,1-19(2024年)。文章。
Google Scholar
谷歌学者
Galson, J. D. et al. B-cell repertoire dynamics after sequential hepatitis B vaccination and evidence for cross-reactive B-cell activation. Genome Med. 8, 1–13 (2016).
Galson,J.D.等人。连续接种乙型肝炎疫苗后的B细胞库动态和交叉反应性B细胞活化的证据。基因组医学8,1-13(2016)。
Google Scholar
谷歌学者
Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 1589–1600 (2019).Article
Ehrhardt,S.A.等人对埃博拉病毒疫苗rVSV-ZEBOV的多克隆和收敛抗体反应。《自然医学》251589-1600(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. Analysis of B cell receptor repertoires reveals key signatures of the systemic B cell response after SARS-CoV-2 infection. J. Virol. 96, e0160021 (2022).Sundling, C. et al. Single-cell and deep sequencing of IgG-switched macaque B cells reveal a diverse Ig repertoire following Immunization.
Zhang,Y。等人。对B细胞受体库的分析揭示了SARS-CoV-2感染后全身B细胞反应的关键特征。J、 维罗尔。96,e0160021(2022)。Sundling,C。等人。IgG转换猕猴B细胞的单细胞和深度测序揭示了免疫后多种Ig库。
J. Immunol. 192, 3637–3644 (2014).Article .
J、 免疫。1923637-3644(2014)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Scharf, L. et al. Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight 8, e165299 (2023).Muecksch, F. et al. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations.
对SARS-CoV-2反应性B细胞的纵向单细胞分析揭示了早期形成的抗原特异性克隆的持久性。JCI Insight 8,e165299(2023)。Muecksch,F。等人。SARS-CoV-2中和抗体的亲和力成熟赋予病毒逃逸突变的效力,广度和弹性。
Immunity 54, 1853–1868.e7 (2021).Article .
免疫力541853–1868.e7(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).Article
Gaebler,C。等人。SARS-CoV-2抗体免疫的进化。自然591639-644(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luo, K. et al. Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques. J. Clin. Investig. 1, 1–17 (2016).
Luo,K。等人。恒河猴ALVAC/AIDSVAX B/E gp120免疫后的组织记忆B细胞库分析。J、 临床。调查。1,1-17(2016)。
Google Scholar
谷歌学者
Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019).Article
Lindsay,K.E.等人。通过PET-CT和近红外成像可视化非人灵长类动物mRNA疫苗递送的早期事件。自然生物医学。工程3371-380(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, G. C., Cheung, N. K. V., Georgiou, G., Marcotte, E. M. & Ippolito, G. C. Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. Nat. Commun. 7, 1–9 (2016).Article
Wu,G.C.,Cheung,N.K.V.,Georgiou,G.,Marcotte,E.M。和Ippolito,G.C。骨髓浆细胞抗体库的时间稳定性和分子持久性。国家公社。7,1-9(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Robinson, M. J. et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 56, 1596–1612.e4 (2023).Article
Robinson,M.J.等人。内在决定的周转率是浆细胞寿命广泛异质性的基础。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robinson, M. J. et al. Long-lived plasma cells accumulate in the bone marrow at a constant rate from early in an immune response. Sci. Immunol. 7, eabm8389 (2022).Benet, Z., Jing, Z. & Fooksman, D. R. Plasma cell dynamics in the bone marrow niche. Cell Rep. 34, 108733 (2021).Article .
Robinson,M.J.等人。长寿浆细胞在免疫反应早期就以恒定的速率积累在骨髓中。科学。免疫。7,eabm8389(2022)。Benet,Z.,Jing,Z。&Fooksman,D.R。骨髓生态位中的浆细胞动力学。细胞代表34108733(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, G. et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat. Commun. 12, 1–10 (2021).CAS
。国家公社。12,1-10(2021)。中科院
Google Scholar
谷歌学者
Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science (1979) 370, 1339–1343 (2020).CAS
Ng,K.W.等人。人类对SARS-CoV-2的先前存在和从头体液免疫。科学(1979)3701339-1343(2020)。中科院
Google Scholar
谷歌学者
Park, Y. J. et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science (1979) 378, 619–627 (2022).CAS
Park,Y.J.等人,针对SARS-CoV-2 Omicron亚系的印迹抗体反应。科学(1979)378619-627(2022)。中科院
Google Scholar
谷歌学者
Quandt, J. et al. Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci. Immunol. 7, 1–13 (2022).Article
Quandt,J。等人。Omicron BA。1突破性感染驱动针对保守表位的交叉变异中和和记忆B细胞形成。科学。免疫。7,1-13(2022)。文章
Google Scholar
谷歌学者
Weber, T. et al. Enhanced SARS-CoV-2 humoral immunity following breakthrough infection builds upon the preexisting memory B cell pool. Sci. Immunol. 8, 1–14 (2023).Article
Weber,T。等人。突破性感染后增强的SARS-CoV-2体液免疫建立在先前存在的记忆B细胞库的基础上。科学。免疫。8,1-14(2023)。文章
Google Scholar
谷歌学者
Longo, N. S. & Lipsky, P. E. Why do B cells mutate their immunoglobulin receptors? Trends Immunol. 27, 374–380 (2006).Article
Longo,N.S。&Lipsky,P.E。为什么B细胞突变其免疫球蛋白受体?趋势免疫。27374-380(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sheward, D. J. et al. Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Rep. Med. 2, 100450 (2021).Brochu, H. N. et al. Systematic profiling of full-length ig and tcr repertoire diversity in rhesus macaque through long read transcriptome sequencing.
Sheward,D.J。等人,《β-RBD增强》拓宽了抗体介导的对动物模型中SARS-CoV-2变异的保护作用。细胞代表医学杂志2100450(2021)。Brochu,H.N.等人。通过长读转录组测序对恒河猴全长ig和tcr库多样性进行系统分析。
J. Immunol. 204, 3434–3444 (2020).Article .
J、 免疫。2043434-3444(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bernat, N. V. et al. High-quality library preparation for NGS-based immunoglobulin germline gene inference and repertoire expression analysis. Front Immunol 10, 660 (2019).Kumar, V. et al. Long-read amplicon denoising. Nucleic Acids Res. 47, e104 (2019).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Bernat,N.V.等人。用于基于NGS的免疫球蛋白种系基因推断和库表达分析的高质量文库制备。Front Immunol 10660(2019)。Kumar,V。等人。长读扩增子去噪。核酸研究47,e104(2019)。Katoh,K。&Standley,D.M。MAFFT多序列比对软件版本7:性能和可用性的改进。
Mol. Biol. Evol. 30, 772–780 (2013).Article .
Mol Biol。无法初始化Evol。30772–780(2013)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J.
Price,M.N.,Dehal,P.S。&Arkin,A.P.FastTree 2-大型比对的近似最大似然树。PLoS ONE 5,e9490(2010)。Tiller,T。等人。通过单细胞RT-PCR和表达载体克隆从单个人B细胞有效产生单克隆抗体。J。
Immunol. Methods 329, 112–124 (2008).Article .
免疫。方法329112-124(2008)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).Article
Tegunov,D。&Cramer,P。使用Warp进行实时低温电子显微镜数据预处理。自然方法161146-1152(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article
Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。CryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Custódio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Custódio,T.F.等人。有效中和SARS-CoV-2的合成纳米体的选择,生物物理和结构分析。国家公社。115588(2020)。。自然596583-589(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).Article
Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。。D生物晶体学。66486-501(2010)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).Article
Liebschner,D.等人,《利用X射线、中子和电子测定大分子结构:Phenix的最新进展》。。D结构。生物学75861-877(2019)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).Article
Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。蛋白质科学。27,14-25(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schrödinger, L. L. C. The {PyMOL} Molecular Graphics System, Version ~1.8 (2015).Download referencesAcknowledgementsWe thank Dr. Bengt Eriksson and the personnel at the Astrid Fagraeus laboratory for expert assistance with animal experiments. We thank Novavax AB, Uppsala, Sweden, for the Matrix-M adjuvant.
Schrödinger,L.L.C.{PyMOL}分子图形系统,版本 〜1.8(2015)。下载参考文献致谢我们感谢Bengt Eriksson博士和Astrid Fagraeus实验室的人员在动物实验方面提供的专家帮助。我们感谢瑞典乌普萨拉的Novavax AB提供Matrix-M佐剂。
All cryo-EM data were collected at the Karolinska Institutet’s 3D-EM facility. Analysis of 10X single-cell raw data was enabled, in part, by Anastasios Glaros and resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC) at Uppmax, partially funded by the Swedish Research Council through grant agreements no.
。对10倍单细胞原始数据的分析部分由Anastasios Glaros和瑞典国家超级计算学术基础设施(NAISS)和Uppmax的瑞典国家计算基础设施(SNIC)提供的资源实现,部分资金由瑞典研究委员会通过第号赠款协议提供。
2022-06725 and no. 2018-05973. This project was supported by grants from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101003653 (CoroNAb) to G.M.M., G.B.K.H., and B.M. from the Swedish Research Council to B.M. (2018-02381) and to G.B.K.H. (2017-00968), from SciLifeLab’s Pandemic Laboratory Preparedness program to B.M.
2022-06725和编号2018-05973。该项目得到了欧盟地平线2020研究与创新计划(Horizon 2020 research and innovation program)根据第101003653号资助协议(CoroNAb)向瑞典研究委员会(Swedish research Council)向通用汽车公司(G.M.M.)、通用汽车公司(G.B.K.H.)和通用汽车公司(B.M.)提供的资助,从SciLifeLab的大流行实验室准备计划到通用汽车公司(B.M.)(2018-02381)和通用汽车公司(G.B.K.H.)(2017-00968)。
(VC-2022-0028) and G.B.K.H. (VC-2022-0028), from the Erling Persson Foundation (20210125) to B.M. and G.B.K.H., from the he Swedish Research Council to B.M.H. (2017-6702 and 2018-3808) and the Knut and Alice Wallenberg Foundation to B.M.H. We also thank the Fondation Dormeur (Liechtenstein) for its generous contribution towards equipment.
(VC-2022-0028)和G.B.K.H.(VC-2022-0028),从二灵佩尔森基金会(20210125)到B.M.和G.B.K.H.,从瑞典研究委员会到B.M.H.(2017-6702和2018-3808),以及克努特和爱丽丝·沃伦伯格基金会到B.M.H。我们也感谢Dormeur基金会(列支敦士登)对设备的慷慨贡献。
Open access funding was provided by Karolinska Institutet.FundingOpen access funding provided by Karolinska Institute.Author informationAuthor notesThese authors contributed equally: Ben Murrell, Gunilla B. Karlsson Hedestam.Authors and AffiliationsDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SwedenMarco Mandolesi, L.
开放获取资金由卡罗琳学院提供。资金由卡罗林斯卡研究所提供的开放获取资金。作者信息作者注意到这些作者做出了同样的贡献:Ben Murrell,Gunilla B.Karlsson Hedestam。作者和附属机构斯德哥尔摩卡罗林斯卡研究所微生物学,肿瘤和细胞生物学系,SwedenMarco Mandolesi,L。
PubMed Google ScholarHrishikesh DasView author publicationsYou can also search for this author in
PubMed Google ScholarHrishikesh DasView作者出版物您也可以在
PubMed Google ScholarLiset de VriesView author publicationsYou can also search for this author in
PubMed Google ScholarLiset de VriesView作者出版物您也可以在
PubMed Google ScholarYiqiu YangView author publicationsYou can also search for this author in
PubMed Google ScholarYiqiu YangView作者出版物您也可以在
PubMed Google ScholarChangil KimView author publicationsYou can also search for this author in
PubMed Google ScholarChangil KimView作者出版物您也可以在
PubMed Google ScholarManojj DhinakaranView author publicationsYou can also search for this author in
PubMed Google ScholarManojj DhinakaranView作者出版物您也可以在
PubMed Google ScholarXaquin Castro DopicoView author publicationsYou can also search for this author in
PubMed Google ScholarXaquin Castro DopicoView作者出版物您也可以在
PubMed Google ScholarJulian FischbachView author publicationsYou can also search for this author in
PubMed谷歌学者Julian FischbachView作者出版物您也可以在
PubMed Google ScholarSungyong KimView author publicationsYou can also search for this author in
PubMed Google ScholarSungyong KimView作者出版物您也可以在
PubMed Google ScholarMariia V. GurylevaView author publicationsYou can also search for this author in
PubMed Google ScholarMariia V.GurylevaView作者出版物您也可以在
PubMed Google ScholarMonika ÀdoriView author publicationsYou can also search for this author in
PubMed Google ScholarMonikaÀdoriView作者出版物您也可以在
PubMed Google ScholarMark ChernyshevView author publicationsYou can also search for this author in
PubMed Google ScholarMark ChernyshevView作者出版物您也可以在
PubMed Google ScholarAron StålmarckView author publicationsYou can also search for this author in
PubMed Google ScholarAron StålmarckView作者出版物您也可以在
PubMed Google ScholarLeo HankeView author publicationsYou can also search for this author in
PubMed Google ScholarLeo HankeView作者出版物您也可以在
PubMed Google ScholarGerald M. McInerneyView author publicationsYou can also search for this author in
PubMed谷歌学术评论M.McInerneyView作者出版物您也可以在
PubMed Google ScholarDaniel J. ShewardView author publicationsYou can also search for this author in
PubMed Google ScholarDaniel J.ShewardView作者出版物您也可以在
PubMed Google ScholarMartin CorcoranView author publicationsYou can also search for this author in
PubMed Google ScholarMartin CorcoranView作者出版物您也可以在
PubMed Google ScholarB. Martin HällbergView author publicationsYou can also search for this author in
PubMed谷歌学术论坛。Martin HällbergView作者出版物您也可以在
PubMed Google ScholarBen MurrellView author publicationsYou can also search for this author in
PubMed Google ScholarBen MurrellView作者出版物您也可以在
PubMed Google ScholarGunilla B. Karlsson HedestamView author publicationsYou can also search for this author in
PubMed Google ScholarGunilla B.Karlsson HedestamView作者出版物您也可以在
PubMed Google ScholarContributionsM.M., B.M., and G.B.K.H. designed the study, analyzed the results, and wrote the manuscript. L.H., C.K., S.K., and G.M. provided recombinant proteins. M.M. coordinated the NHP immunizations. M.M., X.C.D., and M.A. collected and processed the samples.
PubMed谷歌学术贡献。M、 ,B.M.和G.B.K.H.设计了这项研究,分析了结果,并撰写了手稿。五十、 H.,C.K.,S.K。和G.M.提供了重组蛋白。M、 M.协调NHP免疫接种。M、 M.,X.C.D.和M.A.收集并处理了样本。
B.M. and M.G. processed the single-cell raw data from 10x Chromium. M.M. generated the NGS libraries and performed lineage tracing and phylogenetic analysis. M.M. and M.C. performed the IG genotyping. M.Ch. implemented the FAD denoising method. A.S. and M.Ch. implemented the chimera detection method.
B、 M.和M.G.处理了10倍铬的单电池原始数据。M、 M.生成了NGS文库,并进行了谱系追踪和系统发育分析。M、 M.和M.C.进行了IG基因分型。M、 Ch.实现了FAD去噪方法。A、 S.和M.Ch.实施了嵌合体检测方法。
M.M., L.d.V., M.D., and S.K. cloned, expressed, and characterized mAbs. D.J.S., Y.Y., and J.F. performed neutralization studies. H.D. and B.M.H. Analyzed and solved the cryo-EM structures. M.M., H.D., G.B.K.H., and B.M. visualized the data. B.M., G.B.K.H., B.M.H., and G.M. acquired funding. All authors revised the manuscript and approved the final version prior to submission.Corresponding authorsCorrespondence to.
M、 M.,L.d.V.,M.d。和S.K.克隆,表达和表征单克隆抗体。D、 J.S.,Y.Y。和J.F.进行了中和研究。H、 D.和B.M.H.分析并解决了低温电磁结构。M、 M.,H.D.,G.B.K.H。和B.M.可视化了数据。B、 M.,G.B.K.H.,B.M.H。和G.M.获得了资金。。通讯作者通讯。
Marco Mandolesi or Gunilla B. Karlsson Hedestam.Ethics declarations
Marco Mandolesi或Gunilla B.Karlsson Hedestam。道德宣言
Competing interests
相互竞争的利益
D.J.S. consults for AstraZeneca AB on matters related to monoclonal antibody therapeutics for Covid-19. The remaining authors declare no competing interests.
D、 J.S.为阿斯利康AB咨询与新型冠状病毒肺炎单克隆抗体治疗相关的事宜。其余作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesDataset 1Dataset 2Dataset 3Dataset 4Dataset 5Reporting SummarySource dataSource dataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述Dataset 1数据集2数据集3数据集4数据集5报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleMandolesi, M., Das, H., de Vries, L. et al. Multi-compartmental diversification of neutralizing antibody lineages dissected in SARS-CoV-2 spike-immunized macaques.
转载和许可本文引用本文Mandolesi,M.,Das,H.,de Vries,L。等人。在SARS-CoV-2穗免疫猕猴中解剖的中和抗体谱系的多区室多样化。
Nat Commun 15, 6338 (2024). https://doi.org/10.1038/s41467-024-50286-0Download citationReceived: 15 February 2024Accepted: 03 July 2024Published: 27 July 2024DOI: https://doi.org/10.1038/s41467-024-50286-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》156338(2024)。https://doi.org/10.1038/s41467-024-50286-0Download引文接收日期:2024年2月15日接受日期:2024年7月3日发布日期:2024年7月27日OI:https://doi.org/10.1038/s41467-024-50286-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。