商务合作
动脉网APP
可切换为仅中文
AbstractWhile lysine methylation is well-known for regulating gene expression transcriptionally, its implications in translation have been largely uncharted. Trimethylation at lysine 22 (K22me3) on RPL40, a core ribosomal protein located in the GTPase activation center, was first reported 27 years ago.
摘要尽管赖氨酸甲基化以转录调控基因表达而闻名,但其在翻译中的意义在很大程度上尚不清楚。。
Yet, its methyltransferase and role in translation remain unexplored. Here, we report that SMYD5 has robust in vitro activity toward RPL40 K22 and primarily catalyzes RPL40 K22me3 in cells. The loss of SMYD5 and RPL40 K22me3 leads to reduced translation output and disturbed elongation as evidenced by increased ribosome collisions.
然而,它的甲基转移酶和在翻译中的作用仍未被探索。在这里,我们报道SMYD5对RPL40 K22具有强大的体外活性,并主要催化细胞中的RPL40 K22me3。SMYD5和RPL40 K22me3的丢失导致翻译输出减少和延伸受到干扰,核糖体碰撞增加证明了这一点。
SMYD5 and RPL40 K22me3 are upregulated in hepatocellular carcinoma (HCC) and negatively correlated with patient prognosis. Depleting SMYD5 renders HCC cells hypersensitive to mTOR inhibition in both 2D and 3D cultures. Additionally, the loss of SMYD5 markedly inhibits HCC development and growth in both genetically engineered mouse and patient-derived xenograft (PDX) models, with the inhibitory effect in the PDX model further enhanced by concurrent mTOR suppression.
SMYD5和RPL40 K22me3在肝细胞癌(HCC)中上调,与患者预后呈负相关。耗尽SMYD5使HCC细胞在2D和3D培养物中对mTOR抑制过敏。此外,SMYD5的缺失显着抑制了基因工程小鼠和患者来源的异种移植(PDX)模型中HCC的发展和生长,同时mTOR抑制进一步增强了PDX模型中的抑制作用。
Our findings reveal a novel role of the SMYD5 and RPL40 K22me3 axis in translation elongation and highlight the therapeutic potential of targeting SMYD5 in HCC, particularly with concurrent mTOR inhibition. This work also conceptually broadens the understanding of lysine methylation, extending its significance from transcriptional regulation to translational control..
。这项工作还从概念上拓宽了对赖氨酸甲基化的理解,将其意义从转录调控扩展到翻译控制。。
IntroductionProtein lysine Nε-methylation plays a crucial role in various biological processes. While its impact on transcription regulation via histone proteins has been extensively studied over the past two decades or so, its role in translation remains largely unexplored. In this context, several mammalian ribosomal proteins, such as RPL4, RPL29, RPL40, and RPL36A, have been reported to contain lysine methylation.1,2,3 Among these, RPL40 is a special ribosomal protein encoded by the UBA52 gene.
简介蛋白质赖氨酸Nε-甲基化在各种生物过程中起着至关重要的作用。虽然在过去的二十年左右的时间里,它通过组蛋白对转录调控的影响已经得到了广泛的研究,但它在翻译中的作用仍然很大程度上未被探索。在这种情况下,据报道几种哺乳动物核糖体蛋白,如RPL4,RPL29,RPL40和RPL36A,含有赖氨酸甲基化。其中,RPL40是由UBA52基因编码的特殊核糖体蛋白。
The precursor UBA52 protein is a fusion protein of 128 amino acids (aa), comprising an N-terminal fusion of a ubiquitin module (76 aa). After the removal of ubiquitin, the mature form of RPL40 is 52 aa in length and is one of the last components assembled into the 60S ribosomal subunit in cytoplasm.4,5 In the mature 80S ribosome, RPL40 is located near the P stalk/GTPase Activation Center (GAC) and Sarcin-Ricin Loop (SRL), where elongation factors eEF1A and eEF2 bind.
前体UBA52蛋白是128个氨基酸(aa)的融合蛋白,包含泛素模块(76 aa)的N端融合蛋白。去除泛素后,RPL40的成熟形式长度为52 aa,是细胞质中最后组装成60S核糖体亚基的成分之一。4,5在成熟的80S核糖体中,RPL40位于P茎/GTPase激活中心(GAC)和Sarcin-Ricin环(SRL)附近,延伸因子eEF1A和eEF2结合。
The elongation factors are crucial for recruiting peptidyl-tRNA to the A-site and for translocating it from A-site to P-site. RPL40 has been proposed to selectively regulate stress-related mRNA translation and confer resistance to elongation inhibitor Sordarin in yeasts,4,6 suggesting an essential function of RPL40 in protein synthesis.
延伸因子对于将肽基tRNA募集到A位点以及将其从A位点转移到P位点至关重要。已经提出RPL40选择性调节应激相关的mRNA翻译,并赋予酵母对延伸抑制剂Sordarin的抗性,4,6表明RPL40在蛋白质合成中的重要功能。
Importantly, the trimethylation of K22 on RPL40 (RPL40 K22me3, equivalent to UBA52 K98me3) was identified by mass spectrometry analysis in rat liver 27 years ago,1 and visualized in recent high-resolution ribosome structural studies.2,3 However, the role of this modification in translation and ribosome function remains unclear.SET and MYND domain-containing (SMYD) proteins constitute an evolutionarily conserved subfamily of lysine methyltransferases, characterized by a catalytic SE.
重要的是,27年前,通过质谱分析在大鼠肝脏中鉴定了RPL40(RPL40 K22me3,相当于UBA52 K98me3)上K22的三甲基化,1并在最近的高分辨率核糖体结构研究中可视化[2,3]。然而,这种修饰在翻译和核糖体功能中的作用仍不清楚。SET和含有MYND结构域的(SMYD)蛋白构成赖氨酸甲基转移酶的进化保守亚家族,其特征在于催化SE。
Data availability
数据可用性
High-throughput sequencing data were deposited to the Gene Expression Omnibus with an accession number GSE241588.
高通量测序数据以登录号GSE241588保存到Gene Expression Omnibus。
ReferencesWilliamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Post-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys22 within the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys4 in RL29. Eur. J. Biochem.
参考文献Williamson,N.A.,Raliegh,J.,Morrice,N.A。和Wettenhall,R.E。大鼠核糖体蛋白的翻译后加工。RL40(羧基末端延伸蛋白52)的锌指基序中Lys22的普遍甲基化和RL29中Lys4的组织特异性甲基化。Eur.J.生物化学。
246, 786–793 (1997).Article .
246786-793(1997)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. Visualization of chemical modifications in the human 80S ribosome structure. Nature 551, 472–477 (2017).Article
Natchiar,S.K.,Myasnikov,A.G.,Kratzat,H.,Hazemann,I。&Klaholz,B.P。人类80S核糖体结构化学修饰的可视化。自然551472-477(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holm, M. et al. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 617, 200–207 (2023).Article
Holm,M.等人,《人类mRNA解码在动力学和结构上不同于细菌》,《自然》617200-207(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fernandez-Pevida, A., Rodriguez-Galan, O., Diaz-Quintana, A., Kressler, D. & de la Cruz, J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J. Biol. Chem. 287, 38390–38407 (2012).Article
Fernandez-Pevida,A.,Rodriguez-Galan,O.,Diaz-Quintana,A.,Kressler,D。&de la Cruz,J。酵母核糖体蛋白L40晚期组装成前体60 S核糖体,是其细胞质成熟所必需的。J、 生物。化学。28738390–38407(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kargas, V. et al. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. Elife 8, e44904 (2019).Article
Kargas,V。等人。真核生物中肽基转移酶中心组装完成的机制。Elife 8,e44904(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl. Acad. Sci. USA 110, 324–329 (2013).Article
Lee,A.S.,Burdeinick-Kerr,R。&Whelan,S.P。水泡性口炎病毒mRNA的帽依赖性翻译需要核糖体特异性翻译起始途径。程序。纳特尔。阿卡德。科学。美国110324-329(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gottlieb, P. D. et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 31, 25–32 (2002).Article
Gottlieb,P.D。等人,Bop编码一种含有MYND和SET结构域的肌肉限制性蛋白,对心脏分化和形态发生至关重要。纳特·吉内特。31,25–32(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tracy, C. et al. The Smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr. Opin. Physiol. 1, 140–152 (2018).Article
Tracy,C.等人。Smyd甲基转移酶家族:在心肌和骨骼肌生理和病理学中的作用。货币。奥平。生理学。1140-152(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boehm, D., Lam, V., Schnolzer, M. & Ott, M. The lysine methyltransferase SMYD5 amplifies HIV-1 transcription and is post-transcriptionally upregulated by Tat and USP11. Cell Rep. 42, 112234 (2023).Article
Boehm,D.,Lam,V.,Schnolzer,M。&Ott,M。赖氨酸甲基转移酶SMYD5扩增HIV-1转录,并被Tat和USP11转录后上调。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat. Commun. 13, 3190 (2022).Article
。国家公社。133190(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).Article
Li,T。等人。用于分析肿瘤浸润性免疫细胞的TIMER2.0。核酸研究48,W509–W514(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).Article
癌症基因组图谱研究网络,全面的基因组表征定义了人类胶质母细胞瘤基因和核心途径。自然4551061-1068(2008)。文章
Google Scholar
谷歌学者
Gao, Q. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577.e22 (2019).Article
Gao,Q。等人。HBV相关肝细胞癌的综合蛋白质基因组学表征。细胞179561-577.e22(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019).Article
。自然567257-261(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Patnaik, D. et al. Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase. J. Biol. Chem. 279, 53248–53258 (2004).Article
Patnaik,D。等人。哺乳动物G9a组蛋白H3甲基转移酶的底物特异性和动力学机制。J、 生物。化学。27953248–53258(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stender, J. D. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).Article
Stender,J.D.等人。通过调节组蛋白H4K20的三甲基化和去甲基化来控制促炎基因程序。分子细胞48,28-38(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aljazi, M. B., Gao, Y., Wu, Y. & He, J. SMYD5 is a histone H3-specific methyltransferase mediating mono-methylation of histone H3 lysine 36 and 37. Biochem. Biophys. Res. Commun. 599, 142–147 (2022).Article
Aljazi,M.B.,Gao,Y.,Wu,Y。&He,J。SMYD5是一种组蛋白H3特异性甲基转移酶,介导组蛋白H3赖氨酸36和37的单甲基化。生物化学。生物物理。公共资源。599142-147(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kidder, B. L. et al. SMYD5 controls heterochromatin and chromosome integrity during embryonic stem cell differentiation. Cancer Res. 77, 6729–6745 (2017).Article
Kidder,B.L.等人SMYD5在胚胎干细胞分化过程中控制异染色质和染色体完整性。癌症研究776729-6745(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kidder, B. L., Hu, G., Cui, K. & Zhao, K. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation. Epigenetics Chromatin 10, 8 (2017).Article
Kidder,B.L.,Hu,G.,Cui,K。&Zhao,K。SMYD5调节H4K20me3标记的异染色质,以保护ES细胞自我更新并防止虚假分化。表观遗传学染色质10,8(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).Article
Ingolia,N.T.,Ghaemmaghami,S.,Newman,J.R。&Weissman,J.S。使用核糖体分析对核苷酸分辨率进行体内翻译的全基因组分析。科学324218-223(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meydan, S. & Guydosh, N. R. Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol. Cell 79, 588–602.e586 (2020).Article
Meydan,S。&Guydosh,N.R。二体和三体分析揭示了核糖体质量控制的全基因组靶标。分子细胞79588-602.e586(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, C. C., Peterson, A., Zinshteyn, B., Regot, S. & Green, R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416.e14 (2020).Article
Wu,C.C.,Peterson,A.,Zinshteyn,B.,Regot,S。&Green,R。核糖体碰撞引发一般应激反应以调节细胞命运。细胞182404-416.e14(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vind, A. C. et al. ZAKα recognizes stalled ribosomes through partially redundant sensor domains. Mol. Cell 78, 700–713.e7 (2020).Article
Vind,A.C.等人的ZAKα通过部分冗余的传感器结构域识别停滞的核糖体。分子细胞78700–713.e7(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Snieckute, G. et al. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science 382, eadf3208 (2023).Article
Snieckute,G。等人。ROS诱导的核糖体损伤是ZAKα介导的肥胖和衰老代谢下降的基础。科学382,eadf3208(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, L. J. et al. Cancer plasticity: the role of mRNA translation. Trends Cancer 7, 134–145 (2021).Article
Lee,L.J.等人,《癌症可塑性:mRNA翻译的作用》。趋势癌症7134-145(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).Article
Carreau,A.,El-Hafny-Rahbi,B.,Matejuk,A.,Grillon,C。&Kieda,C。为什么人体组织的氧分压是一个关键参数?小分子和缺氧。J、 细胞。摩尔医学杂志151239-1253(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pelletier, J., Thomas, G. & Volarevic, S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer 18, 51–63 (2018).Article
Pelletier,J.,Thomas,G。&Volarevic,S。癌症中的核糖体生物发生:新的参与者和治疗途径。Nat.Rev.Cancer 18,51-63(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Groza, T. et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 51, D1038–D1045 (2023).Article
Groza,T.等人,《国际小鼠表型联盟:支持人类疾病研究的综合敲除表型》。核酸研究51,D1038–D1045(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).Article
Skarnes,W.C.等人。用于小鼠基因功能全基因组研究的条件性敲除资源。《自然》474337–342(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robinson, K. S. et al. ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science 377, 328–335 (2022).Article
Robinson,K.S.等人,ZAKα驱动的核糖毒性应激反应激活人NLRP1炎性体。科学377328-335(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Milicevic, N., Jenner, L., Myasnikov, A., Yusupov, M. & Yusupova, G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 625, 393–400 (2024).Article
Milicevic,N.,Jenner,L.,Myasnikov,A.,Yusupov,M。&Yusupova,G。真核生物核糖体易位过程中mRNA阅读框的维持。自然625393-400(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ebright, R. Y. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367, 1468–1473 (2020).Article
Ebright,R.Y.等人。核糖体蛋白表达和翻译的失调促进乳腺癌转移。科学3671468-1473(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hwang, S. P. & Denicourt, C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 6, zcae017 (2024).Article
Hwang,S.P。和Denicourt,C。核糖体生物发生在癌症中的影响:从增殖到转移。NAR癌症6,zcae017(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, F. et al. A Dynamic rRNA ribomethylome drives stemness in acute myeloid leukemia. Cancer Discov. 13, 332–347 (2023).Article
Zhou,F。等人。动态rRNA核糖甲基化组驱动急性髓细胞白血病的干性。癌症发现。13332-347(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
López, J. & Blanco, S. Exploring the role of ribosomal RNA modifications in cancer. Curr. Opin. Genet. Dev. 86, 102204 (2024).Article
López,J。&Blanco,S。探索核糖体RNA修饰在癌症中的作用。货币。奥平。。德文86102204(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Elhamamsy, A. R., Metge, B. J., Alsheikh, H. A., Shevde, L. A. & Samant, R. S. Ribosome biogenesis: a central player in cancer metastasis and therapeutic resistance. Cancer Res. 82, 2344–2353 (2022).Article
Elhamamsy,A.R.,Metge,B.J.,Alsheikh,H.A.,Shevde,L.A。&Samant,R.S。核糖体生物发生:癌症转移和治疗耐药性的核心参与者。癌症研究822344-2353(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fernandez-Barrena, M. G., Arechederra, M., Colyn, L., Berasain, C. & Avila, M. A. Epigenetics in hepatocellular carcinoma development and therapy: the tip of the iceberg. JHEP Rep. 2, 100167 (2020).Article
。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, X., Paliogiannis, P., Calvisi, D. F. & Chen, X. Role of the mammalian target of rapamycin pathway in liver cancer: From molecular genetics to targeted therapies. Hepatology 73, 49–61 (2021).Article
Lu,X.,Paliogiannis,P.,Calvisi,D.F。&Chen,X。雷帕霉素途径的哺乳动物靶标在肝癌中的作用:从分子遗传学到靶向治疗。肝病学73,49-61(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18, 744–757 (2018).Article
Mossmann,D.,Park,S。&Hall,M.N。mTOR信号传导和细胞代谢是癌症的相互决定因素。《国家癌症评论》18744-757(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).Article
。Nat。Rev。Mol。Cell Biol。21183-203(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cortes, J. et al. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood 120, 2573–2580 (2012).Article
。血液1202573-2580(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gandhi, V., Plunkett, W. & Cortes, J. E. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin. Cancer Res. 20, 1735–1740 (2014).Article
甘地(Gandhi,V.),普朗科特(Plunkett,W.)和科尔特斯(Cortes),J.E。奥马西他辛(Omacetaxine):一种用于治疗慢性粒细胞白血病的蛋白质翻译抑制剂。临床。癌症研究201735-1740(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Homoharringtonine-based induction regimen improved the remission rate and survival rate in Chinese childhood AML: a report from the CCLG-AML 2015 protocol study. J. Clin. Oncol. 41, 4881–4892 (2023).Article
Li,J。等人。基于高三尖杉酯碱的诱导方案提高了中国儿童AML的缓解率和生存率:CCLG-AML 2015方案研究的报告。J、 。Oncol公司。414881-4892(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hamidi, T. et al. Identification of Rpl29 as a major substrate of the lysine methyltransferase Set7/9. J. Biol. Chem. 293, 12770–12780 (2018).Article
Hamidi,T。等人。鉴定Rpl29作为赖氨酸甲基转移酶Set7/9的主要底物。J、 生物。化学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).Article
Sanjana,N.E.,Shalem,O。&Zhang,F。改进了用于CRISPR筛选的载体和全基因组文库。《自然方法》11783-784(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shen, H. et al. Suppression of enhancer overactivation by a RACK7-histone demethylase complex. Cell 165, 331–342 (2016).Article
Shen,H。等人。通过RACK7组蛋白脱甲基酶复合物抑制增强子过度活化。细胞165331-342(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, Y. et al. Quantitative profiling of combinational K27/K36 modifications on histone H3 variants in mouse organs. J. Proteome Res. 15, 1070–1079 (2016).Article
Yu,Y.等人。小鼠器官中组蛋白H3变体的K27/K36组合修饰的定量分析。J、 蛋白质组研究第151070-1079号(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2, e162 (2007).Article
Raymond,C。S。和Soriano,P。哺乳动物细胞中的高效FLP和PhiC31位点特异性重组。PLoS One 2,e162(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).Article
。J、 生物。化学。274305-315(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uehara, T., Pogribny, I. P. & Rusyn, I. The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr. Protoc. Pharmacol. 66, 14 30 11–14 30 10 (2014).Article
Uehara,T.,Pogribny,I.P。&Rusyn,I。DEN和CCl4诱导的纤维化和炎症相关肝细胞癌小鼠模型。货币。普罗托克。药理学。66,14 30 11–14 30 10(2014)。文章
Google Scholar
谷歌学者
Ma, H. et al. N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).Article
Ma,H。等人,N(6-)甲基腺苷甲基转移酶ZCCHC4介导核糖体RNA甲基化。自然化学。生物学杂志15,88-94(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Calviello, L. et al. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods 13, 165–170 (2016).Article
Calviello,L。等人。在核糖体分析数据中检测主动翻译的开放阅读框。自然方法13165-170(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article
Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article
Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article
Kim,D.,Paggi,J.M.,Park,C.,Bennett,C。&Salzberg,S.L。基于图形的基因组比对和HISAT2和HISAT基因型的基因分型。美国国家生物技术公司。37907-915(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article
Pertea,M。等人StringTie能够改进从RNA-seq读数重建转录组。美国国家生物技术公司。33290–295(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).Article
Ingolia,N.T。等人的核糖体分析揭示了注释蛋白质编码基因之外的普遍翻译。Cell Rep.81365–1379(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).Article
Xiao,Z.,Zou,Q.,Liu,Y。&Yang,X。用核糖体分析数据对差异翻译进行全基因组评估。国家公社。711194(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frye, M. & Bornelöv, S. CONCUR: quick and robust calculation of codon usage from ribosome profiling data. Bioinformatics 37, 717–719 (2021).Article
Frye,M。&Bornelöv,S。CONCUR:从核糖体分析数据快速而稳健地计算密码子使用率。生物信息学37717-719(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, F., Xing, X., Xiao, Z., Xu, G. & Yang, X. RiboMiner: a toolset for mining multi-dimensional features of the translatome with ribosome profiling data. BMC Bioinformatics. 21, 340 (2020).Article
。BMC生物信息学。21340(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).Article
Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。纳特尔。阿卡德。科学。美国10215545–15550(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).Article
Mootha,V.K.等人,参与氧化磷酸化的PGC-1α反应基因在人类糖尿病中协同下调。纳特·吉内特。34267-273(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chai, X. et al. Intratumor microbiome features reveal antitumor potentials of intrahepatic cholangiocarcinoma. Gut Microbes 15, 2156255 (2023).Article
Chai,X。等。肿瘤内微生物组特征揭示了肝内胆管癌的抗肿瘤潜力。肠道微生物152156255(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank the Core Facility of Shanghai Medical College, Fudan University for providing instrumental help. This work is supported in part by grants from the National Natural Science Foundation of China (31925010 to F.L., 82272703 to J. Cai, 32300461 to C.H.), the National Key R&D Program of China (2021YFA1300100 to F.L.), the Elite Youth Project of Natural Science Foundation of Fujian Province (2023J06056 to J. Cai) and the China National Postdoctoral Program for Innovative Talents (BX20230098 to C.H.).Author informationAuthor notesThese authors contributed equally: Bisi Miao, Ling Ge, Chenxi He, Xinghao Wang, Jibo Wu.Authors and AffiliationsShanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, ChinaBisi Miao, Ling Ge, Chenxi He, Kun Chen, Jinkai Wan, Shenghui Xing, Lingnan Ren, Zhennan Shi, Yajun Hu, Jiajia Chen, Zhihui Liang, Xinyi Xu, Ruoxin Wang, Jian Zhou, Jia Fan, Jiabin Cai & Fei LanChina Novartis Institutes for BioMedical Research, Shanghai, ChinaXinghao Wang, Shengnan Liu, Yanyan Yu, Lijian Feng, Bin Xiang, En Li & Kehao ZhaoDepartment of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USAJibo Wu, Natasha M.
下载参考文献致谢我们感谢复旦大学上海医学院核心设施提供的仪器帮助。这项工作部分得到了国家自然科学基金(31925010授予F.L.,82272703授予J.Cai,32300461授予C.H.),国家重点研发计划(2021YFA1300100授予F.L.),福建省自然科学基金精英青年项目(2023J06056授予J.Cai)和中国国家创新人才博士后计划(BX20230098授予C.H.)的资助。作者信息作者注意到这些作者做出了同样的贡献:Bisi Miao,Ling Ge,Chenxi He,Xinghao Wang,Jibo Wu。作者和所属单位上海医学表观遗传学重点实验室,科学技术部医学表观遗传学与代谢国际合作实验室,生物医学科学研究所,教育部致癌与癌症侵袭重点实验室,复旦大学中山医院肝癌研究所,上海,中国毕斯苗,凌格,陈希河,陈坤,金开万,邢生辉,任岭南,石振南,胡亚军,陈佳佳,梁志辉,徐欣怡,王若新,周健,贾凡,蔡嘉斌和费兰华诺华生物医学研究所,上海,王兴浩,刘盛南,严燕于,李建峰,向斌,李恩和赵克浩德克萨斯大学MD安德森癌症中心实验放射肿瘤学系,德克萨斯州休斯顿,乌萨吉博·吴,娜塔莎·M。
Flores & Pawel K. MazurMinhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, ChinaXiang Li & Jingdong ChengDepartment of Neurology of The Seco.
Flores&Pawel K.MazurMinhang医院和生物医学研究所,上海医学表观遗传学重点实验室,医学表观遗传学与代谢国际合作实验室,复旦大学,上海,中国李翔和程景东Seco神经病学系。
PubMed Google ScholarLing GeView author publicationsYou can also search for this author in
PubMed Google ScholarLing GeView作者出版物您也可以在
PubMed Google ScholarChenxi HeView author publicationsYou can also search for this author in
PubMed Google ScholarChenxi HeView作者出版物您也可以在
PubMed Google ScholarXinghao WangView author publicationsYou can also search for this author in
PubMed Google ScholarXinghao WangView作者出版物您也可以在
PubMed Google ScholarJibo WuView author publicationsYou can also search for this author in
PubMed Google ScholarJibo WuView作者出版物您也可以在
PubMed Google ScholarXiang LiView author publicationsYou can also search for this author in
PubMed Google ScholarXiang LiView作者出版物您也可以在
PubMed Google ScholarKun ChenView author publicationsYou can also search for this author in
PubMed Google ScholarKun ChenView作者出版物您也可以在
PubMed Google ScholarJinkai WanView author publicationsYou can also search for this author in
PubMed谷歌学者Jinkai WanView作者出版物您也可以在
PubMed Google ScholarShenghui XingView author publicationsYou can also search for this author in
PubMed Google ScholarShenghui XingView作者出版物您也可以在
PubMed Google ScholarLingnan RenView author publicationsYou can also search for this author in
PubMed Google ScholarLingnan RenView作者出版物您也可以在
PubMed Google ScholarZhennan ShiView author publicationsYou can also search for this author in
PubMed Google ScholarZhennan ShiView作者出版物您也可以在
PubMed Google ScholarShengnan LiuView author publicationsYou can also search for this author in
PubMed Google ScholarShengnan LiuView作者出版物您也可以在
PubMed Google ScholarYajun HuView author publicationsYou can also search for this author in
PubMed Google ScholarYajun HuView作者出版物您也可以在
PubMed Google ScholarJiajia ChenView author publicationsYou can also search for this author in
PubMed Google ScholarJiajia ChenView作者出版物您也可以在
PubMed Google ScholarYanyan YuView author publicationsYou can also search for this author in
PubMed Google ScholarYanyan YuView作者出版物您也可以在
PubMed Google ScholarLijian FengView author publicationsYou can also search for this author in
PubMed Google ScholarLijian FengView作者出版物您也可以在
PubMed Google ScholarNatasha M. FloresView author publicationsYou can also search for this author in
PubMed Google ScholarNatasha M.FloresView作者出版物您也可以在
PubMed Google ScholarZhihui LiangView author publicationsYou can also search for this author in
PubMed Google ScholarZhihui LiangView作者出版物您也可以在
PubMed Google ScholarXinyi XuView author publicationsYou can also search for this author in
PubMed Google ScholarXinyi XuView作者出版物您也可以在
PubMed Google ScholarRuoxin WangView author publicationsYou can also search for this author in
PubMed Google ScholarRuoxin WangView作者出版物您也可以在
PubMed Google ScholarJian ZhouView author publicationsYou can also search for this author in
PubMed Google ScholarJian ZhouView作者出版物您也可以在
PubMed Google ScholarJia FanView author publicationsYou can also search for this author in
PubMed Google ScholarJia FanView作者出版物您也可以在
PubMed Google ScholarBin XiangView author publicationsYou can also search for this author in
PubMed Google ScholarBin XiangView作者出版物您也可以在
PubMed Google ScholarEn LiView author publicationsYou can also search for this author in
PubMed Google ScholarEn LiView作者出版物您也可以在
PubMed Google ScholarYuanhui MaoView author publicationsYou can also search for this author in
PubMed Google ScholarYuanhui MaoView作者出版物您也可以在
PubMed Google ScholarJingdong ChengView author publicationsYou can also search for this author in
PubMed谷歌学者京东ChengView作者出版物您也可以在
PubMed Google ScholarKehao ZhaoView author publicationsYou can also search for this author in
PubMed Google ScholarKehao ZhaoView作者出版物您也可以在
PubMed Google ScholarPawel K. MazurView author publicationsYou can also search for this author in
PubMed Google ScholarPawel K.MazurView作者出版物您也可以在
PubMed Google ScholarJiabin CaiView author publicationsYou can also search for this author in
PubMed Google ScholarJiabin CaiView作者出版物您也可以在
PubMed Google ScholarFei LanView author publicationsYou can also search for this author in
PubMed Google ScholarFei LanView作者出版物您也可以在
PubMed Google ScholarContributionsB.M., L.G., C.H., X.W., and J. Wu contributed equally to the study. They were responsible for the experimental design, conduction, data process, and manuscript preparation. B.M., X.W., C.H., K.C., J. Wan, S.L., L.R., Z.L., and L.F. identified enzymatic activity and completed biochemistry assays, as well as cellular characterization under the guidance from F.L.
PubMed谷歌学术贡献b。M、 ,L.G.,C.H.,X.W。和J.Wu对这项研究做出了同样的贡献。他们负责实验设计,传导,数据处理和手稿准备。B、 M.,X.W.,C.H.,K.C.,J.Wan,S.L.,L.R.,Z.L。和L.F.在F.L.的指导下鉴定了酶活性并完成了生物化学测定以及细胞表征。
K.Z., B.X., E.L., L.R., C.H., Y.H., J. Chen, Y.Y., and K.C. performed MS analyses to identify methylation site and trimethylation abundance. L.G., C.H., and S.X. conducted drug library screen and most cancer cell growth analyses. Z.S. generated the HEK293T RPL40 K22R KI cell line. L.G. and C.H. performed the rescue experiment with the assistance of X.X.
K、 Z.,B.X.,E.L.,L.R.,C.H.,Y.H.,J.Chen,Y.Y。和K.C.进行了MS分析,以鉴定甲基化位点和三甲基化丰度。五十、 G.,C.H。和S.X.进行了药物库筛选和大多数癌细胞生长分析。Z、 S.产生了HEK293T RPL40 K22R KI细胞系。五十、 G.和C.H.在X.X的帮助下进行了救援实验。
L.G. and Z.L. verified the hypersensitivity to translation inhibitors targeting A-site in cells. Z.L. and R.W. provided help for manuscript preparation. L.G. and C.H. performed polysome profiling and ribo-seq with the help of Y.M. and J. Cheng. X.L. and C.H. analyzed ribo-seq data and J. Cheng analyzed the structure.
五十、 G.和Z.L.证实了对靶向细胞中A位点的翻译抑制剂的超敏性。Z、 L.和R.W.为稿件准备提供了帮助。五十、 G.和C.H.在Y.M.和J.Cheng的帮助下进行了多核糖体分析和ribo-seq。十、 L.和C.H.分析了ribo-seq数据,J.Cheng分析了结构。
J. Cai conducted patient cancer sample IHC analyses under the guidance from J.Z. and J.F. J. Wu and N.M.F. were responsible for mouse work of SNU449 and HCC models under the guidance from P.K.M. P.K.M., J. Cai, and F.L. were equally responsible for project overseeing and planning, data interpretation, and manuscript preparation.Corresponding authorsCorrespondence to.
J、 Cai在J.Z.和J.F.J.的指导下进行了患者癌症样本IHC分析。Wu和N.M.F.在P.K.M.P.K.M.的指导下负责SNU449和HCC模型的小鼠工作,J.Cai和F.L.同样负责项目监督和规划,数据解释和手稿准备。通讯作者通讯。
Pawel K. Mazur, Jiabin Cai or Fei Lan.Ethics declarations
Pawel K.Mazur,蔡家斌或费兰。道德宣言
Competing interests
相互竞争的利益
Fei Lan is a scientific co-founder and stockholder of Active Motif Shanghai, Inc. and Alternative Bio, Inc. Pawel K. Mazur is a scientific co-founder, consultant, and stockholder of Amplified Medicines, Inc. and Ikena Oncology, Inc., and a consultant and stockholder of Alternethiative bio, Inc.
费兰是Active Motif Shanghai,Inc.和Alternative Bio,Inc.的科学联合创始人和股东。Pawel K.Mazur是Amplified Medicines,Inc.和Ikena Oncology,Inc.的科学联合创始人、顾问和股东,也是Alternethiative Bio,Inc.的顾问和股东。
Supplementary informationSupplementary information, Fig S1Supplementary information, Fig S2Supplementary information, Fig S3Supplementary information, Fig S4Supplementary information, Fig S5Supplementary information, Fig S6Supplementary information, Fig S7Supplementary information, Fig S8Supplementary information, Figure LegendsSupplementary information, Table S1Supplementary information, Table S2Supplementary information, Table S3Supplementary information, Table S4Rights and permissions.
补充信息补充信息,图S1补充信息,图S2补充信息,图S3补充信息,图S4补充信息,图S5补充信息,图S6补充信息,图S7补充信息,图S8补充信息,图传说补充信息,表S1补充信息,表S2补充信息,表S3补充信息,表S4权利和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleMiao, B., Ge, L., He, C. et al. SMYD5 is a ribosomal methyltransferase that catalyzes RPL40 lysine methylation to enhance translation output and promote hepatocellular carcinoma.
转载和许可本文引用本文Miao,B.,Ge,L.,He,C。等人。SMYD5是一种核糖体甲基转移酶,可催化RPL40赖氨酸甲基化以增强翻译输出并促进肝细胞癌。
Cell Res (2024). https://doi.org/10.1038/s41422-024-01013-3Download citationReceived: 19 June 2024Accepted: 23 July 2024Published: 05 August 2024DOI: https://doi.org/10.1038/s41422-024-01013-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Cell Res(2024)。https://doi.org/10.1038/s41422-024-01013-3Download引文接收日期:2024年6月19日接受日期:2024年7月23日发布日期:2024年8月5日OI:https://doi.org/10.1038/s41422-024-01013-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供