EN
登录

ARF6的肿瘤内在内膜运输形成了一个免疫抑制微环境,该微环境驱动黑色素瘤的发生和对检查点阻断治疗的反应

Tumour-intrinsic endomembrane trafficking by ARF6 shapes an immunosuppressive microenvironment that drives melanomagenesis and response to checkpoint blockade therapy

Nature 等信源发布 2024-08-04 23:39

可切换为仅中文


AbstractTumour-host immune interactions lead to complex changes in the tumour microenvironment (TME), impacting progression, metastasis and response to therapy. While it is clear that cancer cells can have the capacity to alter immune landscapes, our understanding of this process is incomplete. Herein we show that endocytic trafficking at the plasma membrane, mediated by the small GTPase ARF6, enables melanoma cells to impose an immunosuppressive TME that accelerates tumour development.

摘要肿瘤-宿主免疫相互作用导致肿瘤微环境(TME)的复杂变化,影响进展,转移和对治疗的反应。虽然很明显癌细胞可以改变免疫环境,但我们对这一过程的理解是不完整的。在这里,我们显示由小GTP酶ARF6介导的质膜上的内吞运输使黑素瘤细胞能够施加免疫抑制性TME,从而加速肿瘤的发展。

This ARF6-dependent TME is vulnerable to immune checkpoint blockade therapy (ICB) but in murine melanoma, loss of Arf6 causes resistance to ICB. Likewise, downregulation of ARF6 in patient tumours correlates with inferior overall survival after ICB. Mechanistically, these phenotypes are at least partially explained by ARF6-dependent recycling, which controls plasma membrane density of the interferon-gamma receptor.

这种依赖ARF6的TME易受免疫检查点阻断疗法(ICB)的影响,但在鼠黑色素瘤中,ARF6的缺失会导致对ICB的抵抗。同样,患者肿瘤中ARF6的下调与ICB后总体生存率较低相关。从机理上讲,这些表型至少部分由ARF6依赖性再循环来解释,该再循环控制干扰素γ受体的质膜密度。

Collectively, our findings reveal the importance of endomembrane trafficking in outfitting tumour cells with the ability to shape their immune microenvironment and respond to immunotherapy..

总的来说,我们的研究结果揭示了内膜运输在使肿瘤细胞具有塑造其免疫微环境和对免疫疗法作出反应的能力方面的重要性。。

IntroductionImmune escape, a hallmark of cancer1, involves cancer cell sensing and direct disarming of immune attack. Cancer-cell intrinsic mechanisms of immune escape broadly include 1) altering the immune landscape of the tumour microenvironment (TME), 2) direct and indirect inhibition of CD8+ T cell effector function, and 3) altering tumour antigen expression or presentation (reviewed in refs.

。癌细胞免疫逃逸的内在机制广泛包括1)改变肿瘤微环境(TME)的免疫景观,2)直接和间接抑制CD8+T细胞效应功能,以及3)改变肿瘤抗原表达或呈递(参见参考文献)。

2,3). The TME can be composed of diverse cell types that influence disease progression and response to therapy4. Given the performance and potential of immunotherapy, understanding how tumour cells impose changes on the immune system may improve rational clinical use of current immune checkpoint blockade (ICB) therapies and facilitate the development of new, immune-modulating drugs.In melanoma, emerging evidence supports that a complex TME forms surprisingly early in tumour development5.

2,3)。TME可以由影响疾病进展和对治疗反应的不同细胞类型组成4。鉴于免疫疗法的性能和潜力,了解肿瘤细胞如何对免疫系统施加变化可能会改善当前免疫检查点阻断(ICB)疗法的合理临床使用,并促进新的免疫调节药物的开发。在黑色素瘤中,新出现的证据支持复杂的TME在肿瘤发展的早期惊人地形成5。

In a small set of patient samples that ranged from atypical melanocytic proliferations to vertically invasive primary tumours, cytotoxic T lymphocytes (CTLs) were detected with regulatory T cells (Tregs) and myeloid cells in precursor lesions, and the density of these cells increased with progression to melanoma in situ (antecedent to invasion).

在一小组从非典型黑素细胞增殖到垂直侵袭性原发性肿瘤的患者样本中,在前体病变中用调节性T细胞(Tregs)和骨髓细胞检测到细胞毒性T淋巴细胞(CTL),并且这些细胞的密度随着原位黑色素瘤的进展而增加(入侵之前)。

At the invasive stage, cytokine gradients decorated the TME, which had evolved into complex geospatial microenvironments representing multiple mechanisms of immune suppression, including IFNγ-dependent and independent pathways. These findings suggest that newly transformed melanoma cells may have an innate ability to launch immune evasive programmes and create an immunosuppressive TME.Primary cutaneous melanomas are frequently infiltrated by lymphocytes to varying degrees, and dense infiltration is a favourable prognostic histopathologic feature6.

在侵袭阶段,细胞因子梯度装饰了TME,TME已经演变成复杂的地理空间微环境,代表了多种免疫抑制机制,包括IFNγ依赖性和独立途径。这些发现表明,新转化的黑色素瘤细胞可能具有启动免疫逃避程序并产生免疫抑制性TME的先天能力。原发性皮肤黑色素瘤经常被淋巴细胞不同程度地浸润,密集浸润是一种有利的预后组织病理学特征6。

Despi.

绝望。

Arf6 mRNA in situ hybridizationArf6 mRNA was detected in four μm tissue sections using a custom Arf6 probe (Cat# 1205481-C1, Advanced Cell Diagnostics), targeting a sequence located between the loxP sites of the Arf6f/f allele, and the RNAscope 2.5 HD Reagent Kit—RED (Cat# 3222350, Advanced Cell Diagnostics) according to the manufacturer’s instructions.Lysosome enrichmentRNA interference was performed on UACC.62 cells as described above.

Arf6 mRNA原位杂交根据制造商的说明,使用定制的Arf6探针(Cat#1205481-C1,Advanced Cell Diagnostics)在4μm组织切片中检测Arf6 mRNA,该探针靶向位于Arf6f/f等位基因loxP位点之间的序列,RNAscope 2.5 HD试剂盒RED(Cat#3222350,Advanced Cell Diagnostics)。如上所述,对UACC.62细胞进行溶酶体富集RNA干扰。

Lysosome enrichment was performed using a Lysosome Enrichment Kit (ThermoFisher Scientific, Cat# 89839) according to the manufacturer’s instructions. Briefly, cells were disrupted in the supplied lysis buffers using a Dounce homogenizer. Following centrifugation to pellet debris, supernatants were loaded on 15–30% Optiprep (Millipore-Sigma, Cat# D1556) step gradients and centrifuged at 145,000 × g for 2 h.

。简而言之,使用Dounce匀浆器在提供的裂解缓冲液中破坏细胞。离心沉淀碎片后,将上清液加载到15-30%的Optiprep(Millipore Sigma,Cat#D1556)梯度梯度上,并以145000×g离心2小时。

The lysosome-enriched fractions were collected and pelleted prior to lysis and quantitation for use in western blot analysis.In vivo CD8+ T-cell depletionAt 5 weeks post DF1 RCAS-Cre injection, mice were treated with antibodies prior to tumour onset. Anti-CD8 (200 µg/mouse, Bio X Cell, Cat# BE0117) or rat IgG2b isotype control (200 µg/mouse, Bio X Cell, Cat# BE0090) antibodies were injected intraperitoneally twice per week for 8 weeks or until the tumour measured 2 cm in one dimension.

在裂解和定量之前,收集富含溶酶体的级分并沉淀,以用于蛋白质印迹分析。体内CD8+T细胞消耗在DF1 RCAS-Cre注射后5周,在肿瘤发作之前用抗体处理小鼠。将抗CD8(200μg/小鼠,Bio X细胞,Cat#BE0117)或大鼠IgG2b同种型对照(200μg/小鼠,Bio X细胞,Cat#BE0090)抗体每周两次腹膜内注射8周或直到肿瘤在一维测量为2cm。

CD8+ cell depletion was verified by flow cytometry.In vivo anti-PD-1 treatmentAnti-PD-1 treatment was initiated prior to palpable tumour onset, when microscopic disease was expected, in Arf6WT mice at 5 weeks, and in Arf6f/f mice at 7 weeks. Anti-PD-1 (8 mg/kg, Bio X Cell, Cat# BE0146) was administered intraperitoneally twice per week for 5 weeks or <5 weeks if the tumour reached 2 cm in greatest dimension.

通过流式细胞术验证CD8+细胞消耗。体内抗PD-1治疗抗PD-1治疗在可触及的肿瘤发作之前开始,当预期微观疾病时,在5周的Arf6WT小鼠和7周的Arf6f/f小鼠中开始。抗PD-1(8mg/kg,Bio X Cell,Cat#BE0146)每周两次腹膜内给药5周,如果肿瘤最大尺寸达到2cm,则<5周。

A second cohort of Arf6WT and Arf6f/f mice con.

第二组Arf6WT和Arf6f/f小鼠con。

Data availability

数据可用性

The raw and processed single-cell and bulk RNA sequence data from murine tumours generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under accession code GSE253094. The publicly released data used in this study are available in the GEO database under accession code GSE129392.

本研究中产生的小鼠肿瘤的原始和处理的单细胞和大量RNA序列数据已保存在Gene Expression Omnibus(GEO)数据库中,登录号为GSE253094。本研究中使用的公开发布数据可在GEO数据库中以登录号GSE129392获得。

The Leeds Melanoma Cohort gene expression dataset is available under restricted access at the EGA under accession number EGAD00010001561. Data access can be granted via the EGA with completion of a data access agreement. The TCGA publicly available data used in this study are available in the Genomic Data Commons database under accession code TCGA-SKCM.

利兹黑色素瘤队列基因表达数据集可在EGA的限制访问下获得,登录号为EGAD00010001561。在完成数据访问协议后,可以通过EGA授予数据访问权限。本研究中使用的TCGA公开可用数据可在基因组数据共享数据库中以登录号TCGA-SKCM获得。

Human datasets can be analyzed through Cancer-Immu: https://bioinfo.vanderbilt.edu/database/Cancer-Immu/. The remaining data are available within the Article, Supplementary Information or Source Data file. Source data are provided with this paper..

人类数据集可以通过Cancer Immu进行分析:https://bioinfo.vanderbilt.edu/database/Cancer-Immu/.其余数据可在文章,补充信息或源数据文件中找到。本文提供了源数据。。

ReferencesHanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).Article

参考文献Shanahan,D。癌症的标志:新的维度。癌症发现。12,31–46(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).Article

Wellenstein,M.D。和de Visser,K.E。癌细胞内在机制塑造肿瘤免疫景观。免疫力48399-416(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ghorani, E., Swanton, C. & Quezada, S. A. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 56, 2270–2295 (2023).Article

Ghorani,E.,Swanton,C。&Quezada,S.A。癌细胞内在机制驱动获得性免疫耐受。免疫力562270–2295(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bejarano, L., Jordao, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).Article

。癌症发现。11933-959(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).Article

Nirmal,A.J.等人。单细胞分辨率下原发性黑色素瘤进展和免疫编辑的空间格局。癌症发现。121518-1541(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thomas, N. E. et al. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 31, 4252–4259 (2013).Article

。J、 临床。Oncol公司。关闭J.Am.Soc.Clin。Oncol公司。314252-4259(2013)。文章

Google Scholar

谷歌学者

Wong, S. L. et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 30, 2912–2918 (2012).Article

Wong,S.L.等。黑色素瘤前哨淋巴结活检:美国临床肿瘤学会和外科肿瘤学会联合临床实践指南。J、 临床。Oncol公司。关闭J.Am.Soc.Clin。Oncol公司。302912-2918(2012)。文章

Google Scholar

谷歌学者

McKenzie, B. & Valitutti, S. Resisting T cell attack: tumor-cell-intrinsic defense and reparation mechanisms. Trends Cancer 9, P198–211 (2022).Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. cell Biol. 19, 679–696 (2018).Article .

McKenzie,B。&Valitutti,S。抵抗T细胞攻击:肿瘤细胞内在防御和修复机制。趋势癌症9,P198-211(2022)。Cullen,P.J。&Steinberg,F。降解或不降解:内吞再循环的机制和意义。Nat。Rev。Mol。cell Biol。19679-696(2018)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

D’Souza-Schorey, C. et al. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol. 140, 603–616 (1998).Article

D'Souza-Schorey,C。等人。ARF6靶向将囊泡再循环到质膜:来自超微结构研究的见解。J、 细胞生物学。140603-616(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schweitzer, J. K., Sedgwick, A. E., & D’Souza-Schorey, C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin. Cell Dev. Biol. 22, 39–47 (2011).Article

Schweitzer,J.K.,Sedgwick,A.E。&D'Souza-Schorey,C。ARF6介导的内吞循环影响细胞运动,细胞分裂和脂质稳态。塞米。细胞开发生物学。22,39-47(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Prigent, M. et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111–1121 (2003).Article

。J、 细胞生物学。1631111-1121(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cavenagh, M. M. et al. Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J. Biol. Chem. 271, 21767–21774 (1996).Article

Cavenagh,M.M.等人。Arf蛋白在哺乳动物细胞中的细胞内分布。。J、 生物。化学。27121767–21774(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Grossmann, A. H. et al. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases 10, 1–12 (2016).Article

Grossmann,A.H.等人。小GTPase ARF6调节蛋白质运输,以控制发育和疾病过程中的细胞功能。小型GTPases 10,1-12(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grossmann, A. H. et al. The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci. Signal. 6, ra14 (2013).Article

Grossmann,A.H。等人。小GTP酶ARF6在WNT5A介导的黑色素瘤侵袭和转移过程中刺激β-连环蛋白转录活性。科学。信号。6,ra14(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tague, S. E. & Muralidharan, V. & D’Souza-Schorey, C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc. Natl Acad. Sci. USA 101, 9671–9676 (2004).Article

Tague,S.E。&Muralidharan,V。&D'Souza-Schorey,C。ADP-核糖基化因子6通过激活MEK/ERK信号通路调节肿瘤细胞侵袭。程序。国家科学院。科学。美国1019671–9676(2004)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pellon-Cardenas, O., Clancy, J. & Uwimpuhwe, H. & D’Souza-Schorey, C. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol. Cell. Biol. 33, 2963–2975 (2013).Article

Pellon-Cardenas,O.,Clancy,J。&Uwimpuhwe,H。&D'Souza-Schorey,C。ARF6调节的生长因子受体的内吞作用将基于钙粘蛋白的粘附与上皮细胞中的经典Wnt信号传导联系起来。摩尔电池。生物学332963-2975(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morishige, M. et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat. Cell Biol. 10, 85–92 (2008).Article

Morishige,M。等人,GEP100将表皮生长因子受体信号传导与Arf6激活联系起来,以诱导乳腺癌侵袭。自然细胞生物学。10,85-92(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, W. et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature 492, 252–255 (2012).Article

白细胞介素受体激活MYD88-ARNO-ARF6级联反应以破坏血管稳定性。《自然》49252–255(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davis, C. T. et al. ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. J. Immunol. 192, 6045–6052 (2014).Article

Davis,C.T.等人。ARF6抑制可稳定血管系统并提高内毒素休克期间的存活率。J、 免疫。1926045-6052(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, J. Y. & Kuo, C. C. TLR9-mediated ARF6 activation is involved in advancing CpG ODN cellular uptake. Commun. Integr. Biol. 5, 316–318 (2012).Article

Wu,J.Y。&Kuo,C.C。TLR9介导的ARF6激活参与促进CpG ODN细胞摄取。Commun公司。整数。生物学5316-318(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo, J. H. et al. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell 29, 889–904 (2016).Article

Yoo,J。H。等人。ARF6是一种可操作的节点,可协调葡萄膜黑色素瘤中的致癌GNAQ信号传导。癌细胞29889-904(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hashimoto, S. et al. ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer. Proc. Natl Acad. Sci. USA 116, 17450–17459 (2019).Article

Hashimoto,S。等人,ARF6和AMAP1是KRAS和TP53突变的主要靶标,可促进胰腺癌的侵袭,PD-L1动力学和免疫逃避。程序。国家科学院。科学。。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo, J. H. et al. The small GTPase ARF6 activates PI3K in melanoma to induce a prometastatic state. Cancer Res. 79, 2892–2908 (2019).Article

Yoo,J.H。等人。小GTP酶ARF6激活黑色素瘤中的PI3K以诱导前转移状态。癌症研究792892-2908(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nsengimana, J. et al. β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas. J. Clin. Investig. 128, 2048–2063 (2018).Article

Nsengimana,J。等人。β-连环蛋白介导的免疫逃避途径经常在原发性皮肤黑色素瘤中起作用。J、 临床。调查。1282048-2063(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jackson, T. R. et al. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol. 151, 627–638 (2000).Article

Jackson,T.R.等人ACAPs是arf6 GTPase激活蛋白,在细胞外围起作用。J、 细胞生物学。151627-638(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, Z., Nie, Z., Luo, R., Casanova, J. E. & Ravichandran, K. S. Regulation of Arf6 and ACAP1 signaling by the PTB-domain-containing adaptor protein GULP. Curr. Biol. 17, 722–727 (2007).Article

Ma,Z.,Nie,Z.,Luo,R.,Casanova,J.E。&Ravichandran,K.S。通过含有PTB结构域的衔接蛋白GULP调节Arf6和ACAP1信号传导。货币。生物学17722-727(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, R. et al. A Rab10-ACAP1-Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling. Cell Mol. Life Sci. 80, 87 (2023).Article

Xu,R。等人。Rab10-ACAP1-Arf6 GTPases级联调节M4毒蕈碱乙酰胆碱受体的运输和信号传导。细胞分子生命科学。80,87(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ismail, S. A., Vetter, I. R., Sot, B. & Wittinghofer, A. The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell 141, 812–821 (2010).Article

Ismail,S.A.,Vetter,I.R.,Sot,B。&Wittinghofer,A。Arf-ArfGAP复合物的结构揭示了Ca2+调节机制。细胞141812-821(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, W. et al. Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. J. Clin. Investig. 127, 4569–4582 (2017).Article

Zhu,W。等人。小GTPase ARF6控制糖尿病视网膜病变中VEGFR2的运输和信号传导。J、 临床。调查。1274569-4582(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cho, J. H. et al. AKT1 activation promotes development of melanoma metastases. Cell Rep. 13, 898–905 (2015).Article

Cho,J.H.等人,AKT1激活促进黑色素瘤转移的发展。Cell Rep.13898–905(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donaldson, J. G. & Jackson, C. L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12, 362–375 (2011).Article

Donaldson,J.G。&Jackson,C.L。ARF家族G蛋白及其调节剂:在膜运输,发育和疾病中的作用。Nat。Rev。Mol。Cell Biol。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sumiyoshi, M. et al. Arf1 and Arf6 synergistically maintain survival of T cells during activation. J. Immunol. 206, 366–375 (2021).Article

Sumiyoshi,M。等人。Arf1和Arf6在激活过程中协同维持T细胞的存活。J、 免疫。206366-375(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Singh, P., Ravanan, P. & Talwar, P. Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front Mol. Neurosci. 9, 46 (2016).Article

Singh,P.,Ravanan,P。&Talwar,P。死亡相关蛋白激酶1(DAPK1):细胞凋亡和自噬的调节剂。前分子神经科学。9,46(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).Article

Veglia,F.,Sanseviero,E。&Gabrilovich,D.I。在骨髓细胞多样性增加的时代,骨髓来源的抑制细胞。国家免疫修订版。21485-498(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).Article

Ribas,A。适应性免疫抵抗:癌症如何防止免疫攻击。癌症发现。5915-919(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, T. K., Vandsemb, E. N., Herbst, R. S. & Chen, L. Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat. Rev. Drug Discov. 21, 529–540 (2022).Article

Kim,T.K.,Vandsemb,E.N.,Herbst,R.S。&Chen,L。肿瘤部位的适应性免疫抵抗:机制和治疗机会。《药物目录》修订版。21529-540(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gocher, A. M., Workman, C. J. & Vignali, D. A. A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat. Rev. Immunol. 22, 158–172 (2022).Article

Gocher,A.M.,Workman,C.J.&Vignali,D.A.A.干扰素-γ:肿瘤微环境中的队友还是对手?国家免疫修订版。22158-172(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, J. et al. A pan-cancer immunogenomic atlas for immune checkpoint blockade immunotherapy. Cancer Res. 82, 539–542 (2021).Article

Yang,J。等人。用于免疫检查点阻断免疫疗法的泛癌免疫基因组图谱。癌症研究82539-542(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sztul, E. et al. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol. Biol. cell 30, 1249–1271 (2019).Article

Sztul,E。等人。ARF GTPases及其GEF和GAP:概念和挑战。分子生物学。细胞301249-1271(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ogasawara, M. et al. Similarities in function and gene structure of cytohesin-4 and cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors. J. Biol. Chem. 275, 3221–3230 (2000).Article

Ogasawara,M.等人。细胞粘附素-4和细胞粘附素-1的功能和基因结构的相似性,鸟嘌呤核苷酸交换蛋白的ADP-核糖基化因子。J、 生物。化学。2753221-3230(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Melanoma: Cutaneous, <nccn.org> (2023).The Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).Article

黑色素瘤:皮肤,nccn.org(2023)。癌症基因组图谱网络。皮肤黑色素瘤的基因组分类。。文章

Google Scholar

谷歌学者

Lee, S. J. et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 580, 755–762 (2006).Article

Lee,S.J.等人。干扰素调节因子-1是组成型表达和IFN-γ诱导的B7-H1(CD274)上调的先决条件。FEBS Lett公司。580755-762(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).Article

。J、 免疫。1853190-3198(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep. 13, 412–424 (2015).Article

Holmgaard,R.B。等人。肿瘤表达的IDO以treg依赖性方式募集并激活MDSC。Cell Rep.13412–424(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nistico, P. et al. Effect of recombinant human leukocyte, fibroblast, and immune interferons on expression of class I and II major histocompatibility complex and invariant chain in early passage human melanoma cells. Cancer Res. 50, 7422–7429 (1990).CAS

Nistico,P。等人。重组人白细胞、成纤维细胞和免疫干扰素对早期传代人黑色素瘤细胞中I类和II类主要组织相容性复合物和不变链表达的影响。癌症研究507422-7429(1990)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Giacomini, P. et al. Regulation of the antigenic phenotype of human melanoma cells by recombinant interferons. Anticancer Res 6, 877–884 (1986).CAS

Giacomini,P。等人。重组干扰素对人黑色素瘤细胞抗原表型的调节。抗癌研究6877-884(1986)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Q. et al. Small-molecule synergist of the Wnt/β-catenin signaling pathway. Proc. Natl Acad. Sci. USA 104, 7444–7448 (2007).Article

Zhang,Q。等。Wnt/β-连环蛋白信号通路的小分子增效剂。程序。国家科学院。科学。美国1047444-7448(2007)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chabu, C., Li, D. M. & Xu, T. EGFR/ARF6 regulation of Hh signalling stimulates oncogenic Ras tumour overgrowth. Nat. Commun. 8, 14688 (2017).Article

Chabu,C.,Li,D.M。&Xu,T。EGFR/ARF6调节Hh信号传导刺激致癌Ras肿瘤过度生长。国家公社。814688(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Menju, T. et al. Engagement of overexpressed Her2 with GEP100 induces autonomous invasive activities and provides a biomarker for metastases of lung adenocarcinoma. PloS one 6, e25301 (2011).Article

Menju,T。等人。过表达的Her2与GEP100的结合诱导自主侵袭活性,并为肺腺癌的转移提供生物标志物。《公共科学图书馆·综合》第6期,第25301页(2011年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palacios, F., Price, L., Schweitzer, J., Collard, J. G., & D’Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20, 4973–4986 (2001).Article

Palacios,F.,Price,L.,Schweitzer,J.,Collard,J.G。&D'Souza-Schorey,C。ARF6调节膜运输在粘附连接周转和上皮细胞迁移中的重要作用。EMBO J.204973–4986(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, B. et al. ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res. 69, 794–801 (2009).Article

Hu,B。等人。ADP-核糖基化因子6通过IQ结构域GTPase激活蛋白1-Rac1介导的途径调节神经胶质瘤细胞的侵袭。癌症研究69794-801(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Celada, A. & Schreiber, R. D. Internalization and degradation of receptor-bound interferon-gamma by murine macrophages. Demonstration of receptor recycling. J. Immunol. 139, 147–153 (1987).Article

Celada,A。&Schreiber,R.D。小鼠巨噬细胞对受体结合的干扰素γ的内化和降解。受体再循环的证明。J、 免疫。139147-153(1987)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).Article

Zaretsky,J.M.等人。与黑色素瘤中获得性PD-1阻断抗性相关的突变。N、 英语。J、 医学375819-829(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 therapy. Cell 167, 397–404.e399 (2016).Article

Gao,J.等人。肿瘤细胞中IFN-γ途径基因的缺失是抗CTLA-4治疗耐药的机制。细胞167397-404.e399(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2022).Article

Korman,A.J.,Garrett Thomson,S.C。和Lonberg,N。免疫检查点封锁的基础和ipilimumab批准十年一次。《药物目录》修订版。21509-528(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Saerens, M. et al. Immune checkpoint inhibitors in treatment of soft-tissue sarcoma: a systematic review and meta-analysis. Eur. J. Cancer 152, 165–182 (2021).Article

免疫检查点抑制剂治疗软组织肉瘤:系统综述和荟萃分析。《欧洲癌症杂志》152165-182(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muralidharan-Chari, V. et al. ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res. 69, 2201–2209 (2009).Article

。癌症研究692201-2209(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).Article

Muralidharan-Chari,V。等人。ARF6调节肿瘤细胞衍生的质膜微泡的脱落。货币。生物学191875-1885(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948.e914 (2019).Article

Benci,J.L.等人。干扰素的相反功能协调了对癌症免疫检查点阻断的适应性和先天性免疫反应。细胞178933-948.e914(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lerner, E. C. et al. CD8(+) T cells maintain killing of MHC-I-negative tumor cells through the NKG2D-NKG2DL axis. Nat. Cancer 4, 1258–1272 (2023).Article

Lerner,E.C。等人,CD8(+)T细胞通过NKG2D-NKG2DL轴维持MHC-I阴性肿瘤细胞的杀伤。《自然癌症》41258-1272(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Montagnac, G. et al. Decoupling of activation and effector binding underlies ARF6 priming of fast endocytic recycling. Curr. Biol. 21, 574–579 (2011).Article

Montagnac,G。等人。激活和效应子结合的解耦是ARF6引发快速内吞循环的基础。货币。生物学21574-579(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Onodera, Y., Nam, J. M., Horikawa, M., Shirato, H. & Sabe, H. Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nat. Commun. 9, 2682 (2018).Article

Onodera,Y.,Nam,J.M.,Horikawa,M.,Shirato,H。&Sabe,H。Arf6驱动的细胞侵袭与TRAK1介导的线粒体顺行运输有内在联系,以避免氧化灾难。国家公社。92682(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).Article

。国家公社。814049(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).Article

Satija,R.,Farrell,J.A.,Gennert,D.,Schier,A.F。&Regev,A。单细胞基因表达数据的空间重建。美国国家生物技术公司。33495-502(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).Article

Hafemeister,C。&Satija,R。使用正则化负二项回归对单细胞RNA-seq数据进行归一化和方差稳定。基因组生物学。20296(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 14, 128 (2013).Article

Chen,E.Y.等人。Enrichr:交互式和协作HTML5基因列表富集分析工具。BMC生物信息学。14128(2013)。文章

Google Scholar

谷歌学者

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).Article

Aran,D。等人。基于参考的肺单细胞测序分析揭示了过渡性促纤维化巨噬细胞。。20163-172(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).Article

Andreatta,M。等人。使用参考地图集从单细胞转录组学数据解释T细胞状态。国家公社。122965(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).Article

Hao,Y.等人。多模式单细胞数据的综合分析。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article

Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet。J、 17,10-12(2011)。文章

Google Scholar

谷歌学者

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article

Liao,Y.,Smyth,G.K。&Shi,W。featureCounts:一种有效的通用程序,用于将序列读数分配给基因组特征。生物信息学30923-930(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article

Ewels,P.,Magnusson,M.,Lundin,S。&Kaller,M。MultiQC:在一份报告中总结多种工具和样品的分析结果。生物信息学323047-3048(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korotkevich, G. et al. Fast gene set enrichment analysis. Bioconductor Open Source Software for Bioinformatics https://doi.org/10.18129/B9.bioc.fgsea (2021).Dunning, M., Lynch, A., Eldridge, M. Illumina HumanHT12v4 annotation data (chip illuminaHumanv4). R package version 1.26.0. illuminaHumanv4.db https://doi.org/10.18129/B9.bioc.illuminaHumanv4.db (2015).Therneau, T.

Korotkevich,G。等人。快速基因组富集分析。用于生物信息学的Bioconductor开源软件https://doi.org/10.18129/B9.bioc.fgsea(2021年)。Dunning,M.,Lynch,A.,Eldridge,M.Illumina HumanHT12v4注释数据(chip illuminaHumanv4)。R包版本1.26.0。illuminaHumanv4.dbhttps://doi.org/10.18129/B9.bioc.illuminaHumanv4.db(2015年)。塞尔诺,T。

M., Crowson, Cynthia S., Atkinson, Elizabeth J. A Package for Survival Analysis in R. R package version 3.5-5. The Comprehensive R Archive Network (2023).Download referencesAcknowledgementsWe thank Diana Lim and Nikita Abraham for preparation of scientific graphics and illustrations; J.P. Snook for technical support; the Cell Response and Regulation (CRR) Program from the Huntsman Cancer Institute (HCI); HCI Shared Resources: Research Histology, Research Immunohistochemistry, High Throughput Genomics and Cancer Bioinformatics, Cancer Biostatistics and Preclinical Research Resource; University of Utah Flow Cytometry Core and the Genomics Core; MD Anderson Cancer Center Functional Proteomics Core; the Leeds Institute of Cancer and Pathology, University of Leeds, U.K.; Qi Liu, Hua-Chang Chen and Jing Yang (Vanderbilt University Medical Center) for Cancer-Immu technical support; the Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University for statistical support.

M、 ,Crowson,Cynthia S.,Atkinson,Elizabeth J.R.R软件包版本3.5-5中的生存分析软件包。。下载参考文献致谢我们感谢Diana Lim和Nikita Abraham准备科学图形和插图;J、 P.Snook寻求技术支持;亨斯迈癌症研究所(HCI)的细胞反应与调节(CRR)计划;HCI共享资源:研究组织学,研究免疫组织化学,高通量基因组学和癌症生物信息学,癌症生物统计学和临床前研究资源;犹他大学流式细胞仪核心和基因组学核心;MD安德森癌症中心功能蛋白质组学核心;英国利兹大学利兹癌症与病理学研究所。;刘琦,陈华昌和杨靖(范德比尔特大学医学中心)提供癌症免疫技术支持;台北医科大学数据科学办公室健康数据分析与统计中心提供统计支持。

This project was supported by funding from NIH/NCI P30CA042014 (HCI). A.H.G. has been supported by the American Cancer Society 133649-RSG-19-019-01-CSM and NIH/NCI K08CA188563 and is currently supported by the Department of Pathology at the University of Utah, NIH/NCI R37CA230630 and U.S. Department of Defense (DoD) W81XWH2210910.

该项目得到了NIH/NCI P30CA042014(HCI)的资助。A、 H.G.得到了美国癌症协会133649-RSG-19-019-01-CSM和NIH/NCI K08CA188563的支持,目前得到了犹他大学病理学系,NIH/NCI R37CA230630和美国国防部(DoD)W81XWH2210910的支持。

S.L.H. is supported by NIH/NCI R01CA121118. M.A.W. is supported by .

S、 L.H.由NIH/NCI R01CA121118支持。M、 A.W.由支持。

PubMed Google ScholarJunhua WangView author publicationsYou can also search for this author in

PubMed Google ScholarJunhua WangView作者出版物您也可以在

PubMed Google ScholarEmily C. WilsonView author publicationsYou can also search for this author in

PubMed Google ScholarEmily C.WilsonView作者出版物您也可以在

PubMed Google ScholarCoulson P. RichView author publicationsYou can also search for this author in

PubMed Google ScholarCoulson P.RichView作者出版物您也可以在

PubMed Google ScholarAaron RogersView author publicationsYou can also search for this author in

PubMed Google ScholarAaron RogersView作者出版物您也可以在

PubMed Google ScholarZongzhong TongView author publicationsYou can also search for this author in

PubMed Google ScholarZongzhong TongView作者出版物您也可以在

PubMed Google ScholarEvelyn DeGrootView author publicationsYou can also search for this author in

PubMed Google ScholarEvelyn DeGrootView作者出版物您也可以在

PubMed Google ScholarY. N. Vashisht GopalView author publicationsYou can also search for this author in

PubMed谷歌学术。N、 Vashisht GopalView作者出版物您也可以在

PubMed Google ScholarMichael A. DaviesView author publicationsYou can also search for this author in

PubMed Google Scholarmamichael A.DavidView作者出版物您也可以在

PubMed Google ScholarH. Atakan EkizView author publicationsYou can also search for this author in

PubMed Google ScholarH.Atakan EkizView作者出版物您也可以在

PubMed Google ScholarJoshua K. H. TayView author publicationsYou can also search for this author in

PubMed谷歌学者Joshua K.H.TayView作者出版物您也可以在

PubMed Google ScholarChris StubbenView author publicationsYou can also search for this author in

PubMed Google ScholarChris StubbenView作者出版物您也可以在

PubMed Google ScholarKenneth M. BoucherView author publicationsYou can also search for this author in

PubMed Google ScholarKenneth M.BoucherView作者出版物您也可以在

PubMed Google ScholarJuan M. OviedoView author publicationsYou can also search for this author in

PubMed Google ScholarJuan M.OviedoView作者出版物您也可以在

PubMed Google ScholarKeke C. FairfaxView author publicationsYou can also search for this author in

PubMed Google ScholarKeke C.FairfaxView作者出版物您也可以在

PubMed Google ScholarMatthew A. WilliamsView author publicationsYou can also search for this author in

PubMed Google ScholarMatthew A.WilliamsView作者出版物您也可以在

PubMed Google ScholarSheri L. HolmenView author publicationsYou can also search for this author in

PubMed Google ScholarSheri L.HolmenView作者出版物您也可以在

PubMed Google ScholarRoger K. WolffView author publicationsYou can also search for this author in

PubMed Google ScholarRoger K.WolffView作者出版物您也可以在

PubMed Google ScholarAllie H. GrossmannView author publicationsYou can also search for this author in

PubMed Google ScholarAllie H.GrossmannView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization, A.H.G, Y.W.; investigation, Y.W., J.W., E.C.W, C.P.R., A.R., E.D., J.K.H.T., R.K.W., A.H.G.; formal analysis, C.S., K.B. J.M.O, K.C.F., H.A.E.; methodology, S.L.H., K.C.F, M.A.W., A.H.G.; resources, Z.T., M.A.W., S.L.H., Y.N.V.G., M.A.D.; supervision, A.H.G., R.K.W., K.C.F., M.A.W., S.L.H.; writing-original draft, A.H.G, Y.W.; writing-reviewing & editing, A.H.G, Y.W., J.W., E.C.W., J.K.H.T., R.K.W.; funding acquisition, A.H.G.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献概念化,A.H.G,Y.W。;调查,Y.W.,J.W.,E.C.W.,C.P.R.,A.R.,E.D.,J.K.H.T.,R.K.W.,A.H.G。;形式分析,C.S.,K.B.J.M.O,K.C.F.,H.A.E。;方法论,S.L.H.,K.C.F,M.A.W.,A.H.G。;资源,Z.T.,M.A.W.,S.L.H.,Y.N.V.G.,M.A.D。;监督,A.H.G.,R.K.W.,K.C.F.,M.A.W.,S.L.H。;撰写原稿,A.H.G,Y.W。;写作评论与编辑,A.H.G,Y.W.,J.W.,E.C.W.,J.K.H.T.,R.K.W。;资金收购,A.H.G.通讯作者回复。

Allie H. Grossmann.Ethics declarations

艾莉·H·格罗斯曼。道德宣言

Competing interests

相互竞争的利益

M.A.D. has been a consultant to Roche/Genentech, Array, Pfizer, Novartis, BMS, GSK, Sanofi-Aventis, Vaccinex, Apexigen, Eisai, Iovance, Merck, and ABM Therapeutics, and he has been the PI of research grants to MD Anderson by Roche/Genentech, GSK, Sanofi-Aventis, Merck, Myriad, Oncothyreon, Pfizer, ABM Therapeutics, and LEAD Pharma.

M、 A.D.曾担任罗氏/基因泰克、Array、辉瑞、诺华、BMS、葛兰素史克、赛诺菲-安万特、Vaccinex、Apexigen、卫材、Iovance、默克和ABM Therapeutics的顾问,并担任罗氏/基因泰克、葛兰素史克、赛诺菲-安万特、默克、Myriad、Oncothyreon、辉瑞、ABM Therapeutics和LEAD Pharma向MD Anderson提供研究资助的PI。

The remaining authors declare no competing interests..

其余作者声明没有利益冲突。。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Hisataka Sabe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Hisataka Sabe和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleWee, Y., Wang, J., Wilson, E.C. et al. Tumour-intrinsic endomembrane trafficking by ARF6 shapes an immunosuppressive microenvironment that drives melanomagenesis and response to checkpoint blockade therapy.

转载和许可本文引用本文Wee,Y.,Wang,J.,Wilson,E.C.等人。ARF6的肿瘤内在内膜运输形成了一种免疫抑制微环境,驱动黑色素瘤的发生和对检查点阻断疗法的反应。

Nat Commun 15, 6613 (2024). https://doi.org/10.1038/s41467-024-50881-1Download citationReceived: 04 January 2024Accepted: 24 July 2024Published: 04 August 2024DOI: https://doi.org/10.1038/s41467-024-50881-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》156613(2024)。https://doi.org/10.1038/s41467-024-50881-1Download引文接收日期:2024年1月4日接受日期:2024年7月24日发布日期:2024年8月4日OI:https://doi.org/10.1038/s41467-024-50881-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。