EN
登录

模板辅助共价修饰是共价分子胶活性的基础

Template-assisted covalent modification underlies activity of covalent molecular glues

Nature 等信源发布 2024-07-29 18:25

可切换为仅中文


AbstractMolecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed ‘template-assisted covalent modification’.

。然而,开发分子胶仍然具有挑战性,需要创新的机械策略来稳定新蛋白界面并加速发现。在这里,我们揭示了一种反式标记共价分子胶机制,称为“模板辅助共价修饰”。

We identified a new series of BRD4 molecular glue degraders that recruit CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). Through comprehensive biochemical, structural and mutagenesis analyses, we elucidated how pre-existing structural complementarity between DCAF16 and BRD4BD2 serves as a template to optimally orient the degrader for covalent modification of DCAF16Cys58.

我们确定了一系列新的BRD4分子胶降解剂,可将CUL4DCAF16连接酶募集到BRD4的第二个溴结构域(BRD4BD2)。通过全面的生化,结构和诱变分析,我们阐明了DCAF16和BRD4BD2之间预先存在的结构互补性如何作为模板,以最佳地定向降解物以共价修饰DCAF16Cys58。

This process stabilizes the formation of BRD4–degrader–DCAF16 ternary complex and facilitates BRD4 degradation. Supporting generalizability, we found that a subset of degraders also induces GAK–BRD4BD2 interaction through trans-labeling of GAK. Together, our work establishes ‘template-assisted covalent modification’ as a mechanism for covalent molecular glues, which opens a new path to proximity-driven pharmacology..

该过程稳定了BRD4降解剂-DCAF16三元复合物的形成,并促进了BRD4的降解。支持普遍性,我们发现降解物的一个子集还通过GAK的反式标记诱导GAK–BRD4BD2相互作用。总之,我们的工作建立了“模板辅助共价修饰”作为共价分子胶的机制,这为邻近驱动的药理学开辟了一条新途径。。

MainMolecular glue degraders have emerged as a powerful therapeutic modality, as demonstrated by the clinical successes of thalidomide analogs in the treatment of hematological malignancies1,2. These small-molecule degraders stabilize the protein–protein interface between ubiquitin ligases and disease-relevant neosubstrates, resulting in ubiquitination and proteasomal degradation of the targets3.

沙利度胺类似物在治疗血液系统恶性肿瘤方面的临床成功证明,主要分子胶降解剂已成为一种强大的治疗方式1,2。这些小分子降解物稳定了泛素连接酶和疾病相关新底物之间的蛋白质-蛋白质界面,导致靶标的泛素化和蛋白酶体降解3。

Unlike traditional occupancy-driven pharmacology of inhibitors, the event-driven pharmacology of degraders can result in more potent and sustained drug activity4. The elimination of target proteins by molecular glue degraders decreases both enzymatic and scaffold function of target proteins, leading to differentiated pharmacology and often superior inhibition of protein function5.

与抑制剂的传统占用驱动药理学不同,降解物的事件驱动药理学可以产生更有效和持续的药物活性4。通过分子胶降解物消除靶蛋白会降低靶蛋白的酶和支架功能,从而导致药理学的分化,并且通常对蛋白质功能具有更好的抑制作用5。

Moreover, molecular glue degraders hold the potential to target proteins that do not have ligandable pockets and are considered difficult to drug, including transcription factors6.The clinical efficacy of thalidomide-derived drugs, such as lenalidomide, and the broad utility of targeted protein degradation in research and drug discovery have inspired numerous efforts to explore proximity-driven pharmacology7,8,9.

此外,分子胶降解剂具有靶向不具有可连接口袋且被认为难以药物治疗的蛋白质的潜力,包括转录因子6。沙利度胺衍生药物(如来那度胺)的临床疗效以及靶向蛋白质降解在研究和药物发现中的广泛应用激发了许多探索邻近驱动药理学的努力7,8,9。

Although bifunctional molecules, such as PROTACs, can lead to rapid proof of concept and highly potent chemical probes, molecular glues are favorable for clinical development due to reduced size and overall chemical properties3,6. Despite these advantages, to date, only a small number of ubiquitin ligases have been exploited by molecular glue degraders, including CRBN10,11, DCAF15 (ref.

虽然双功能分子,如PROTACs,可以导致概念的快速验证和高效的化学探针,但分子胶由于尺寸减小和整体化学性质而有利于临床开发3,6。尽管有这些优点,但迄今为止,只有少数泛素连接酶被分子胶降解剂利用,包括CRBN10,11,DCAF15(参考文献)。

12) and DDB1 (refs. 13,14,15). Other proximity-driven approaches lack molecular glues. Covalency has the potential not only to aid the discovery of molecular glues but also to impart improved efficacy through .

12) 和DDB1(参考文献13,14,15)。其他接近驱动的方法缺乏分子胶。共价不仅有助于发现分子胶,而且有可能通过提高功效。

To determine the mechanism of DCAF16 recruitment, we sought to reconstitute the BRD4–DCAF16 interaction in a fully recombinant system. We developed a time-resolved fluorescence energy transfer (TR-FRET) assay (Extended Data Fig. 2b) and observed a tighter TMX1-induced interaction between DDB1–DCAF16 and BRD4BD2 compared to BRD4BD1, supporting the finding that the BD2 domain is the primary degron for TMX1-mediated degradation (Fig.

为了确定DCAF16募集的机制,我们试图在完全重组系统中重建BRD4-DCAF16相互作用。我们开发了一种时间分辨荧光能量转移(TR-FRET)分析(扩展数据图2b),并观察到与BRD4BD1相比,DDB1-DCAF16和BRD4BD2之间更紧密的TMX1诱导的相互作用,支持了BD2结构域是TMX1介导的降解的主要degron的发现(图2b)。

2a). We repeated a similar TR-FRET experiment with GNE11 and observed similar trends, but we found that the BRD4–DCAF16 interaction was much weaker compared to TMX1 (Extended Data Fig. 2c), consistent with the lower potency of GNE11 as a BRD4 degrader. These findings suggest that TMX1 functions as a molecular glue to recruit DCAF16 selectively to BRD4BD2, causing degradation of BRD4.Fig.

2a)。我们用GNE11重复了类似的TR-FRET实验,并观察到类似的趋势,但我们发现BRD4-DCAF16相互作用比TMX1弱得多(扩展数据图2c),这与GNE11作为BRD4降解剂的效力较低一致。这些发现表明,TMX1起着分子胶的作用,可将DCAF16选择性地募集到BRD4BD2,从而导致BRD4降解。

2: Template-assisted covalent modification of DCAF16 and degraders with optimized electrophilic warheads.a, TR-FRET signal for DDB1–DCAF16–BODIPY to BRD4BD1-terbium or BRD4BD2-terbium with increasing concentrations of TMX1 (n = 3). b, Intact protein mass spectra of DDB1–DCAF16 alone, DDB1–DCAF16 co-incubated with TMX1 at 4 °C for 16 h or DDB1–DCAF16 co-incubated with TMX1 and BRD4BD2 at 4 °C for 16 h.

2: 模板辅助共价修饰DCAF16和具有优化的亲电弹头的降解物。a,随着TMX1浓度的增加,DDB1–DCAF16–BODIPY对BRD4BD1铽或BRD4BD2铽的TR-FRET信号(n=3)。b、 DDB1-DCAF16单独的完整蛋白质质谱,DDB1-DCAF16与TMX1在4℃共孵育16小时或DDB1-DCAF16与TMX1和BRD4BD2在4℃共孵育16小时。

c, Chemical structures of MMH1, MMH2, MMH1-NR and MMH2-NR. d, Western blot of BRD4 degradation in K562 cells that were treated with DMSO or different concentrations of MMH1, MMH2, dBET6 or MZ1 for 6 h. e, TR-FRET signal for DDB1–DCAF16–BODIPY to BRD4BD2-terbium with increasing concentrations of JQ1, MMH1, MMH2, MMH1-NR and MMH2-NR (n = 3).

c、 MMH1,MMH2,MMH1-NR和MMH2-NR的化学结构。d,用DMSO或不同浓度的MMH1,MMH2,dBET6或MZ1处理6小时的K562细胞中BRD4降解的Western印迹,随着JQ1,MMH1,MMH2,MMH1-NR和MMH2-NR浓度的增加,DDB1-DCAF16-BODIPY对BRD4BD2铽的TR-FRET信号(n=3)。

f, Western blots of BRD4 degradation in K562 cells that were treated with DMSO or different concentrations of MMH1, MMH1-NR, MMH2 or MMH2-NR for 16 h. All western blot data are representative of two independent measurements.Sou.

f、 用DMSO或不同浓度的MMH1,MMH1-NR,MMH2或MMH2-NR处理16小时的K562细胞中BRD4降解的蛋白质印迹。所有蛋白质印迹数据均代表两次独立测量。苏。

Data availability

数据可用性

Cryo-EM maps and coordinates have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank, under accession codes EMD-29714 and 8G46, respectively. Raw data files of whole-cell proteome mass spectrometry, IP-MS and Biotin pulldown mass spectrometry in this study have been deposited in the PRIDE Archive, including PXD047137, PXD047138, PXD047141 and PXD051457.

低温电磁图和坐标已分别以登录号EMD-29714和8G46保存在电子显微镜数据库和蛋白质数据库中。本研究中全细胞蛋白质组质谱,IP-MS和生物素下拉质谱的原始数据文件已保存在PRIDE档案中,包括PXD047137,PXD047138,PXD047141和PXD051457。

Intact mass spectrometry raw data related to Figs. 2b and 4e and Extended Data Figs. 2d,e, 4e,f and 7f are available for free download at ftp://massive.ucsd.edu/MSV000093731. Synthetic procedures of JQ1-derived compounds, schematics of sorting strategies and deep sequencing results for DCAF16-knockout clones are provided in the Supplementary Information.

与图2b和4e相关的完整质谱原始数据以及扩展数据图2d,e,4e,f和7f可免费下载ftp://massive.ucsd.edu/MSV000093731.补充信息中提供了JQ1衍生化合物的合成程序,DCAF16敲除克隆的分选策略示意图和深度测序结果。

Coding sequences of the DNA constructs used in this study and mammalian cell line authentication results are provided as supplementary tables. Source data are provided with this paper..

本研究中使用的DNA构建体的编码序列和哺乳动物细胞系鉴定结果作为补充表提供。本文提供了源数据。。

Code availability

代码可用性

Codes used to identify hits and generate volcano plots in screens, as well as codes used to generate dose−response curves and correlation plots, are provided as Supplementary Code.

作为补充代码提供了用于识别命中并在屏幕中生成火山图的代码,以及用于生成剂量-反应曲线和相关图的代码。

ReferencesFink, E. C. & Ebert, B. L. The novel mechanism of lenalidomide activity. Blood 126, 2366–2369 (2015).Article

参考文献Fink,E.C。&Ebert,B.L。来那度胺活性的新机制。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fuchs, O. Treatment of lymphoid and myeloid malignancies by immunomodulatory drugs. Cardiovasc. Hematol. Disord. Drug Targets 19, 51–78 (2019).Article

Fuchs,O。通过免疫调节药物治疗淋巴和骨髓恶性肿瘤。心血管。血液学。混乱。药物目标19,51-78(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, F., Aljahdali, I. A. M. & Ling, X. Molecular glues: capable protein-binding small molecules that can change protein–protein interactions and interactomes for the potential treatment of human cancer and neurodegenerative diseases. Int. J. Mol. Sci. 23, 6206 (2022).Article

Li,F.,Aljahdali,I.A.M。&Ling,X。分子胶:能够结合蛋白质的小分子,可以改变蛋白质-蛋白质相互作用和相互作用组,用于潜在治疗人类癌症和神经退行性疾病。Int.J.Mol.Sci。236206(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salami, J. & Crews, C. M. Waste disposal—an attractive strategy for cancer therapy. Science 355, 1163–1167 (2017).Article

Salami,J.&Crews,C.M。废物处理是癌症治疗的一种有吸引力的策略。科学3551163-1167(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).Article

Lai,A.C。和Crews,C.M。诱导蛋白质降解:一种新兴的药物发现范例。。16101-114(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hanzl, A. & Winter, G. E. Targeted protein degradation: current and future challenges. Curr. Opin. Chem. Biol. 56, 35–41 (2020).Article

Hanzl,A。&Winter,G.E。靶向蛋白质降解:当前和未来的挑战。货币。奥平。化学。生物学杂志56,35-41(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).Article

Banik,S.M.等人。溶酶体靶向嵌合体降解细胞外蛋白。自然584291-297(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731 (2020).Article

多诺万(Donovan,K.A.)等人绘制可降解激酶组的图谱为加速降解剂的开发提供了资源。细胞1831714-1731(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Wispelaere, M. et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10, 3468 (2019).Article

丙型肝炎病毒蛋白酶的小分子降解物降低了对耐药突变的敏感性。国家公社。103468(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).Article

来那度胺引起多发性骨髓瘤细胞中IKZF1和IKZF3的选择性降解。科学343301-305(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).Article

骨髓瘤药物来那度胺促进Ikaros蛋白的脑依赖性破坏。科学343305-309(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).Article

Han,T。等人。抗癌磺酰胺通过募集到DCAF15诱导RBM39降解来靶向剪接。科学356,eaal3755(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Slabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).Article

Slabicki,M。等人,《CDK抑制剂CR8作为一种分子胶降解剂,可消耗细胞周期蛋白K》。Nature 585293-297(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).Article

Mayor Ruiz,C.等人。通过可扩展的化学分析合理发现分子胶降解剂。自然化学。生物学161199-1207(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lv, L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9, e59994 (2020).Article

Lv,L.等人发现了一种促进CDK12-DDB1相互作用以触发细胞周期蛋白K降解的分子胶。eLife 9,e59994(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).Article

Boike,L.,Henning,N.J。和Nomura,D.K。共价药物发现的进展。。21881-898(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sijbesma, E. et al. Exploration of a 14-3-3 PPI pocket by covalent fragments as stabilizers. ACS Med. Chem. Lett. 12, 976–982 (2021).Article

Sijbesma,E.等人。通过共价片段作为稳定剂探索14-3-3 PPI口袋。ACS医学化学。利特。12976-982(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

King, E. A. et al. Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB. Cell Chem. Biol. 30, 394–402 (2023).Article

King,E.A.等人,《化学蛋白质组学》发现了一种靶向NF-κB的共价分子胶降解剂。细胞化学。生物学30394-402(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Toriki, E. S. et al. Rational chemical design of molecular glue degraders. ACS Cent. Sci. 9, 915–926 (2023).Article

Toriki,E.S.等人,《分子胶降解剂的合理化学设计》。ACS分。科学。9915-926(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).Article

Filippakopoulos,P。等人。选择性抑制BET溴结构域。《自然》4681067–1073(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blake, R.A. Abstract 4452: GNE-0011, a novel monovalent BRD4 degrader. Cancer Res. 79, 4452 (2019).Blake, R.E. et al. Tert-butyl (S)-2-(4-(phenyl)-6H-thieno[3,2-F][1,2,4]triazolo[4,3-A] [1,4]diazepin-6-YL) acetate derivatives and related compounds as bromodomain BRD4 inhibitors for treating cancer.

Blake,R.A.摘要4452:GNE-0011,一种新型单价BRD4降解剂。癌症研究794452(2019)。Blake,R.E.等人(S)-2-(4-(苯基)-6H-噻吩并[3,2-F][1,2,4]三唑并[4,3-A][1,4]二氮杂-6-基)乙酸叔丁酯衍生物及相关化合物作为治疗癌症的溴结构域BRD4抑制剂。

International Patent No. PCT/US2019/050576 (WO/2020/055976) (2020).Kostic, M. & Jones, L. H. Critical assessment of targeted protein degradation as a research tool and pharmacological modality. Trends Pharm. Sci. 41, 305–317 (2020).Article .

国际专利号PCT/US2019/050576(WO/2020/055976)(2020)。Kostic,M。&Jones,L.H。对靶向蛋白质降解作为研究工具和药理学模式的批判性评估。趋势药物科学。41305-317(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mons, E. et al. Exploring the versatility of the covalent thiol-alkyne reaction with substituted propargyl warheads: a deciding role for the cysteine protease. J. Am. Chem. Soc. 143, 6423–6433 (2021).Article

Mons,E.等人,探索巯基炔烃与取代炔丙基弹头共价反应的多功能性:半胱氨酸蛋白酶的决定性作用。J、 美国化学。Soc.1436423–6433(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).Article

Zhang,X.,Crowley,V.M.,Wucherpfennig,T.G.,Dix,M.M。&Cravatt,B.F。亲电子PROTAC通过参与DCAF16降解核蛋白。自然化学。生物学15737-746(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 (2017).Article

Winter,G.E.等人,BET溴结构域蛋白作为独立于CDK9募集的主要转录延伸因子起作用。分子细胞67,5-18(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).Article

Zengerle,M.,Chan,K.H。&Ciulli,A。选择性小分子诱导BET溴结构域蛋白BRD4的降解。ACS化学。生物学101770-1777(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holm, L. Dali server: structural unification of protein families. Nucleic Acids Res. 50, W210–W215 (2022).Article

。核酸研究50,W210–W215(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2023).Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).Article

van Kempen,M.等人。使用Foldseek快速准确地搜索蛋白质结构。美国国家生物技术公司。42243-246(2023)。。J、 分子生物学。372774-797(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X., Thielert, M., Li, H. & Cravatt, B. F. SPIN4 is a principal endogenous substrate of the E3 ubiquitin ligase DCAF16. Biochemistry 60, 637–642 (2021).Article

Zhang,X.,Thielert,M.,Li,H。&Cravatt,B.F。SPIN4是E3泛素连接酶DCAF16的主要内源性底物。生物化学60637-642(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024).Jung, M. et al. Affinity map of bromodomain protein 4 (BRD4) interactions with the histone H4 tail and the small molecule inhibitor JQ1. J. Biol. Chem. 289, 9304–9319 (2014).Article .

Hsia,O.等人。通过分子内二价胶靶向蛋白质降解。自然627204-211(2024)。Jung,M.等人,《溴结构域蛋白4(BRD4)与组蛋白H4尾部和小分子抑制剂JQ1相互作用的亲和图谱》。J、 生物。化学。2899304-9319(2014)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).Article

Backus,K.M.等人。天然生物系统中蛋白质组范围的共价配体发现。自然534570-574(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).Article

Spradlin,J.N.,Zhang,E。和Nomura,D.K。使用化学蛋白质组学平台重新想象药物的可药性。根据化学。第54号决议,1801-1813(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).Article

Lee,J。&Zhou,P。DCAFs,CUL4-DDB1泛素连接酶的缺失环节。分子细胞26775-780(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Watson, E. R. et al. Molecular glue CELMoD compounds are regulators of cereblon conformation. Science 378, 549–553 (2022).Article

Watson,E.R.等人。分子胶CELMoD化合物是大脑构象的调节剂。科学378549-553(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).Article

。自然化学。生物学14706-714(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).Article

Sievers,Q.L.等人通过CRBN定义沙利度胺类似物靶向的人C2H2锌指脱色。Science 362,eaat0572(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shergalis, A. G. et al. CRISPR screen reveals BRD2/4 molecular glue-like degrader via recruitment of DCAF16. ACS Chem. Biol. 18, 331–339 (2023).Article

Shergalis,A.G.等人的CRISPR筛选通过募集DCAF16揭示了BRD2/4分子胶样降解物。ACS化学。生物学18331-339(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dong, G., Ding, Y., He, S. & Sheng, C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J. Med. Chem. 64, 10606–10620 (2021).Article

Dong,G.,Ding,Y.,He,S。&Sheng,C。用于靶向蛋白质降解的分子胶:从偶然到理性发现。J、 医学化学。6410606-10620(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lu, D. et al. Applications of covalent chemistry in targeted protein degradation. Chem. Soc. Rev. 51, 9243–9261 (2022).Article

Lu,D.等人。共价化学在靶向蛋白质降解中的应用。化学。《社会》第519243-9261号修订本(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).Article

Sanchez-Garcia,R.等人,《DeepEMhancer:低温电磁体积后处理的深度学习解决方案》。Commun公司。生物学4874(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).Article

Doench,J.G.等人优化了sgRNA设计,以最大程度地提高CRISPR-Cas9的活性并最大程度地减少脱靶效应。美国国家生物技术公司。34184-191(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Slabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164–168 (2020).Article

Slabicki,M。等人。小分子诱导聚合引发BCL6降解。自然588164-168(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7, e38430 (2018).Article

多诺万,K.A。等人。沙利度胺促进SALL4的降解,SALL4是一种与杜安射线综合征有关的转录因子。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cavadini, S. et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).Article

Cavadini,S。等人。COP9信号体对Cullin-RING泛素E3连接酶的调节。自然531598-603(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article

Ritchie,M.E.等人limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meier, F. et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).Article

Meier,F。等人。diaPASEF:并行累积-串行碎片结合数据独立采集。自然方法171229-1236(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).Article

Demichev,V.,Messner,C.B.,Vernardis,S.I.,Lilley,K.S。&Ralser,M.DIA-NN:神经网络和干扰校正能够在高通量下实现深度蛋白质组覆盖。自然方法17,41-44(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abdulrahman, W. et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal. Biochem. 385, 383–385 (2009).Article

Abdulrahman,W。等人。一组杆状病毒转移载体,用于筛选亲和标签和平行表达策略。肛门。生物化学。385383-385(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fan, M. et al. Covalent disruptor of YAP-TEAD association suppresses defective Hippo signaling. eLife 11, e78810 (2022).Article

Fan,M。等人。YAP-TEAD关联的共价干扰因子抑制有缺陷的Hippo信号传导。eLife 11,e78810(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Z. & Marshall, A. G. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998).Article

Zhang,Z.&Marshall,A.G。一种用于电喷雾质荷比光谱快速自动电荷状态反卷积的通用算法。J、 美国社会质谱。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).Article

Marty,M.T.等人,《质量和离子迁移率谱的贝叶斯反卷积:从二元相互作用到多分散系综》。肛门。化学。874370–4376(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).Article

Schorb,M.,Haberbosch,I.,Hagen,W.J.H.,Schwab,Y。&Mastronarde,D.N。自动透射电子显微镜软件工具。自然方法16471-477(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article

Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).Article

Bepler,T。等人。用于低温电子显微照片中粒子拾取的阳性未标记卷积神经网络。自然方法161153-1160(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).Article

Punjani,A。&Fleet,D。J。3D变异性分析:解决单粒子cryo-EM的连续柔性和离散异质性。J。Struct。生物学213107702(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).Article

Rosenthal,P.B。&Henderson,R。单粒子电子冷冻显微镜中粒子取向,绝对手和对比度损失的最佳测定。J、 分子生物学。333721-745(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).Article

Scheres,S.H。&Chen,S。防止低温电磁结构测定中的过度拟合。自然方法9853-854(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).Article

Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。晶体学报。D、 生物。晶体学。66486-501(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).Article

Faust,T.B。等人。结构互补性促进E7820介导的DCAF15对RBM39的降解。自然化学。生物学16,7-14(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sheppard, G. S. et al. Discovery of N-ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET bromodomain inhibitor with selectivity for the second bromodomain. J. Med. Chem. 63, 5585–5623 (2020).Article .

Sheppard,G.S.等人发现N-乙基-4-[2-(4-氟-2,6-二甲基苯氧基)-5-(1-羟基-1-甲基乙基)苯基]-6-甲基-7-氧代-1H-吡咯并[2,3-c]吡啶-2-甲酰胺(ABBV-744),一种对第二溴结构域具有选择性的BET溴结构域抑制剂。J、 医学化学。635585-5623(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).Article

Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。蛋白质科学。27,14-25(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. Struct. Biol. 74, 519–530 (2018).Article

Croll,T.I.ISOLDE:一个物理真实的环境,用于将模型构建成低分辨率电子密度图。晶体学报。D、 结构。生物学74519-530(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D Struct. Biol. 73, 112–122 (2017).Article

Long,F。等人。AceDRG:配体的立体化学描述生成器。晶体学报。D结构。生物学73112-122(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nicholls, R. A. et al. Modelling covalent linkages in CCP4. Acta Crystallogr. D Struct. Biol. 77, 712–726 (2021).Article

Nicholls,R.A.等人,CCP4共价键建模。晶体学报。D结构。生物学77712-726(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).Article

Murshudov,G.N。等人,REFMAC5,用于改进大分子晶体结构。晶体学报。D生物晶体学。67355-367(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).Article

Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。D生物晶体学。66213-221(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).Article

Afonine,P.V.等人,《PHENIX中用于低温电磁和晶体学的真实空间改进》。晶体学报。D结构。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).Article

Krisinel,E。&Henrick,K。二级结构匹配(SSM),一种用于三维快速蛋白质结构比对的新工具。晶体学报。D生物晶体学。602256-2268(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).Article

Cardone,G.,Heymann,J.B。和Steven,A.C。一个数字并不适合所有人:在低温电磁重建中绘制分辨率的局部变化。J、 结构。生物学184226-236(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).Article

Tan,Y.Z.等人,通过倾斜解决单粒子低温电磁中的首选样品取向。自然方法14793-796(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).Article

Morin,A。等人,协作从软件中获得最大收益。eLife 2,e01456(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the Broad Institute Walk-Up Sequencing team, the Broad Institute Genetic Perturbation Platform and the Broad Institute PRISM team for technical assistance. We thank the staff of the Harvard Cryo-Electron Microscopy Center for Structural Biology for their technical expertise and support during grid screening and data collection.

下载参考文献致谢我们感谢Broad Institute Walk Up测序团队,Broad Institute遗传扰动平台和Broad Institute PRISM团队的技术援助。我们感谢哈佛低温电子显微镜结构生物学中心的工作人员在网格筛选和数据收集过程中的技术专业知识和支持。

We acknowledge the SBGrid consortium for assistance with structural biology software packages. We thank members of the Eck laboratory for valuable structural discussions. We are grateful to all members of the Ebert, Fischer and Gray laboratories for discussions on many project-related topics.Y.-D.L.

我们感谢SBGrid联盟对结构生物学软件包的帮助。我们感谢Eck实验室的成员进行了宝贵的结构讨论。我们感谢Ebert,Fischer和Gray实验室的所有成员就许多项目相关主题进行的讨论。Y、 -D.L。

was supported by a Harvard Institutional Stipend and the Genevieve Castrodale Carpenter Graduate Financial Aid Fund. M.W.M. was supported by the Chleck Fellowship Foundation and the Fujifilm Fellowship. M.T. is a CPRIT Scholar in cancer research, and M.T. thanks the CPRIT for research funding support (RR220012).

由哈佛大学奖学金和Genevieve Castrodale Carpenter研究生资助基金资助。M、 W.M.得到了Chleck Fellowship Foundation和Fujifilm Fellowship的支持。M、 T.是CPRIT癌症研究学者,M.T.感谢CPRIT的研究资助(RR220012)。

H.Y. was supported by the National Institutes of Health (NIH) grants (K00CA253754 and K99CA287069). This work was supported by NIH grants R01HL082945, P01CA066996, P50CA206963 and R35CA253125 (to B.L.E.); the Howard Hughes Medical Institute (to B.L.E.); NIH grants R01CA262188 and P01CA066996 (to E.S.F.); the Mark Foundation for Cancer Research 19-001-ELA (to E.S.F.); NIH High End Instrumentation grant (1S10OD028697-01) (to N.S.G.); departmental funds from Stanford Chemical and Systems Biology and Stanford Cancer Institute (to N.S.G.); NIH grants U24DK116204, R01CA219850, R01CA233800 and R21CA247671 (to J.A.M.); the Mark Foundation for Cancer Research; and the Massachusetts Life Science Center (to J.A.M.).Author informationAuthor notesThese authors contributed equally: Yen-Der Li, Mich.

H、 Y.得到了美国国立卫生研究院(NIH)的资助(K00CA253754和K99CA287069)。这项工作得到了NIH拨款R01HL082945,P01CA066996,P50CA206963和R35CA253125(授予B.L.E.)的支持;霍华德·休斯医学研究所(致B.L.E.);NIH授予R01CA262188和P01CA066996(授予E.S.F.);马克癌症研究基金会19-001-ELA(致E.S.F.);NIH高端仪器拨款(1S10OD028697-01)(授予N.S.G.);斯坦福化学与系统生物学和斯坦福癌症研究所(致N.S.G.)的部门资金;NIH授予U24DK116204,R01CA219850,R01CA233800和R21CA247671(授予J.A.M.);马克癌症研究基金会;和马萨诸塞州生命科学中心(致J.A.M.)。作者信息作者注意到这些作者做出了同样的贡献:Yen Der Li,Mich。

PubMed Google ScholarMichelle W. MaView author publicationsYou can also search for this author in

PubMed谷歌ScholarMichelle W.MaView作者出版物您也可以在

PubMed Google ScholarMuhammad Murtaza HassanView author publicationsYou can also search for this author in

PubMed Google ScholarMuhammad Murtaza HassanView作者出版物您也可以在

PubMed Google ScholarMoritz HunkelerView author publicationsYou can also search for this author in

PubMed Google Scholarmaritz HunkelerView作者出版物您也可以在

PubMed Google ScholarMingxing TengView author publicationsYou can also search for this author in

PubMed Google ScholarmamingXing TengView作者出版物您也可以在

PubMed Google ScholarKedar PuvarView author publicationsYou can also search for this author in

PubMed Google ScholarJustine C. RutterView author publicationsYou can also search for this author in

PubMed Google ScholarJustine C.RutterView作者出版物您也可以在

PubMed Google ScholarRyan J. LumpkinView author publicationsYou can also search for this author in

PubMed Google ScholarRyan J.LumpkinView作者出版物您也可以在

PubMed Google ScholarBrittany SandovalView author publicationsYou can also search for this author in

PubMed Google ScholarBrittany SandovalView作者出版物您也可以在

PubMed Google ScholarCyrus Y. JinView author publicationsYou can also search for this author in

PubMed Google ScholarCyrus Y.JinView作者出版物您也可以在

PubMed Google ScholarAnna M. SchmokerView author publicationsYou can also search for this author in

PubMed Google ScholarAnna M.SchmokerView作者出版物您也可以在

PubMed Google ScholarScott B. FicarroView author publicationsYou can also search for this author in

PubMed Google ScholarScott B.FicarroView作者出版物您也可以在

PubMed Google ScholarHakyung CheongView author publicationsYou can also search for this author in

PubMed谷歌学者Hakyung CheongView作者出版物您也可以在

PubMed Google ScholarRebecca J. MetivierView author publicationsYou can also search for this author in

PubMed Google ScholarRebecca J.MetivierView作者出版物您也可以在

PubMed Google ScholarMichelle Y. WangView author publicationsYou can also search for this author in

PubMed谷歌ScholarMichelle Y.WangView作者出版物您也可以在

PubMed Google ScholarShawn XuView author publicationsYou can also search for this author in

PubMed Google ScholarShawn XuView作者出版物您也可以在

PubMed Google ScholarWoong Sub ByunView author publicationsYou can also search for this author in

PubMed Google ScholarWoong Sub ByunView作者出版物您也可以在

PubMed Google ScholarBrian J. GroendykeView author publicationsYou can also search for this author in

PubMed Google ScholarBrian J.GroendykeView作者出版物您也可以在

PubMed Google ScholarInchul YouView author publicationsYou can also search for this author in

PubMed Google ScholarInchul YouView作者出版物您也可以在

PubMed Google ScholarLogan H. SiguaView author publicationsYou can also search for this author in

PubMed Google ScholarLogan H.SiguaView作者出版物您也可以在

PubMed Google ScholarIsidoro TavaresView author publicationsYou can also search for this author in

PubMed Google ScholarIsidoro TavaresView作者出版物您也可以在

PubMed Google ScholarCharles ZouView author publicationsYou can also search for this author in

PubMed Google ScholarCharles ZouView作者出版物您也可以在

PubMed Google ScholarJonathan M. TsaiView author publicationsYou can also search for this author in

PubMed Google ScholarJonathan M.TsaiView作者出版物您也可以在

PubMed Google ScholarPaul M. C. ParkView author publicationsYou can also search for this author in

PubMed Google ScholarPaul M.C.ParkView作者出版物您也可以在

PubMed Google ScholarHojong YoonView author publicationsYou can also search for this author in

PubMed Google ScholarHojong YoonView作者出版物您也可以在

PubMed Google ScholarFelix C. MajewskiView author publicationsYou can also search for this author in

PubMed Google ScholarFelix C.MajewskiView作者出版物您也可以在

PubMed Google ScholarHaniya T. SperlingView author publicationsYou can also search for this author in

PubMed Google ScholarHaniya T.SperlingView作者出版物您也可以在

PubMed Google ScholarJarrod A. MartoView author publicationsYou can also search for this author in

PubMed Google ScholarJun QiView author publicationsYou can also search for this author in

PubMed Google ScholarJun QiView作者出版物您也可以在

PubMed Google ScholarRadosław P. NowakView author publicationsYou can also search for this author in

PubMed Google Scholaradosław P.NowakView作者出版物您也可以在

PubMed Google ScholarKatherine A. DonovanView author publicationsYou can also search for this author in

PubMed Google ScholarKatherine A.DonovanView作者出版物您也可以在

PubMed Google ScholarMikołaj SłabickiView author publicationsYou can also search for this author in

PubMed Google Scholarmamikołaj SłabickiView作者出版物您也可以在

PubMed Google ScholarNathanael S. GrayView author publicationsYou can also search for this author in

PubMed Google ScholarNathanael S.GrayView作者出版物您也可以在

PubMed Google ScholarEric S. FischerView author publicationsYou can also search for this author in

PubMed谷歌学者S.FischerView作者出版物您也可以在

PubMed Google ScholarBenjamin L. EbertView author publicationsYou can also search for this author in

PubMed Google ScholarBenjamin L.EbertView作者出版物您也可以在

PubMed Google ScholarContributionsY.-D.L., B.L.E., E.S.F. and N.S.G. conceptualized and initiated the study. Y.-D.L. designed and performed functional genomics studies, mutagenesis screens and cellular validation experiments, with the help of J.C.R., B.S., S.X., W.S.B., I.Y., C.Z., J.M.T., P.M., C.P., H.Y., H.T.S.

PubMed谷歌学术贡献-D、 L.,B.L.E.,E.S.F.和N.S.G.概念化并启动了这项研究。Y、 -在J.C.R.,B.S.,S.X.,W.S.B.,I.Y.,C.Z.,J.M.T.,P.M.,C.P.,H.Y.,H.T.S.的帮助下,D.L.设计并进行了功能基因组学研究,诱变筛选和细胞验证实验。

and M.S. M.W.M. designed and carried out biochemical studies and structural analyses, with the help of M.H., K.P., C.Y.J. and R.P.N. M.M.H. and M.T. developed and synthesized covalent BRD4 molecular glue degraders, with the help of B.J.G. and F.C.M. R.J.L. and K.A.D. performed whole-cell proteomics and IP-MS experiments.

M.S.M.W.M.在M.H.,K.P.,C.Y.J.和R.P.N.的帮助下,设计并进行了生化研究和结构分析。M.M.H.和M.T.在B.J.G.和F.C.M.的帮助下,开发并合成了共价BRD4分子胶降解剂。R.J.L.和K.A.D.进行了全细胞蛋白质组学和IP-MS实验。

A.M.S. performed DCAF16, GAK intact mass spectrometry and GAK digested mass spectrometry experiments, with the help of H.C. S.B.F. performed DCAF16 intact mass spectrometry experiments, with the help of I.T. R.J.M. performed MMH2-Biotin pulldown mass spectrometry experiments. M.Y.W. performed AlphaScreen experiments, with the help of L.H.S.

A、 。M、 Y.W.在L.H.S.的帮助下进行了AlphaScreen实验。

B.L.E., E.S.F., N.S.G., J.A.M. and J.Q. supervised the project. Y.-D.L., M.W.M., M.M.H., B.L.E., E.S.F. and N.S.G. wrote the manuscript, with input from all authors.Corresponding authorsCorrespondence to.

B、 L.E.,E.S.F.,N.S.G.,J.A.M.和J.Q.监督了该项目。Y、 -D.L.,M.W.M.,M.M.H.,B.L.E.,E.S.F.和N.S.G.在所有作者的投入下撰写了手稿。通讯作者通讯。

Nathanael S. Gray, Eric S. Fischer or Benjamin L. Ebert.Ethics declarations

Nathanel S.Gray,Eric S.Fischer或Benjamin L.Ebert。道德宣言

Competing interests

相互竞争的利益

B.L.E. has received research funding from Celgene, Deerfield, Novartis and Calico Life Sciences and consulting fees from AbbVie. He is a member of the scientific advisory board (SAB) for and a shareholder of Neomorph, Inc., TenSixteen Bio, Skyhawk Therapeutics and Exo Therapeutics. E.S.F. is a founder, SAB member and equity holder of Civetta Therapeutics, Lighthorse Therapeutics, Proximity Therapeutics and Neomorph, Inc.

B、 。他是Neomorph,Inc.,TenSixteen Bio,Skyhawk Therapeutics和Exo Therapeutics的科学顾问委员会(SAB)成员和股东。E、 S.F.是麝香猫疗法、Lighthorse Therapeutics、邻近疗法和Neomorph,Inc.的创始人、SAB成员和股东。

(board of directors). He is an equity holder in and SAB member for Avilar Therapeutics and Photys Therapeutics and a consultant to Novartis, Sanofi, EcoR1 Capital and Deerfield. The Fischer laboratory receives or has received research funding from Deerfield, Novartis, Ajax, Interline and Astellas. N.S.G.

(董事会)。他是Avilar Therapeutics和Photys Therapeutics的股东和SAB成员,也是诺华、赛诺菲、EcoR1 Capital和迪尔菲尔德的顾问。菲舍尔实验室收到或已经收到迪尔菲尔德、诺华、阿贾克斯、Interline和Astellas的研究资金。N、 S.G。

is a founder, SAB member and equity holder in Syros, C4, Allorion, Lighthorse, Voronoi, Inception, Matchpoint, CobroVentures, GlaxoSmithKline, Larkspur (board member), Shenandoah (board member) and Soltego (board member). The Gray laboratory receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Jansen, Kinogen, Arbella, Deerfield, Springworks, Interline and Sanofi.

是Syros、C4、Allorion、Lighthorse、Voronoi、Inception、Matchpoint、CobroVentures、葛兰素史克、Larkspur(董事会成员)、Shenandoah(董事会成员)和Soltego(董事会成员)的创始人、SAB成员和股东。格雷实验室接受或已经接受了诺华、武田、阿斯特拉斯、太和、詹森、Kinogen、Arbella、迪尔菲尔德、Springworks、Interline和赛诺菲的研究资助。

M.S. has received research funding from Calico Life Sciences. K.A.D. receives or has received consulting fees from Kronos Bio and Neomorph, Inc. J.Q. is an equity holder of Epiphanes and Talus Bioscience and receives or has received research funding from Novartis. J.A.M. is a founder and equity holder of and advisor to Entact Bio, serves on the SAB of 908 Devices and receives or has received sponsored research funding from Vertex, AstraZeneca, Taiho, Springworks, TUO Therapeutics and Bruker.

M、 美国已获得Calico Life Sciences的研究资助。K、 。J、 A.M.是Entact Bio的创始人、股东和顾问,在SAB服务908台设备,并获得或已经获得Vertex、AstraZeneca、Taiho、Springworks、TUO Therapeutics和Bruker的赞助研究资金。

Y.-D.L. is currently employed by Leerink Partners. M.W.M. is currently employed by Novartis Venture Fund. K.P. is currently employed by AbbVie. R.J.L. is currently employed by .

Y、 -D.L.目前受雇于Leerink Partners。M、 W.M.目前受雇于诺华风险基金。K、 P.目前受雇于AbbVie。R、 J.L.目前受雇于。

Peer review

同行评审

Peer review information

同行评审信息

Nature Chemical Biology thanks Craig Crews and the other, anonymous reviewers for their contribution to the peer review of this work.

《自然化学生物学》感谢克雷格·克鲁斯(CraigCrews)和其他匿名审稿人对这项工作的同行评议做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Degradation characterization of JQ1-derived compounds.a. The domain structure of BRD4. b. Schematic of BRD4BD stability reporter.

。。b、 BRD4BD稳定性报告器的示意图。

IRES, internal ribosome entry site. c. Flow cytometry analysis of BRD4BD1-eGFP and BRD4BD2-eGFP degradation in K562 cells that were treated with increasing concentrations of GNE11 for 16 h (n = 3). d. Western blots of BRD4 degradation in K562 cells that were treated with JQ1, TMX1 or GNE11 at 1 μM for increasing time points.

IRES,内部核糖体进入位点。c、 用增加浓度的GNE11处理16小时(n=3)的K562细胞中BRD4BD1-eGFP和BRD4BD2-eGFP降解的流式细胞术分析。d、 用JQ1,TMX1或GNE11以1μM处理K562细胞以增加时间点的BRD4降解的蛋白质印迹。

e. Flow cytometry analysis of BRD4BD1-eGFP and BRD4BD2-eGFP degradation in K562 cells that were treated with increasing concentrations of TMX1 for 16 h (n = 3). f. Quantitative whole proteome analysis of K562 cells after treatment with JQ1 at 0.5 μM (n = 1) or DMSO (n = 3) for 5 h. Statistical analysis was performed using a two-sided moderated t-test as implemented in the limma package.

e、 用增加浓度的TMX1处理16小时(n=3)的K562细胞中BRD4BD1-eGFP和BRD4BD2-eGFP降解的流式细胞术分析。f、 用JQ1以0.5μM(n=1)或DMSO(n=3)处理K562细胞5小时后,对K562细胞进行定量全蛋白质组分析。使用limma软件包中实施的双侧缓和t检验进行统计分析。

g. Western blots of BRD4 degradation in K562 cells that were treated with DMSO, TMX1 at 1 μM, GNE11 at 1 μM, MG132 at 10 μM, MLN7243 at 1 μM, and MLN4924 at 1 μM for 16 h. All western blot data are representative of two independent measurements.Source dataExtended Data Fig. 2 Covalent recruitment of DCAF16 is facilitated by BRD4BD2.a.

g、 用DMSO,1μM的TMX1,1μM的GNE11,10μM的MG132,1μM的MLN7243和1μM的MLN4924处理16小时的K562细胞中BRD4降解的蛋白质印迹。所有蛋白质印迹数据代表两个独立的测量。源数据扩展数据图2 BRD4BD2促进了DCAF16的共价募集。

Flag immunoprecipitation (IP) followed by mass spectrometry in 293 T cells overexpressing BRD4BD2-Flag of cells treated with either MLN4924 plus GNE11 both at 1 μM (n = 4), or MLN4924 at 1 μM only (n = 4). Fold enrichment and p-values were calculated by comparing GNE11/MLN4924 treated samples to MLN4924 only control samples.

。通过比较GNE11/MLN4924处理的样品与仅MLN4924的对照样品来计算倍数富集和p值。

Statistical analysis was performed using a two-sided moderated t-test as implemented in the limma .

使用limma中实施的双侧调节t检验进行统计分析。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleLi, YD., Ma, M.W., Hassan, M.M. et al. Template-assisted covalent modification underlies activity of covalent molecular glues.

转载和许可本文引用本文Li,YD.,Ma,M.W.,Hassan,M.M.等人。模板辅助共价修饰是共价分子胶活性的基础。

Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01668-4Download citationReceived: 27 February 2024Accepted: 05 June 2024Published: 29 July 2024DOI: https://doi.org/10.1038/s41589-024-01668-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Chem Biol(2024)。https://doi.org/10.1038/s41589-024-01668-4Download引文收到日期:2024年2月27日接受日期:2024年6月5日发布日期:2024年7月29日OI:https://doi.org/10.1038/s41589-024-01668-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供