商务合作
动脉网APP
可切换为仅中文
AbstractMany disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants.
摘要许多抗病基因已从其野生近缘种渗入小麦中。然而,渗入片段内重组的减少阻碍了渗入基因的克隆。在这里,我们使用物理作图与辐射诱导的染色体畸变和甲基磺酸乙酯(EMS)诱导的功能丧失突变体的转录组测序分析相结合的方法,克隆了白粉病抗性基因Pm13,该基因从长山羊草渗入小麦。
Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays.
Pm13编码一种激酶融合蛋白,命名为MLKL-K,具有混合谱系激酶结构域样蛋白(MLKL\u NTD结构域)的N端结构域和由支架桥接的C端丝氨酸/苏氨酸激酶结构域。通过瞬时和稳定的转基因互补试验验证了Pm13的抗性功能。
Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain..
本塞姆氏烟草叶片和小麦原生质体中的瞬时过表达分析表明,MLKL-K的片段Brace-Kinase122-476能够诱导细胞死亡,这取决于功能性激酶结构域和靠近激酶结构域N端的Brace区域中的三个α-螺旋。。
IntroductionCommon wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is a widely grown cereal crop consumed by ~30% of the global population. Wheat production is constantly challenged by various fungal diseases, including rusts, Fusarium head blight, and powdery mildew1. Wheat powdery mildew, a foliar disease, is caused by the obligate biotrophic pathogen Blumeria graminis f.
引言普通小麦(Triticum aestivum L.,2n=6x=42,AABBDD)是一种广泛种植的谷物作物,约占全球人口的30%。小麦生产不断受到各种真菌疾病的挑战,包括锈病,镰刀菌赤霉病和白粉病1。。
sp. tritici (Bgt) and is prevalent across most winter and spring wheat growing areas in the world, leading to significant yield losses2,3,4. Bgt is highly dynamic and co-evolves with wheat crops, which results in rapidly shifts in the virulence patterns of pathogen and ineffectiveness of powdery mildew resistance (Pm) genes used in wheat production5,6.
小麦疫霉菌(Bgt)在世界上大多数冬小麦和春小麦种植区普遍存在,导致显着的产量损失2,3,4。Bgt是高度动态的,与小麦作物共同进化,导致病原体的毒力模式迅速转变,小麦生产中使用的白粉病抗性(Pm)基因无效5,6。
Hence, exploiting and utilizing more effective Pm genes from common wheat and its cultivated or wild relatives are important to control powdery mildew disease7.Aegilops longissima Schweinf. and Muschl. (2n = 2x = 14, SlSl) is a wild species in the Sitopsis section (S genome). It is highly related to the progenitor of the B genome of common wheat8,9.
因此,从普通小麦及其栽培或野生近缘种中开发和利用更有效的Pm基因对于控制白粉病具有重要意义。和马斯克尔。(2n 2x 14,SlSl)是Sitopsis部分(S基因组)的野生物种。它与普通小麦B基因组的祖先高度相关8,9。
This diploid species is resistant to various diseases, such as rusts10, eyespot11, and powdery mildew12. The transfer of powdery mildew resistance from Ae. longissima into common wheat was initiated in the 1980s, leading to the creation of a series of wheat-Ae. longissima chromosome translocation lines12,13,14,15.Pm13 was mapped to the distal part of the short arm of chromosome 3S1, which was transferred from Ae.
这种二倍体物种对各种疾病具有抗性,例如锈病10,眼斑病11和白粉病12。从20世纪80年代开始,将抗白粉病性从长茎赤霉转移到普通小麦中,导致产生了一系列小麦长茎赤霉染色体易位系12,13,14,15.Pm13被定位到染色体3S1短臂的远端,该短臂是从Ae转移而来的。
longissima into wheat chromosome 3BS12. This gene has not been widely used in agriculture despite its highly effective resistance to powdery mildew, which is possibly due to the linkage drag of Pm13 introgression. Efforts have been made to reduce the Ae. longissima chromosomal fragments by promo.
长柄进入小麦染色体3BS12。尽管该基因对白粉病具有高效抗性,但尚未在农业中广泛使用,这可能是由于Pm13基因渗入的连锁阻力所致。已经努力通过promo减少Ae。longissima染色体片段。
Pm13 from Ae. longissima confers resistance to 108 Bgt isolatesNon-denaturing fluorescence in situ hybridization (ND-FISH) was performed to characterize the chromosomal composition of wheat-Ae. longissima line No.3778, which has a pedigree of R1A/Bainong3217*5 that carries the powdery mildew resistance gene Pm13.
。
Stronger signals of the FAM-labeled probe Oligo-pSc119.2 (green) were observed in the terminal regions of the short arm of chromosome 3B (3BS) compared to Chinese Spring (CS). The Tamra-labeled probe Oligo-pTa535 stained red on the rest part of chromosome 3B, which was similar to CS (Fig. 1a). This indicates that wheat line No.
与中国春季(CS)相比,在3B染色体短臂(3BS)的末端区域观察到FAM标记的探针Oligo-pSc119.2(绿色)的更强信号。Tamra标记的探针Oligo-pTa535在3B染色体的其余部分染成红色,与CS相似(图1a)。这表明小麦品系No。
3778 carries a pair of translocated chromosomes 3SlS-3BS.3BL, where the alien segment 3SlS is introgressed onto a distal location of the wheat chromosome arm 3BS. This result is consistent with the previous cytogenetic and molecular evidence13.Fig. 1: Physical mapping of the highly effective Pm13.a Non-denaturing fluorescence in situ hybridization (ND-FISH) patterns of Chinese Spring (left) and line No.
3778携带一对易位染色体3SlS-3BS.3BL,其中外来片段3SlS渗入小麦染色体臂3BS的远端位置。这一结果与之前的细胞遗传学和分子证据一致13。图1:高效Pm13的物理作图。中国春(左)和品系号的非变性荧光原位杂交(ND-FISH)模式。
3778 (right). Chromosomes of Chinese Spring and No. 3778 were stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue), Oligo-pSc119.2 (green), and Oligo-pTa535 (red). Orange arrows indicate the translocated chromosomes 3SlS-3BS.3BL. The experiment was independently repeated three times with consistent results.
3778(右)。用4',6-二脒基-2-苯基吲哚(DAPI)(蓝色),Oligo-pSc119.2(绿色)和Oligo-pTa535(红色)染色中国春和3778号的染色体。橙色箭头表示易位的染色体3SlS-3BS.3BL。实验独立重复三次,结果一致。
Scale bar = 10 μm. b Representative images showing phenotypic effects of Pm13 against 8 out of 108 tested Bgt isolates. Line No. 3778 carrying Pm13, YM18 carrying Pm21, and Chancellor (CC) without any Pm gene were inoculated with the indicated isolates. Leaves are shown sequentially from left to right.
比例尺=10微米。b代表性图像显示Pm13对108个测试的Bgt分离株中的8个的表型效应。用指定的分离株接种携带Pm13的3778号品系,携带Pm21的YM18和没有任何Pm基因的总理(CC)。叶子从左到右依次显示。
c Representative images showing powdery mildew symptoms on susceptible γ-ray irradiation-induced M3 mutants (IT4), the resistant pa.
c代表性图像显示易感γ射线照射诱导的M3突变体(IT4)(抗性pa)上的白粉病症状。
MLKL-K is sufficient for powdery mildew resistanceBiolistic bombardment-based single-cell transient over-expression of MLKL-K CDS in the epidermal cells of susceptible wheat cv. XM44 significantly reduced the haustorium index (36.8%) of Bgt isolate E09 infection compared to the empty vector as the negative control (67.5%), while over-expressing of the positive control Pm21 resulted in a haustorium index (33.7%) comparable to MLKL-K (Fig. 2d, Supplementary Data 8).
MLKL-K足以抵抗白粉病。与空载体相比,敏感小麦品种XM44的表皮细胞中MLKL-K CD的基于基因枪法的单细胞瞬时过表达显着降低了Bgt分离株E09感染的吸器指数(36.8%)作为阴性对照(67.5%),而阳性对照Pm21的过表达导致吸器指数(33.7%)与MLKL-K相当(图2d,补充数据8)。
Subsequently, the construct containing the MLKL-K CDS under the control of its native promoter (2637 bp) and native terminator (1932 bp) (Fig. 2c) was transformed into the susceptible wheat cv. Fielder via the Agrobacterium-mediated transformation. Seven independent MLKL-K-positive transgenic T0 plants, verified by the diagnostic marker XMLKL-K, showed an immune reaction when inoculated with isolate BgtYZ01, while non-transgenic Fielder plants were susceptible (Fig. 2e, Supplementary Fig. 6).
随后,通过农杆菌介导的转化,将在其天然启动子(2637bp)和天然终止子(1932bp)控制下含有MLKL-K CDS的构建体(图2c)转化到易感小麦品种Fielder中。通过诊断标记XMLKL-K验证的七个独立的MLKL-K阳性转基因T0植物在接种分离物BgtYZ01时显示出免疫反应,而非转基因Fielder植物是敏感的(图2e,补充图6)。
The derived seven T1 families displayed a resistance/susceptibility segregation when challenged by BgtYZ01. Molecular analysis using marker XMLKL-K revealed that the presence of the transgene was associated with the resistant phenotype, and the absence of transgene was associated with the susceptible phenotype (Fig. 2f).
当受到BgtYZ01的挑战时,衍生的七个T1家族表现出抗性/易感性分离。使用标记XMLKL-K进行的分子分析表明,转基因的存在与抗性表型有关,而转基因的缺失与易感表型有关(图2f)。
Furthermore, all marker-positive T1 plants from T1-line 1 and T1-line 2 were resistant to 20 tested Bgt isolates (Supplementary Fig. 7). The expression of MLKL-K in seven T1 plants was also confirmed by qPCR (Supplementary Fig. 8). Collectively, these results demonstrate that the candidate gene MLKL-K is sufficient for the resistance to wheat powdery mildew and is the causal gene of the Pm13 locus.Truncated MLKL-K is capable of inducing cell deathT1 transgenic plants expressing MLKL-K were grown until the.
此外,来自T1品系1和T1品系2的所有标记阳性T1植物对20个测试的Bgt分离株具有抗性(补充图7)。通过qPCR也证实了MLKL-K在七种T1植物中的表达(补充图8)。总的来说,这些结果表明候选基因MLKL-K足以抵抗小麦白粉病,并且是Pm13基因座的致病基因。截短的MLKL-K能够诱导细胞死亡表达MLKL-K的T1转基因植物生长直至。
Data availability
数据可用性
Data supporting the findings of this work are available within the paper and its Supplementary Information files. Datasets generated and analyzed during the current study are available from the corresponding author upon request. RNA-Seq data from the Bgt-infected leaves of the WT line No. 3778 and its mutants can be found in the European Nucleotide Archive (ENA) under the accession number PRJEB63085.
本文及其补充信息文件中提供了支持这项工作结果的数据。在当前研究期间生成和分析的数据集可应要求从通讯作者处获得。来自WT品系3778及其突变体的Bgt感染叶片的RNA-Seq数据可以在欧洲核苷酸档案(ENA)中找到,登录号为PRJEB63085。
The transcriptome assembly of the WT line No. 3778 was deposited in the ENA under the accession number HCEC01000000. The sequence of Pm13 from wheat line No. 3778 and its alleles from Ae. longissima accessions were deposited in the Genbank of NCBI under the accession numbers OR052510-[OR052527]. The transcriptome assembly of the WT line No.
WT品系3778的转录组组装体以登录号HCEC01000000保藏在ENA中。来自小麦品系3778的Pm13序列及其来自长柄Ae的等位基因以登录号OR052510-[OR052527]保藏在NCBI的Genbank中。WT行号的转录组组装。
3778, sequences of the transcript NODE_25350 and the CDS, and the genomic sequence of Pm13 are also available on the DRYAD database [https://doi.org/10.5061/dryad.qjq2bvqmz]. Source data are provided with this paper..
3778,转录本NODE\u 25350和CDS的序列,以及Pm13的基因组序列也可以在DRYAD数据库中找到[https://doi.org/10.5061/dryad.qjq2bvqmz]。本文提供了源数据。。
ReferencesSingh, R. P. et al. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54, 303–322 (2016).Article
Referencesingh,R.P.等人。疾病对小麦产量潜力的影响和遗传控制的前景。年。。54303-322(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Morgounov, A. et al. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur. J. Plant Pathol. 132, 323–340 (2012).Article
Morgounov,A.等人,《1969-2010年小麦锈病和白粉病的全球发病率以及冬小麦品种Bezostaya 1的抗性持久性》。Eur.J.植物病理学。。文章
Google Scholar
谷歌学者
Sotiropoulos, A. G. et al. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat. Commun. 13, 4315 (2022).Article
Sotiropoulos,A.G.等人对小麦白粉病的全球基因组分析揭示了病原体传播与历史人类迁徙和贸易的关联。国家公社。134315(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zou, Y. F. et al. Regionalization of wheat powdery mildew oversummering in China based on digital elevation. J. Integr. Agr. 17, 901–910 (2018).Article
邹永福等。基于数字高程的中国小麦白粉病越夏区划。J、 整数。Agr公司。17901-910(2018)。文章
Google Scholar
谷歌学者
Kunz, L. et al. The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen. BMC Biol. 21, 29 (2023).Article
Kunz,L。等人。小麦中Pm8抗性基因的广泛使用导致白粉病病原体中AvrPm8基因的超突变。BMC生物。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Müller, M. C. et al. A chromosome–scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol. 221, 2176–2189 (2019).Article
Müller,M.C.等人。染色体规模的基因组组装揭示了小麦白粉病的高度动态效应库。新植物醇。2212176-2189(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
He, H. G. et al. Characterization of a new gene for resistance to wheat powdery mildew on chromosome 1RL of wild rye Secale sylvestre. Theor. Appl. Genet. 134, 887–896 (2021).Article
He,H.G.等人。野生黑麦黑麦sylvestre染色体1RL上抗小麦白粉病新基因的表征。理论。。。134887-896(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuluev, A. R., Kuluev, B. R. & Chemeris, A. V. The problem of the origin of subgenomes B, A, and D of bread wheat (Triticum aestivum L.): old facts and new evidences. Biol. Bull. Rev. 13, 148–161 (2023).Article
Kuluev,A.R.,Kuluev,B.R。&Chemeris,A.V。面包小麦(Triticum aestivum L.)亚基因组B,A和D的起源问题:旧事实和新证据。生物公牛。第13148-161版(2023年)。文章
Google Scholar
谷歌学者
Li, L. F. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant 15, 488–503 (2022).Article
Li,L.F.等人。五种山羊草的基因组序列和多倍体小麦B亚基因组的起源。摩尔植物15488-503(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, S. Y., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of Aegilops longissima to the rusts of wheat. Plant Dis. 102, 1124–1135 (2018).Article
Huang,S.Y.,Steffenson,B.J.,Sela,H。和Stinebaugh,K。长柄山羊草对小麦锈病的抗性。工厂Dis。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sheng, H. Y. & Murray, T. D. Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis. 97, 346–353 (2013).Article
Sheng,H.Y.&Murray,T.D.鉴定了长柄山羊草对小麦眼斑抗性的新来源。工厂Dis。97346-353(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ceoloni, C., Signore, G. D., Ercoli, L. & Donini, P. Locating the alien chromatin segment in common wheat–Aegilops longissima mildew resistant transfers. Hereditas 116, 239–245 (1992).Article
Ceoloni,C.,Signore,G.D.,Ercoli,L。和Donini,P。在普通小麦-长柄山羊草抗霉菌转移中定位外源染色质片段。《遗传》116239-245(1992)。文章
Google Scholar
谷歌学者
Cenci, A., D’Ovidio, R., Tanzarella, O. A., Ceoloni, C. & Porceddu, E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor. Appl. Genet. 98, 448–454 (1999).Article
Cenci,A.,D'Ovidio,R.,Tanzarella,O.A.,Ceoloni,C。和Porceddu,E。鉴定与Pm13相关的分子标记,Pm13是一种赋予小麦白粉病抗性的山羊草基因。理论。。。98448-454(1999)。文章
CAS
中科院
Google Scholar
谷歌学者
Cenci, A. et al. Genetic analysis of the Aegilops longissima 3S chromosome carrying the Pm13 resistance gene. Euphytica 130, 177–183 (2003).Article
Cenci,A.等人。携带Pm13抗性基因的山羊草3S染色体的遗传分析。Euphytica 130177-183(2003)。文章
Google Scholar
谷歌学者
Donini, P., Koebner, R. M. & Ceoloni, C. Cytogenetic and molecular mapping of the wheat–Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor. Appl. Genet. 91, 738–743 (1995).Article
Donini,P.,Koebner,R.M。和Ceoloni,C。抗白粉病基因渗入系中小麦-山羊草染色质断裂点的细胞遗传学和分子作图。理论。。。91738-743(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H. H. et al. Development of novel wheat-Aegilops longissima 3Sl translocations conferring powdery mildew resistance and specific molecular markers for chromosome 3Sl. Plant Dis. 105, 2938–2945 (2021).Article
Li,H.H.等人。新型小麦长山羊草3Sl易位的开发,赋予白粉病抗性和3Sl染色体的特异性分子标记。工厂Dis。1052938-2945(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bourras, S. et al. The AvrPm3–Pm3 effector–NLR interactions control both race–specific resistance and host–specificity of cereal mildews on wheat. Nat. Commun. 10, 2292 (2019).Article
AvrPm3-Pm3效应子-NLR相互作用控制小麦上谷物霉菌的种族特异性抗性和宿主特异性。国家公社。102292(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, F. S. et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J. Integr. Agr. 13, 2424–2437 (2014).Article
Zeng,F.S.等人。中国小麦白粉病菌种群的毒力和多样性。J、 整数。Agr公司。132424-2437(2014)。文章
Google Scholar
谷歌学者
Zhu, S. Y. et al. Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Plant Commun. 4, 100472 (2023).Article
Zhu,S.Y.等人。来自两个小麦野生近缘种的直系同源基因Pm12和Pm21表现出进化保守性,但对白粉病的抗性不同。植物群落。4100472(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Y. J. et al. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet. 55, 914–920 (2023).Article
Wang,Y.J.等人。一种不寻常的串联激酶融合蛋白赋予小麦叶锈病抗性。纳特·吉内特。55914-920(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Slade, A. J., Fuerstenberg, S., Loeffler, D., Steine, M. N. & Facciotii, D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75–81 (2005).Article
Slade,A.J.,Fuerstenberg,S.,Loeffler,D.,Steine,M.N。&Facciotii,D。通过耕作改良小麦作物的反向遗传,非转基因方法。美国国家生物技术公司。23,75-81(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221 (2016).Article
Sánchez Martín,J.等人。通过突变染色体测序快速分离大麦和小麦中的基因。基因组生物学。17221(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klymiuk, V., Coaker, G., Fahima, T. & Pozniak, C. Tandem protein kinases emerge as new regulators of plant immunity. Mol. Plant-Microbe Interact. 34, 1094–1102 (2021).Article
Klymiuk,V.,Coaker,G.,Fahima,T。&Pozniak,C。串联蛋白激酶作为植物免疫的新调节剂出现。分子植物微生物相互作用。341094-1102(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arora, S. et al. A wheat kinase and immune receptor form host–specificity barriers against the blast fungus. Nat. Plants 9, 385–392 (2022).Article
。《自然植物》9385–392(2022)。文章
Google Scholar
谷歌学者
Brueggeman, R. et al. The stem rust resistance gene Rpg5 encodes a protein with nucleotide–binding–site, leucine–rich, and protein kinase domains. Proc. Nat. Acad. Sci. USA 105, 14970–14975 (2008).Article
茎锈病抗性基因Rpg5编码一种具有核苷酸结合位点、富含亮氨酸和蛋白激酶结构域的蛋白质。程序。国家科学院。科学。美国10514970–14975(2008)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brueggeman, R. et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Nat. Acad. Sci. USA 99, 9328–9333 (2002).Article
。程序。国家科学院。科学。美国999328–9333(2002)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, S. S. et al. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 225, 948–959 (2020).Article
Chen,S.S.等人。小麦基因Sr60编码一种具有两个假定激酶结构域的蛋白质,该结构域赋予对茎锈病的抗性。新植物醇。225948-959(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Faris, J. D. et al. A unique wheat disease resistance–like gene governs effector–triggered susceptibility to necrotrophic pathogens. Proc. Nat. Acad. Sci. USA 107, 13544–13549 (2010).Article
Faris,J.D。等人。一种独特的小麦抗病基因控制着效应物触发的对坏死性病原体的易感性。程序。国家科学院。科学。美国10713544–13549(2010)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fu, D. L. et al. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360 (2009).Article
Fu,D.L.等人。激酶起始基因赋予小麦条锈病温度依赖性抗性。科学3231357-1360(2009)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2021).Article
Gaurav,K。等人。节节麦的种群基因组分析确定了面包小麦改良的目标。美国国家生物技术公司。40422-431(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).Article
Hanks,S.K.,Quinn,A.M。&Hunter,T。蛋白激酶家族:保守特征和催化结构域的系统发育。科学241,42-52(1988)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Klymiuk, V. et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 9, 3735 (2018).Article
Klymiuk,V。等人。小麦Yr15抗性基因的克隆揭示了植物串联激酶假激酶家族。国家公社。93735(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, P. et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 11, 680 (2020).Article
Lu,P。等人。小麦串联激酶中罕见的功能获得突变赋予了对白粉病的抗性。国家公社。11680(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sánchez-Martín, J. et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants 7, 327–341 (2021).Article
Sánchez-Martín,J。等人。小麦Pm4对白粉病的抗性由编码嵌合蛋白的替代剪接变体控制。《自然植物》7327–341(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, G. T. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607 (2022).Article
Yu,G.T.等人。山羊草基因组辅助鉴定茎锈病抗性基因Sr62。国家公社。131607(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, G. T. et al. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat. Genet. 55, 921–926 (2023).Article
Yu,G.T.等人。小麦茎锈病抗性基因Sr43编码一种不寻常的蛋白激酶。纳特·吉内特。55921-926(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Z. C. et al. A protein kinase–major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. Plant J. 106, 720–732 (2021).Article
Zhang,Z.C.等人。一种被坏死性真菌病原体劫持的蛋白激酶-主要精子蛋白基因触发了小麦的疾病易感性。工厂J.106720–732(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, P. D. et al. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 31, 477–484 (2013).Article
Chen,P.D.等人。辐射诱导的小麦白粉病抗性Pm21基因座上簇毛麦染色质减少的易位。摩尔品种。31477-484(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, J. et al. Identification of novel chromosomal aberrations Induced by (60)Co–gamma–irradiation in wheat–Dasypyrum villosum lines. Int. J. Mol. Sci. 16, 29787–29796 (2015).Article
Zhang,J。等人。鉴定(60)Co–γ–辐照诱导的小麦-鸭茅(Dasypyrum villosum)品系中新的染色体畸变。Int.J.Mol.Sci。1629787–29796(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kolodziej, M. C. et al. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat. Commun. 12, 956 (2021).Article
Kolodziej,M.C。等人。膜结合锚蛋白重复蛋白赋予小麦种族特异性叶锈病抗性。国家公社。12956(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dracatos, P. M. et al. The coiled-coil NLR Rph1, confers leaf rust resistance in barley cultivar Sudan. Plant Physiol. 179, 1362–1372 (2019).Article
Dracatos,P.M。等人,卷曲螺旋NLR Rph1赋予大麦品种苏丹叶锈病抗性。植物生理学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hewitt, T. et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 229, 2812–2826 (2021).Article
。新植物醇。2292812-2826(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hewitt, T. et al. Wheat leaf rust resistance gene Lr13 is a specific Ne2 allele for hybrid necrosis. Mol. Plant 14, 1025–1028 (2021).Article
Hewitt,T。等人。小麦抗叶锈病基因Lr13是杂种坏死的特定Ne2等位基因。摩尔植物141025-1028(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marchal, C. et al. BED-domain containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 4, 662–668 (2018).Article
含有BED结构域的免疫受体赋予黄锈病不同的抗性谱。《自然植物》4662-668(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Steuernage, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).Article
Steuernage,B。等人。使用诱变和序列捕获快速克隆植物中的抗病基因。美国国家生物技术公司。34652-655(2016)。文章
Google Scholar
谷歌学者
Upadhyaya, N. M. et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat. Plants 7, 1220–1228 (2021).Article
Upadhyaya,N.M.等人,《基因组学》加速了一个新的茎锈病无毒基因-小麦抗性基因对的分离。《自然植物》71220-1228(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yan, X. C. et al. High–temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis. Mol. Plant 14, 1029–1032 (2021).Article
Yan,X.C.等人。高温小麦抗叶锈病基因Lr13对杂种坏死具有多效性。摩尔植物141029-1032(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, J. P. et al. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 12, 3378 (2021).Article
Zhang,J.P。等人。小麦中重组的Sr26和Sr61抗病基因堆栈编码不相关的NLR基因。国家公社。123378(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ni, F. et al. Sequencing trait-associated mutations to clone wheat rust resistance gene YrNAM. Nat. Commun. 14, 4353 (2023).Article
Ni,F。等人。测序性状相关突变以克隆小麦抗锈病基因YrNAM。国家公社。144533(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. N. et al. Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides. Nat. Commun. 14, 6072 (2023).Article
Li,H.N.等人。从山羊草渗入的小麦叶锈病抗性基因Lr47的克隆。国家公社。146072(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, C. T. et al. Wheat Pm55 alleles exhibit distinct interactions with an inhibitor to cause different powdery mildew resistance. Nat. Commun. 15, 503 (2024).Article
Lu,C.T.等人,小麦Pm55等位基因与抑制剂表现出明显的相互作用,从而引起不同的白粉病抗性。国家公社。15503(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, M. M. et al. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat. Commun. 15, 3124 (2024).Article
Li,M.M.等人。来自野生二粒小麦的膜相关串联激酶赋予对白粉病的广谱抗性。国家公社。153124(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. H. et al. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat. Commun. 15, 2449 (2024).Article
Li,H。H。等人。小麦白粉病抗性基因Pm13编码混合谱系激酶结构域样蛋白。国家公社。152449(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, G. X. et al. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285–295 (2015).Article
Wang,G.X.等人。病原体效应子和假激酶的诱饵底物指定了病原体诱导的植物修饰的自我识别和免疫。细胞宿主微生物18285-295(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T. & Dodds, P. N. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci. 5, 606 (2014).Article
Cesari,S.,Bernoux,M.,Moncuquet,P.,Kroj,T。&Dodds,P.N。植物NLR蛋白对的新型保守机制:“整合诱饵”假说。正面。植物科学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van der Hoorn, R. A. & Kamoun, S. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017 (2008).Article
。植物细胞202009-2017(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mahdi, L. K. et al. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813–824 (2020).Article
Mahdi,L.K.等人。植物中混合谱系激酶结构域样蛋白家族的发现及其在先天免疫信号传导中的作用。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shen, Q. C. et al. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 32, 453–465 (2024).Article
Shen,Q.C。等人。由植物MLKLs介导的细胞质钙流入赋予TNL触发的免疫。细胞宿主微生物32453-465(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Nat. Acad. Sci. USA 111, 15072–15077 (2014).Article
Hildebrand,J.M。等人。假激酶MLKL的激活释放四螺旋束结构域以诱导膜定位和坏死性细胞死亡。程序。国家科学院。科学。美国11115072-15077(2014)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quarato, G. et al. Sequential engagement of distinct MLKL phosphatidylinositol–binding sites executes necroptosis. Mol. Cell 61, 589–601 (2016).Article
Quarato,G。等人。连续参与不同的MLKL磷脂酰肌醇结合位点会导致坏死性凋亡。分子细胞61589-601(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tanzer, M. C. et al. Evolutionary divergence of the necroptosis effector MLKL. Cell Death Differ. 23, 1185–1197 (2016).Article
Tanzer,M.C.等人。坏死性凋亡效应子MLKL的进化分歧。细胞死亡不同。231185-1197(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dey, M. et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell 122, 901–913 (2005).Article
Dey,M。等人。PKR二聚化,自磷酸化和eIF2α底物识别之间的机制联系。细胞122901-913(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization–dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).Article
Rajakulendran,T.,Sahmi,M.,Lefrancois,M.,Sicheri,F。&Therrien,M。依赖二聚化的机制驱动RAF催化活化。Nature 461542–545(2009)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, J. Z. et al. Ligand–triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868 (2019).Article
Wang,J.Z.等人。配体触发的变构ADP释放引发植物NLR复合物。科学364,eaav5868(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
He, H. G. et al. Pm21, encoding a typical CC–NBS–LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol. Plant 11, 879–882 (2018).Article
He,H.G.等人Pm21编码典型的CC-NBS-LRR蛋白,赋予小麦白粉病广谱抗性。摩尔植物11879-882(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, J. et al. Molecular cytogenetic identification of the wheat–Dasypyrum villosum T3DL.3V#3S translocation line with resistance against stripe rust. Plants 11, 1329 (2022).Article
Zhang,J。等。小麦-毛蕊花T3DL.3V#3S易位系抗条锈病的分子细胞遗传学鉴定。工厂111329(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cuadrado, A., Vitellozzi, F., Jouve, N. & Ceoloni, C. Fluorescence in situ hybridization with multiple repeated DNA probes applied to the analysis of wheat–rye chromosome pairing. Theor. Appl. Genet. 94, 347–355 (1997).Article
Cuadrado,A.,Vitellozzi,F.,Jouve,N。和Ceoloni,C。荧光原位杂交与多个重复DNA探针应用于小麦-黑麦染色体配对的分析。理论。。。94347-355(1997)。文章
CAS
中科院
Google Scholar
谷歌学者
Komuro, S., Endo, R., Shikata, K. & Kato, A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56, 131–137 (2013).Article
Komuro,S.,Endo,R.,Shikata,K。&Kato,A。通过荧光原位杂交程序揭示了小麦中各种重复DNA序列的基因组和染色体分布模式。基因组56131-137(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fu, S. L. et al. Oligonucleotide probes for ND–FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 5, 10552 (2015).Article
Fu,S.L.等人。用于ND-FISH分析以鉴定黑麦和小麦染色体的寡核苷酸探针。科学。Rep.510552(2015)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
An, D. G. et al. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res. 21, 419–432 (2013).Article
An,D.G.等人。抗白粉病的新小麦-黑麦4R染色体易位系的分子细胞遗传学表征。染色体研究21419-432(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J. 110, 179–192 (2022).Article
Avni,R。等人。Sitopsis部分三种山羊草的基因组序列揭示了系统发育关系,并为小麦改良提供了资源。植物J.110179–192(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, M. M. et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 228, 1027–1037 (2020).Article
Li,M.M.等人。野生二粒小麦中的CNL蛋白赋予白粉病抗性。新植物醇。2281027-1037(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xie, J. Z. et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 228, 1011–1026 (2020).Article
Xie,J.Z.等人。Pm5e中罕见的单核苷酸变体赋予普通小麦白粉病抗性。新植物醇。2281011-1026(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article
Bankevich,A。et al。SPAdes:一种新的基因组组装算法及其在单细胞测序中的应用。J、 计算机。生物学19455-477(2012)。文章
MathSciNet
MathSciNet
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci. 7, 561–562 (2002).Article
。趋势植物科学。7561-562(2002)。文章
CAS
中科院
Google Scholar
谷歌学者
Shen, W., Le, S., Li, Y. & Hu, F. Q. SeqKit: a cross–platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11, e0163962 (2016).Article
Shen,W.,Le,S.,Li,Y。&Hu,F。Q。SeqKit:用于FASTA/Q文件操作的跨平台和超快工具包。PLoS One 11,e016962(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bushnell, B. BBMap: a fast, accurate, splice–aware aligner. In Proc. 9th Annual Genomics of Energy & Environment Meeting (LBNL Department of Energy Joint Genome Institute) (2014).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article .
Bushnell,B。BBMap:一种快速,准确,具有拼接意识的对准器。在过程中。。Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, S. W. et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 14, 1965–1968 (2021).Article
Ma,S.W.等人,《小麦组学:结合多种组学数据的平台,以加速小麦功能基因组学研究》。摩尔工厂141965-1968(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shen, Q. H. et al. Nuclear activity of MLA immune receptors links isolate–specific and basal disease-resistance responses. Science 315, 1098–1103 (2007).Article
。科学3151098-1103(2007)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R. & Schulze-Lefert, P. Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J. 17, 293–299 (1999).Article
Shirasu,K.,Nielsen,K.,Piffanelli,P.,Oliver,R。&Schulze-Lefert,P。使用生物列表瞬时表达系统对mlo抗性进行细胞自主互补。植物J.17293-299(1999)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, S. J. et al. Targeted mutagenesis using the Agrobacterium tumefaciens–mediated CRISPR–Cas9 system in common wheat. BMC Plant Biol. 18, 302 (2018).Article
Zhang,S.J.等人。在普通小麦中使用根癌农杆菌介导的CRISPR-Cas9系统进行靶向诱变。BMC植物生物学。18302(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25, 402–408 (2001).Article
Livak,K.J。&Schmittgen,T.D。使用实时定量PCR和2-ΔΔCt方法分析相对基因表达数据。方法25402-408(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dong, H. et al. Modulation of guard cell turgor and drought tolerance by a peroxisomal acetate–malate shunt. Mol. Plant 11, 1278–1291 (2018).Article
Dong,H.等人。过氧化物酶体醋酸盐-苹果酸分流对保卫细胞膨胀和耐旱性的调节。摩尔植物111278-1291(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, A. L. et al. Pm21 CC domain activity modulated by intramolecular interactions is implicated in cell death and disease resistance. Mol. Plant Pathol. 21, 975–984 (2020).Article
由分子内相互作用调节的Pm21 CC结构域活性与细胞死亡和疾病抗性有关。分子植物病理学。21975-984(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Russell, H., Barbara, K. & Randall, S. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).Article
Russell,H.,Barbara,K。&Randall,S。DNA片段体外制备和特异性诱变的一般方法:蛋白质和DNA相互作用的研究。核酸研究167351-7367(1988)。文章
Google Scholar
谷歌学者
Jiang, Y. H. et al. MAP4K4 associates with BIK1 to regulate plant innate immunity. EMBO Rep. 20, e47965 (2019).Article
Jiang,Y。H。等人MAP4K4与BIK1结合调节植物先天免疫。EMBO Rep.20,e47965(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y. J. et al. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nat. Plants 5, 1129–1135 (2019).Article
Wang,Y.J.等人。直系同源受体激酶定量影响大麦对叶锈菌的宿主状态。《自然植物》51129-1135(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saur, I. M. L., Bauer, S., Lu, X. & Schulze-Lefert, P. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors. Plant Methods 15, 118 (2019).Article
Saur,I.M.L.,Bauer,S.,Lu,X。&Schulze-Lefert,P。大麦和小麦原生质体中的细胞死亡测定,用于鉴定和验证匹配的病原体AVR效应子和植物NLR免疫受体。植物方法15118(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was supported by grants from National Key R&D Program of China (2022YFF1001500/2022YFF1001503 to Q.S.), National Natural Science Foundation of China (32171990 to H.H., 32172001 to H.L. and 32372507 to S.G.), Natural Science Foundation of Jiangsu Province (BK20231321 to H.H.) and State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-KF-2021-05 to H.H.
下载参考文献致谢本研究得到了国家重点研发计划(2022YFF1001500/2022YFF1001503至Q.S.),国家自然科学基金(32171990至H.H.,32172001至H.L.和32372507至S.G.),江苏省自然科学基金(BK2031321至H.H.)和植物细胞与染色体工程国家重点实验室(PCCE-KF-2021-05至H.H.)的资助。
and PCCE-KF-2022-07 to S.Z.), King Abdullah University of Science and Technology (to S.G.K.) and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (start-up funding to Y.W.). The authors thank Dr. Genying Li of Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, China for providing the binary vector pLGY03.Author informationAuthor notesThese authors contributed equally: Huagang He, Zhaozhao Chen.Authors and AffiliationsSchool of Life Sciences, Jiangsu University, Zhenjiang, ChinaHuagang He, Zhaozhao Chen, Jiale Wang & Qianyuan ZhangState Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, ChinaRenchun Fan, Yanan Li, Yitong Zhao & Qian-Hua ShenInstitute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, ChinaJie ZhangSchool of Environment and Safety Engineering, Jiangsu University, Zhenjiang, ChinaShanying ZhuSchool of Life Sciences, Henan University, Kaifeng, ChinaAnli GaoInstitute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, ChinaShuangjun GongKey Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, I.
和S.Z.的PCCE-KF-2022-07),阿卜杜拉国王科技大学(S.G.K.)和中国科学院分子植物科学卓越中心(Y.W.的启动资金)。作者感谢山东省农业科学院作物研究所李根英博士提供的二元载体pLGY03。作者信息作者注意到这些作者做出了同样的贡献:何华刚,陈兆钊。作者及所属单位江苏大学生命科学学院,镇江,中国贺华刚,陈兆钊,王家乐,张千元,中国科学院种子设计创新研究院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室,北京,中国任春凡,李亚南,赵一彤,沈千华四川省农业科学院生物技术与核技术研究所,成都,江苏大学环境与安全工程学院,镇江,河南大学生命科学学院,开封,中国安利湖北省农业科学院植物保护与土壤科学研究所,武汉,中国双植物设计重点实验室,植物分子遗传学国家重点实验室,分子植物科学卓越中心,I。
PubMed Google ScholarZhaozhao ChenView author publicationsYou can also search for this author in
PubMed谷歌学者赵赵晨查看作者出版物您也可以在
PubMed Google ScholarRenchun FanView author publicationsYou can also search for this author in
PubMed Google ScholarRenchun FanView作者出版物您也可以在
PubMed Google ScholarJie ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarJie ZhangView作者出版物您也可以在
PubMed Google ScholarShanying ZhuView author publicationsYou can also search for this author in
PubMed Google ScholarShanying ZhuView作者出版物您也可以在
PubMed Google ScholarJiale WangView author publicationsYou can also search for this author in
PubMed Google ScholarJiale WangView作者出版物您也可以在
PubMed Google ScholarQianyuan ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张乾元查看作者出版物您也可以在
PubMed Google ScholarAnli GaoView author publicationsYou can also search for this author in
PubMed Google ScholarAnli GaoView作者出版物您也可以在
PubMed Google ScholarShuangjun GongView author publicationsYou can also search for this author in
PubMed Google ScholarShuangjun GongView作者出版物您也可以在
PubMed Google ScholarLu ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarLu ZhangView作者出版物您也可以在
PubMed Google ScholarYanan LiView author publicationsYou can also search for this author in
PubMed Google ScholarYanan LiView作者出版物您也可以在
PubMed Google ScholarYitong ZhaoView author publicationsYou can also search for this author in
PubMed Google ScholarYitong ZhaoView作者出版物您也可以在
PubMed Google ScholarSimon G. KrattingerView author publicationsYou can also search for this author in
PubMed Google ScholarSimon G.KrattingerView作者出版物您也可以在
PubMed Google ScholarQian-Hua ShenView author publicationsYou can also search for this author in
PubMed Google ScholarQian Hua ShenView作者出版物您也可以在
PubMed Google ScholarHongjie LiView author publicationsYou can also search for this author in
PubMed谷歌学者Hongjie LiView作者出版物您也可以在
PubMed Google ScholarYajun WangView author publicationsYou can also search for this author in
PubMed Google ScholarYajun WangView作者出版物您也可以在
PubMed Google ScholarContributionsH.H., S.G.K., and Y.W. conceived and designed the research. H.H., Z.C., R.F., J.Z., S.Z., J.W., Q.Z., A.G., S.G., L.Z., Y.L. and Y.Z. performed experiments. H.H., Y.W., Z.C. and Q.S analyzed the data. H.H. and Y.W. wrote the manuscript with input from H.L.
PubMed谷歌学术贡献。H、 ,S.G.K.和Y.W.构思并设计了这项研究。H、 H.,Z.C.,R.F.,J.Z.,S.Z.,J.W.,Q.Z.,A.G.,S.G.,L.Z.,Y.L.和Y.Z.进行了实验。H、 H.,Y.W.,Z.C.和Q.S分析了数据。H、 H.和Y.W.在H.L.的输入下撰写了手稿。
and S.G.K. H.H. and Z.C. contributed equally to this work.Corresponding authorsCorrespondence to.
S.G.K.H.H.和Z.C.对这项工作做出了同样的贡献。通讯作者通讯。
Huagang He or Yajun Wang.Ethics declarations
。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Matthew Moscou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Matthew Moscou和另一位匿名审稿人为这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Supplementary Data 7Supplementary Data 8Supplementary Data 9Supplementary Data 10Reporting SummarySource dataSource dataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6补充数据7补充数据8补充数据9补充数据10报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleHe, H., Chen, Z., Fan, R. et al. A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew.
。
Nat Commun 15, 6512 (2024). https://doi.org/10.1038/s41467-024-50909-6Download citationReceived: 12 June 2023Accepted: 25 July 2024Published: 02 August 2024DOI: https://doi.org/10.1038/s41467-024-50909-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》156512(2024)。https://doi.org/10.1038/s41467-024-50909-6Download引文接收日期:2023年6月12日接收日期:2024年7月25日发布日期:2024年8月2日OI:https://doi.org/10.1038/s41467-024-50909-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Agricultural geneticsBioticPlant breedingPlant immunity
农业遗传生物育种植物免疫
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。