EN
登录

HMGA1通过提高TKT介导的戊糖磷酸途径的上调来促进食管鳞状细胞癌的进展

HMGA1 promotes the progression of esophageal squamous cell carcinoma by elevating TKT-mediated upregulation of pentose phosphate pathway

Nature 等信源发布 2024-07-30 23:39

可切换为仅中文


AbstractEsophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown.

摘要食管鳞状细胞癌(ESCC)预后不良,治疗效果不佳。代谢失调导致多种癌症的无限制生长。然而,ESCC进展中的异常代谢,例如高度活化的戊糖磷酸途径(PPP)仍然未知。

Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells.

在这里,我们报告说,高迁移率族AT钩1(HMGA1)是一种参与染色质重塑的结构转录因子,通过上调PPP促进ESCC的发展。我们发现HMGA1在ESCC中高度表达。HMGA1升高促进了ESCC细胞的恶性表型。

Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway.

HMGA1的条件性敲除显着降低了4-硝基喹啉-1-氧化物(4NQO)诱导的小鼠食管肿瘤发生。。通过转录组测序,我们发现HMGA1上调了转酮醇酶(TKT)的表达,该酶催化非氧化PPP中的可逆反应,以与糖酵解途径交换代谢物。

HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT.

。HMGA1的过表达通过激活TKT上调PPP并促进ESCC细胞的存活。我们进一步表征了HMGA1通过与转录因子SP1相互作用并增强其与TKT启动子的结合来促进TKT的转录。

Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted .

用抑制剂oxythiamine靶向TKT的治疗剂可减少HMGA1诱导的ESCC细胞增殖和肿瘤生长。总之,在这项研究中,我们通过上调TKT介导的PPP激活,确定了HMGA1在ESCC中的新作用。我们的结果为HMGA1/TKT/PPP在ESCC肿瘤发生和靶向中的作用提供了新的见解。

IntroductionEsophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. The 5-year survival rate of esophageal cancer is less than 20%, which is mainly caused by the inability to diagnose at the early stage, high invasiveness of the tumor, and lacking of effective treatments [1,2,3,4].

简介食管鳞状细胞癌(ESCC)和食管腺癌(EAC)是食管癌的两种主要亚型。食管癌的5年生存率低于20%,这主要是由于无法在早期诊断,肿瘤的高侵袭性以及缺乏有效的治疗[1,2,3,4]。

There is an urgent need to find effective molecular targets for the treatment of esophageal cancer.Metabolomics has become a new platform for biomarker discovery [5, 6]. Cell bioenergetics abnormality is a hallmark of cancer [7, 8]. To support tumor growth, cancer cells make a variety of metabolic adaptations.

。代谢组学已成为生物标志物发现的新平台[5,6]。细胞生物能量异常是癌症的标志[7,8]。为了支持肿瘤生长,癌细胞进行各种代谢适应。

Metabolites not only act as substrates for the generation of bioenergetics, but also regulate biomass synthesis and gene expression of cancer cells [9]. For example, pentose phosphate pathway (PPP) generates pentose phosphate, such as ribose 5-phosphate (R5P), to provide substrates for nucleic acid synthesis and NADPH and GSH for the removal of reactive oxygen species (ROS) and generation of fatty acid within cells [10,11,12,13].

代谢物不仅作为生物能量产生的底物,而且调节癌细胞的生物量合成和基因表达。例如,磷酸戊糖途径(PPP)产生磷酸戊糖,如核糖5-磷酸(R5P),为核酸合成和NADPH和GSH提供底物,用于去除活性氧(ROS)和细胞内脂肪酸的产生[10,11,12,13]。

Thus, PPP plays a key role in meeting the needs of cancer cells for anabolism and resisting oxidative stress. Cancer cells directly or indirectly increase glucose flux to PPP [14]. Elevated PPP in cancer cells may thus distinguish them from normal cells. Targeting PPP could be a promising option for cancer treatment.PPP is regulated by a variety of factors, such as tumor suppressors, oncoproteins, and intracellular metabolites [15].

因此,PPP在满足癌细胞合成代谢和抵抗氧化应激的需求方面起着关键作用。癌细胞直接或间接增加葡萄糖通量至PPP(14)。因此,癌细胞中PPP升高可能使其与正常细胞区分开。靶向PPP可能是癌症治疗的有希望的选择。。

Glucose-6-phosphate (G6P) dehydrogenase (G6PD) is a rate-limiting enzyme in oxidative PPP and determines the flux of G6P into the pathway [16, 17]. The transketolase (TKT) is a key enzyme in non-oxidative PPP [18, 19] and bidirectionally regulates carbon flux between.

葡萄糖-6-磷酸脱氢酶(G6P)是氧化PPP中的限速酶,决定了G6P进入途径的通量[16,17]。转酮酶(TKT)是非氧化PPP中的关键酶[18,19],并双向调节碳通量。

Data availability

数据可用性

The authors declare that all the data supporting our findings in the study are available within the paper.

作者声明,论文中提供了支持我们研究结果的所有数据。

ReferencesWatanabe M, Otake R, Kozuki R, Toihata T, Takahashi K, Okamura A, et al. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg Today. 2020;50:12–20.Article

参考文献Watanabe M,Otake R,Kozuki R,Toihata T,Takahashi K,Okamura A等。食管癌患者多学科治疗的最新进展。Surg今天。2020年;50:12–20.文章

PubMed

PubMed

Google Scholar

谷歌学者

Yang T, Hui R, Nouws J, Sauler M, Zeng T, Wu Q. Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J Transl Med. 2022;20:127.Article

Yang T,Hui R,Nouws J,Sauler M,Zeng T,Wu Q.食管鳞状细胞癌进展的非靶向代谢组学分析。J Transl Med。2022;20: 127、条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li B, Hong P, Zheng CC, Dai W, Chen WY, Yang QS, et al. Identification of miR-29c and its target FBXO31 as a key regulatory mechanism in esophageal cancer chemoresistance: functional validation and clinical significance. Theranostics. 2019;9:1599–613.Article

Li B,Hong P,Zheng CC,Dai W,Chen WY,Yang QS,等。miR-29c及其靶标FBXO31作为食管癌化疗耐药关键调控机制的鉴定:功能验证和临床意义。治疗学。2019年;9: 1599-613.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.Article

Song Y,Li L,Ou Y,Gao Z,Li E,Li X,等。食管鳞状细胞癌基因组改变的鉴定。自然。2014年;509:91–5.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.Article

Martínez Reyes I,Chandel NS。癌症代谢:展望未来。Nat Rev癌症。2021年;21:669–80.文章

PubMed

PubMed

Google Scholar

谷歌学者

Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.Article

Johnson CH,Ivanisevic J,Siuzdak G.代谢组学:超越生物标志物和机制。Nat Rev Mol细胞生物学。2016年;17: 451-9.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Commun. 2022;42:1049–82.Article

葛T,顾X,贾R,葛S,柴P,庄A,等。癌症中代谢重编程和表观遗传学之间的串扰:机制和治疗机会的最新进展。癌症社区。2022年;42:1049–82.文章

Google Scholar

谷歌学者

Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics. 2020;10:7053–69.Article

Li H,Feng Z,He ML.脂质代谢改变有助于并维持癌症干细胞的特性。治疗学。2020年;10: 7053–69.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34:355–77.Article

巴甫洛娃NN,朱J,汤普森CB。癌症代谢的标志:仍在出现。细胞代谢。2022年;34:355–77.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma R, Ji T, Zhang H, Dong W, Chen X, Xu P, et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol. 2018;20:21–7.Article

Ma R,Ji T,Zhang H,Dong W,Chen X,Xu P等。Pck1指导的糖原代谢程序调节记忆CD8(+)T细胞的形成和维持。Nat细胞生物学。2018年;20: 21-7.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Balsa E, Perry EA, Bennett CF, Jedrychowski M, Gygi SP, Doench JG, et al. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun. 2020;11:2714.Article

Balsa E,Perry EA,Bennett CF,Jedrychowski M,Gygi SP,Doench JG等。线粒体疾病复合体I中NADPH产生缺陷会导致炎症和细胞死亡。纳特公社。2020年;11: 第2714条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol. 2021;46:102065.Article

Ying M,You D,Zhu X,Cai L,Zeng S,Hu X.乳酸和谷氨酰胺在葡萄糖剥夺条件下支持癌细胞中NADPH的产生。氧化还原生物。2021年;46:102065.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38:167–97.Article

Hayes JD,Dinkova Kostova AT,Tew KD。癌症中的氧化应激。癌细胞。2020年;38:167–97.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

De Jesus A, Keyhani-Nejad F, Pusec CM, Goodman L, Geier JA, Stoolman JS, et al. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Mol Cell. 2022;82:1261–77.e9.Article

De Jesus A,Keyhani Nejad F,Pusec CM,Goodman L,Geier JA,Stoolman JS等。己糖激酶1细胞定位调节葡萄糖的代谢命运。摩尔细胞。2022年;82:1261–77.e9.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5:592–602.Article

Jiang P,Du W,Wu M.癌症中戊糖磷酸途径的调节。蛋白质细胞。2014年;5: 592-602.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 2021;11:5232–47.Article

Tang YC,Hsiao JR,Jiang SS,Chang JY,Chu PY,Liu KJ等。c-MYC指导的NRF2通过葡萄糖-6-磷酸脱氢酶和转酮酶激活驱动头颈癌的恶性进展。治疗学。2021年;11: 5232-47.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chu CS, Freedman DO. Tafenoquine and G6PD: a primer for clinicians. J travel Med. 2019;26:taz023.PubMed

Chu CS,Freedman DO。Tafenoquine和G6PD:临床医生的入门读物。旅行医学杂志2019;26:taz023.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dominguez-Villar M. TKT deficiency puts T(regs) to rest. Nat Metab. 2022;4:503–4.Article

Dominguez-Villar M.TKT缺乏症使T(regs)休息。自然代谢。2022年;4:

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang HL, Chen Y, Wang YQ, Tao EW, Tan J, Liu QQ, et al. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun. 2022;13:6121.Article

Wang HL,Chen Y,Wang YQ,Tao EW,Tan J,Liu QQ等。Sirtuin5通过保持核苷酸的可用性来保护结直肠癌免受DNA损伤。纳特公社。2022年;13: 第6121条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tseng CW, Kuo WH, Chan SH, Chan HL, Chang KJ, Wang LH. Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res. 2018;78:2799–812.Article

曾CW,郭文华,陈SH,陈HL,张KJ,王LH。转酮酶通过α-酮戊二酸信号通路调节代谢开关以控制乳腺癌细胞转移。癌症研究2018;78:2799–812.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li M, Zhao X, Yong H, Xu J, Qu P, Qiao S, et al. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 2022;13:99.Article

。。2022年;13: 99、条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tian N, Liu Q, Li Y, Tong L, Lu Y, Zhu Y, et al. Transketolase deficiency in adipose tissues protects mice from diet-induced obesity by promoting lipolysis. Diabetes. 2020;69:1355–67.Article

田恩,刘强,李毅,童立,陆毅,朱毅,等。脂肪组织中的转酮醇酶缺乏通过促进脂肪分解来保护小鼠免受饮食诱导的肥胖。糖尿病。2020年;69:1355–67.文章

PubMed

PubMed

Google Scholar

谷歌学者

Hao S, Meng Q, Sun H, Li Y, Li Y, Gu L, et al. The role of transketolase in human cancer progression and therapy. Biomed Pharmacother. 2022;154:113607.Article

郝S,孟Q,孙H,李Y,李Y,顾L,等。转酮醇酶在人类癌症进展和治疗中的作用。Biomed Pharmacother。2022年;154:113607.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ricciardelli C, Lokman NA, Cheruvu S, Tan IA, Ween MP, Pyragius CE, et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin Exp Metastasis. 2015;32:441–55.Article

Ricciardelli C,Lokman NA,Cheruvu S,Tan IA,Ween MP,Pyragius CE等。转酮醇酶在转移性腹膜植入物中上调并促进卵巢癌细胞增殖。临床试验转移。2015年;32:441–55.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shen Z, Wu J, Gao Z, Zhang S, Chen J, He J, et al. High mobility group AT-hook 1 (HMGA1) is an important positive regulator of hepatitis B virus (HBV) that is reciprocally upregulated by HBV X protein. Nucleic Acids Res. 2022;50:2157–71.Article

Shen Z,Wu J,Gao Z,Zhang S,Chen J,He J,et al。hook 1高迁移率族(HMGA1)是乙型肝炎病毒(HBV)的重要正调节因子,HBV X蛋白相互上调。核酸研究2022;50:2157–71.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Resar L, Chia L, Xian L. Lessons from the crypt: HMGA1-amping up Wnt for stem cells and tumor progression. Cancer Res. 2018;78:1890–7.Article

Resar L,Chia L,Xian L.来自隐窝的教训:HMGA1增强Wnt用于干细胞和肿瘤进展。癌症研究2018;78:1890–7.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High mobility group A1 (HMGA1): structure, biological function, and therapeutic potential. Int J Biol Sci. 2022;18:4414–31.Article

Wang L,Zhang J,Xia M,Liu C,Zu X,Zhong J.高迁移率族A1(HMGA1):结构,生物学功能和治疗潜力。国际生物科学杂志。2022年;18: 4414-31.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sgarra R, Pegoraro S, Ros G, Penzo C, Chiefari E, Foti D, et al. High Mobility Group A (HMGA) proteins: molecular instigators of breast cancer onset and progression. Biochim Biophys Acta Rev Cancer. 2018;1869:216–29.Article

。Biochim Biophys Acta Rev癌症。2018年;1869:216-29.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Luo YX, Chen SK, Wang PD, Peng D, Zhang X, Li HF, et al. Genome-wide analysis of the RAV gene family in wheat and functional identification of TaRAV1 in salt stress. Int J Mol Sci. 2022;23:8834.Article

罗YX,陈SK,王PD,彭D,张X,李HF,等。小麦RAV基因家族的全基因组分析和TaRAV1在盐胁迫下的功能鉴定。国际分子科学杂志。2022年;23:8834.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, et al. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res. 2019;11:6860–76.CAS

Zhang R,Tao F,Ruan S,Hu M,Hu Y,Fang Z,et al。TGFβ1-FOXM1-HMGA1-TGFβ1正反馈环通过诱导G6PD表达增加非小细胞肺癌的顺铂耐药性。Am J Transl Res.2019;11: 6860–76.CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, et al. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 2018;415:58–72.Article

Fang Z,Gong C,Yu S,Zhou W,Hassan W,Li H等。NFYB诱导的E2F1高表达通过增强CHK1信号传导促进结直肠癌对奥沙利铂的耐药性。癌症Lett。2018年;415:58-72.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang Y, Fang Q, Wang H, Qi J, Sun S, Liao M, et al. Increased mitophagy protects cochlear hair cells from aminoglycoside-induced damage. Autophagy. 2023;19:75–91.Wang KK, He KY, Yang JY, Liu MJ, Guo JR, Liang JY, et al. Lactobacillus suppresses tumorigenesis of oropharyngeal cancer via enhancing anti-tumor immune response.

张Y,方Q,王H,齐J,孙S,廖M,等。线粒体自噬增加可保护耳蜗毛细胞免受氨基糖苷类药物诱导的损伤。自噬。2023年;19: 。

Front Cell Dev Biol. 2022;10:842153.Article .

前细胞开发生物学。2022年;10: 842153条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen F, Ni C, Wang X, Cheng R, Pan C, Wang Y, et al. S1P defects cause a new entity of cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome. EMBO Mol Med. 2022;14:e14904.Article

Chen F,Ni C,Wang X,Cheng R,Pan C,Wang Y等。S1P缺陷会导致白内障,脱发,口腔粘膜疾病和牛皮癣样综合征的新实体。;14: e14904。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pan X, Wang J, Guo L, Na F, Du J, Chen X, et al. Identifying a confused cell identity for esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2022;7:122.Article

Pan X,Wang J,Guo L,Na F,Du J,Chen X,等。鉴定食管鳞状细胞癌的混淆细胞身份。信号传输目标Ther。2022年;7: 122、条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun. 2021;12:5291.Article

张X,彭L,罗Y,张S,浦Y,陈Y,等。通过单细胞转录组学分析解剖食管鳞状细胞癌生态系统。纳特公社。2021年;12: 第5291条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang H, Cao R, Lee WN, Deng C, Zhao Y, Lappe J, et al. Inhibition of protein phosphorylation in MIA pancreatic cancer cells: confluence of metabolic and signaling pathways. J Proteome Res. 2010;9:980–9.Article

Zhang H,Cao R,Lee WN,Deng C,Zhao Y,Lappe J等。MIA胰腺癌细胞中蛋白质磷酸化的抑制:代谢和信号通路的汇合。J Proteome Res.2010;9: 980-9.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fu F, Wang T, Wu Z, Feng Y, Wang W, Zhou S, et al. HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer. Cell Death Dis. 2018;9:594.Article

Fu F,Wang T,Wu Z,Feng Y,Wang W,Zhou S等。HMGA1通过调节细胞周期加剧肿瘤生长,并通过靶向宫颈癌中的miR-221/222加速迁移/侵袭。。2018年;9: 第594条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chiefari E, Paonessa F, Iiritano S, Le Pera I, Palmieri D, Brunetti G, et al. The cAMP-HMGA1-RBP4 system: a novel biochemical pathway for modulating glucose homeostasis. BMC Biol. 2009;7:24.Article

Chiefari E,Paonessa F,Iiritano S,Le Pera I,Palmieri D,Brunetti G等。cAMP-HMGA1-RBP4系统:调节葡萄糖稳态的新型生化途径。BMC生物。2009年;7: 24、条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, et al. Transcriptional regulation of glucose metabolism: the emerging role of the HMGA1 chromatin factor. Front Endocrinol. 2018;9:357.Article

Chiefari E,Foti DP,Sgarra R,Pegoraro S,Arcidiacono B,Brunetti FS等。葡萄糖代谢的转录调控:HMGA1染色质因子的新兴作用。前内分泌。2018年;9: 第357条

Google Scholar

谷歌学者

Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, et al. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res. 2012;72:4097–109.Article

。癌症研究2012;72:4097–109.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54.Article

Patra KC,Hay N.戊糖磷酸途径与癌症。趋势生物化学科学。2014年;39:347–54.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li R, Ke M, Qi M, Han Z, Cao Y, Deng Z, et al. G6PD promotes cell proliferation and dexamethasone resistance in multiple myeloma via increasing anti-oxidant production and activating Wnt/β-catenin pathway. Exp Hematol Oncol. 2022;11:77.Article

Li R,Ke M,Qi M,Han Z,Cao Y,Deng Z等。G6PD通过增加抗氧化剂产生和激活Wnt/β-连环蛋白途径促进多发性骨髓瘤细胞增殖和地塞米松抵抗。Exp Hematol Oncol。2022年;11: 77、条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garcia AA, Koperniku A, Ferreira JCB, Mochly-Rosen D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: past and future perspectives. Trends Pharmacol Sci. 2021;42:829–44.Article

Garcia AA,Koperniku A,Ferreira JCB,Mochly Rosen D.葡萄糖-6-磷酸脱氢酶缺乏症的治疗策略:过去和未来的观点。趋势药理学。2021年;

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang Y, Xu Y, Lu W, Li J, Yu S, Brown EJ, et al. G6PD-mediated increase in de novo NADP(+) biosynthesis promotes antioxidant defense and tumor metastasis. Sci Adv. 2022;8:eabo0404.Article

Zhang Y,Xu Y,Lu W,Li J,Yu S,Brown EJ等。G6PD介导的从头NADP(+)生物合成的增加促进抗氧化防御和肿瘤转移。Sci Adv.2022;8: eabo0404.条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Szoka L, Karna E, Palka J. The mechanism of oxythiamine-induced collagen biosynthesis in cultured fibroblasts. Mol Cell Biochem. 2015;403:51–60.Article

Szoka L,Karna E,Palka J.氧硫胺诱导培养的成纤维细胞胶原生物合成的机制。摩尔细胞生物化学。2015年;403:51–60.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malinowska M, Czerniecka M, Jastrzebska I, Ratkiewicz A, Tylicki A, Wawrusiewicz-Kurylonek N. In vitro and in silico studies on cytotoxic properties of oxythiamine and 2’-methylthiamine. Int J Mol Sci. 2024;25:4359.Article

Malinowska M,Czerniecka M,Jastrzebska I,Ratkiewicz A,Tylicki A,Wawrusiewicz Kurylonek N.氧硫胺和2'-甲基硫胺的细胞毒性的体外和计算机研究。国际分子科学杂志。2024年;25:4359.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104.Article

PiliéPG,Tang C,Mills GB,Yap TA。针对癌症中DNA损伤反应的最新策略。Nat Rev Clin Oncol。2019年;16: 81-104.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23:78–94.Article

Groelly FJ,Fawkes M,Dagg RA,Blackford AN,Tarsounas M.靶向癌症中的DNA损伤反应途径。Nat Rev癌症。2023年;23:78–94.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.Article

Srinivas US,Tan BWQ,Vellayappan BA,Jeyasekharan AD。ROS和癌症中的DNA损伤反应。氧化还原生物。2019年;25:101084.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank scientists in the Xu laboratory for their helpful discussion and support. This work was supported by the National Key Research and Development Program of China (2023YFE0109800), the National Natural Science Foundation of China (Nos.

下载参考文献致谢我们要感谢Xu实验室的科学家们的有益讨论和支持。这项工作得到了国家重点研究发展计划(2023YFE0109800),国家自然科学基金(No。

82020108024 and 82200596), and the China Postdoctoral Science Foundation (No. 2022M721014).FundingThis work was supported by the National Key Research and Development Program of China (2023YFE0109800), the National Natural Science Foundation of China (Nos. 82020108024 and 82200596), and the China Postdoctoral Science Foundation (No.

82020108024和82200596)以及中国博士后科学基金会(编号2022M721014)。资助这项工作得到了国家重点研究发展计划(2023YFE0109800),国家自然科学基金(82020108024和82200596号)和中国博士后科学基金(No。

2022M721014).Author informationAuthor notesThese authors contributed equally: Meng-Jie Liu, Yuan Zhao, Qiu-Tong Li.Authors and AffiliationsSchool of Life Sciences, Henan University, Kaifeng, Henan Province, ChinaMeng-Jie Liu, Yuan Zhao, Qiu-Tong Li, Xin-Yuan Lei, Kai-Yue He, Jin-Rong Guo, Jing-Yu Yang, Zhen-Hua Yan, Dan-Hui Wu, Lei Zhang, Yong-Ping Jian & Zhi-Xiang XuAuthorsMeng-Jie LiuView author publicationsYou can also search for this author in.

2022M721014)。。

PubMed Google ScholarYuan ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarYuan ZhaoView作者出版物您也可以在

PubMed Google ScholarQiu-Tong LiView author publicationsYou can also search for this author in

PubMed Google ScholarQiu Tong LiView作者出版物您也可以在

PubMed Google ScholarXin-Yuan LeiView author publicationsYou can also search for this author in

PubMed Google ScholarKai-Yue HeView author publicationsYou can also search for this author in

PubMed Google ScholarKai Yue HeView作者出版物您也可以在

PubMed Google ScholarJin-Rong GuoView author publicationsYou can also search for this author in

PubMed Google ScholarJin Rong GuoView作者出版物您也可以在

PubMed Google ScholarJing-Yu YangView author publicationsYou can also search for this author in

PubMed Google ScholarJing Yu YangView作者出版物您也可以在

PubMed Google ScholarZhen-Hua YanView author publicationsYou can also search for this author in

PubMed谷歌学者郑华燕查看作者出版物您也可以在

PubMed Google ScholarDan-Hui WuView author publicationsYou can also search for this author in

PubMed Google ScholarDan Hui WuView作者出版物您也可以在

PubMed Google ScholarLei ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarLei ZhangView作者出版物您也可以在

PubMed Google ScholarYong-Ping JianView author publicationsYou can also search for this author in

PubMed Google ScholarYong Ping JianView作者出版物您也可以在

PubMed Google ScholarZhi-Xiang XuView author publicationsYou can also search for this author in

PubMed Google ScholarZhiang XuView作者出版物您也可以在

PubMed Google ScholarContributionsMJL designed the study, performed the experiments, and wrote the manuscript. YZ, QTL, XYL, KYH, JRG, JYY, ZHY, DHW, and LZ performed the experiments. ZXX and YPJ contributed to the conception and writing. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

PubMed Google ScholarContributionsMJL设计了这项研究,进行了实验,并撰写了手稿。YZ,QTL,XYL,KYH,JRG,JYY,ZHY,DHW和LZ进行了实验。ZXX和YPJ为构思和写作做出了贡献。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Yong-Ping Jian or Zhi-Xiang Xu.Ethics declarations

永平剑或知湘徐。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Consent for publication

同意出版

All authors consent to submit and publish this article.

所有作者都同意提交并发表本文。

Ethical approval and consent to participate

道德认可和参与同意

Protocols for animal usage were approved by the institutional animal care and use committee (IACUC) at Henan University, China. All animal experiments were conducted on the basis of the institutional guidelines, and were approved by the Laboratory Animal Center of Henan University.

动物使用方案已获得中国河南大学机构动物护理和使用委员会(IACUC)的批准。所有动物实验均根据机构指南进行,并经河南大学实验动物中心批准。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Edited by Maurizio FanciulliSupplementary informationSupplemental MaterialOriginal DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。由Maurizio Fanciullis编辑补充信息补充材料原始数据权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleLiu, MJ., Zhao, Y., Li, QT. et al. HMGA1 promotes the progression of esophageal squamous cell carcinoma by elevating TKT-mediated upregulation of pentose phosphate pathway.

转载和许可本文引用本文Liu,MJ。,赵,李,QT。HMGA1通过提高TKT介导的戊糖磷酸途径的上调来促进食管鳞状细胞癌的进展。

Cell Death Dis 15, 541 (2024). https://doi.org/10.1038/s41419-024-06933-xDownload citationReceived: 27 August 2023Revised: 18 July 2024Accepted: 22 July 2024Published: 30 July 2024DOI: https://doi.org/10.1038/s41419-024-06933-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

细胞死亡Dis 15541(2024)。https://doi.org/10.1038/s41419-024-06933-xDownload引文接收日期:2023年8月27日修订日期:2024年7月18日接受日期:2024年7月22日发布日期:2024年7月30日OI:https://doi.org/10.1038/s41419-024-06933-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供