EN
登录

用于研究核结构和基因表达的高通量图像处理软件

High-throughput image processing software for the study of nuclear architecture and gene expression

Nature 等信源发布 2024-08-08 23:51

可切换为仅中文


AbstractHigh-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software programs for image analysis workflows typically do not allow full customization and adoption of new image processing algorithms in the analysis modules.

摘要高通量成像(HTI)从大量实验扰动中产生复杂的成像数据集。用于图像分析工作流的商业HTI软件程序通常不允许在分析模块中完全定制和采用新的图像处理算法。

While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities.

虽然开源HTI分析平台在工作流程中提供了单个模块,例如核分割,斑点检测或细胞跟踪,但它们通常在集成新颖的分析模块或算法方面受到限制。在这里,我们介绍高通量图像处理软件(HiTIPS),以扩大现有HTI分析功能的范围和定制。

HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, nucleus registration, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new analysis modules for existing analysis pipelines and to adding new analysis modules.

HiTIPS结合了先进的图像处理和机器学习算法,用于自动细胞和细胞核分割,斑点信号检测,细胞核跟踪,细胞核配准,斑点跟踪和斑点信号强度量化。此外,HiTIPS还提供了一个图形用户界面,可以为现有分析管道集成新的分析模块,也可以添加新的分析模块。

To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI software platform for a variety of cell biology applications..

为了证明HiTIPS的实用性,我们提供了高通量DNA FISH,免疫荧光(IF)和单细胞转录活细胞成像的图像分析工作流程的三个示例。总而言之,我们证明了HiTIPS是一种用户友好,灵活且开源的HTI软件平台,可用于各种细胞生物学应用。。

IntroductionHigh-Throughput Imaging (HTI) fully automates the acquisition and analysis of large fluorescence microscopy imaging datasets. HTI was originally developed to provide phenotypic readouts for large high-throughput chemical screens to identify compounds with desirable therapeutic activities1,2.

简介高通量成像(HTI)完全自动化了大型荧光显微镜成像数据集的采集和分析。HTI最初是为了为大型高通量化学筛选提供表型读数,以鉴定具有理想治疗活性的化合物1,2。

Since then, this technology has also been widely adopted to work in conjunction with functional genomics screens to identify molecular pathways involved in a variety of cellular functions. Furthermore, HTI has been extensively implemented in more traditional cell biology applications, where the automation of image acquisition and analysis has been used to systematically quantify at the single-cell level phenotypes that are heterogeneous, rare, or dynamic in cellular populations2.The study of nuclear architecture and gene expression has particularly benefited from HTI.

从那时起,这项技术也被广泛采用,与功能基因组学筛选相结合,以鉴定涉及多种细胞功能的分子途径。此外,HTI已被广泛应用于更传统的细胞生物学应用中,其中图像采集和分析的自动化已被用于系统地量化细胞群体中异质,罕见或动态的单细胞水平表型2。核结构和基因表达的研究特别受益于HTI。

DNA Fluorescence In Situ Hybridization (FISH)-based HTI imaging has been used to study the spatial organization of genes and chromosomes within the nucleus, providing insights into the mechanisms of gene regulation and nuclear architecture. For example, FISH-based HTI has been used to study the three-dimensional organization of the genome3,4,5,6,7.

基于DNA荧光原位杂交(FISH)的HTI成像已被用于研究细胞核内基因和染色体的空间组织,为基因调控和核结构的机制提供了见识。例如,基于FISH的HTI已被用于研究基因组3,4,5,6,7的三维组织。

In addition, immunofluorescence (IF)-based HTI assays have helped probe nuclear architecture using fluorescently labeled endogenous architectural markers in combination with functional genomics screens8,9,10,11,12,13. Finally, HTI has also been used to explore the dynamics of transcription initiation and RNA splicing in live cells and at the single-cell level14,15.HTI has been enabled by the development of automated microscopy platforms and image analysis software to rapidly acquire and process large amounts of fluorescence microscopy data.

此外,基于免疫荧光(IF)的HTI分析有助于使用荧光标记的内源性结构标记结合功能基因组学筛选来探测核结构8,9,10,11,12,13。最后,HTI还被用于探索活细胞和单细胞水平的转录起始和RNA剪接的动力学14,15。HTI已经通过开发自动显微镜平台和图像分析软件来快速获取和处理大量荧光显微镜数据。

These tools allow the .

这些工具允许。

Data availability

数据可用性

The original imaging metadata generated by our high-throughput microscopes follow most of the QUAREP-LIMI guidelines64,65 and includes all the microscope and imaging settings used to acquire the data. In addition, we have also generated a additional set of image acquisition metadata in the QUAREP-LIMI json format using the Micro-Meta App66.

我们的高通量显微镜生成的原始成像元数据遵循大多数QUAREP-LIMI指南64,65,并包括用于获取数据的所有显微镜和成像设置。此外,我们还使用Micro Meta App66以QUAREP-LIMI json格式生成了另外一组图像采集元数据。

All the images and the image acquisition metadata used in the manuscript have been deposited at BioImage Archive67 under accession number S-BIAD1043 at: https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD1043..

手稿中使用的所有图像和图像采集元数据均已保存在BioImage Archive67中,登录号为S-BIAD1043,网址为:https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD1043..

Code availability

代码可用性

The HiTIPS code base can be found at https://github.com/CBIIT/HiTIPS. A complete guide describing the HiTIPS package structure and its embedded functions, installation and user instruction, results tables description, and developers guide to add new analysis methods is available at https://hitips.readthedocs.io/en/latest/..

HiTIPS代码库可以在https://github.com/CBIIT/HiTIPS.有关HiTIPS软件包结构及其嵌入式功能、安装和用户说明、结果表说明以及添加新分析方法的开发人员指南的完整指南,请访问https://hitips.readthedocs.io/en/latest/..

ReferencesBoutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).Article

参考文献Boutros,M.,Heigwer,F。&Laufer,C。基于显微镜的高含量筛选。细胞1631314-1325(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pegoraro, G. & Misteli, T. High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet. 33, 604–615 (2017).Article

Pegoraro,G。&Misteli,T。高通量成像用于发现疾病的细胞机制。趋势Genet。33604-615(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Joyce, E. F., Williams, B. R., Xie, T. & Wu, C.-T. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet. 8, e1002667 (2012).Article

Joyce,E.F.,Williams,B.R.,Xie,T。&Wu,C.-T。使用高通量基于FISH的筛选鉴定促进或拮抗体细胞同源物配对的基因。PLoS Genet。8,e1002667(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shachar, S., Voss, T. C., Pegoraro, G., Sciascia, N. & Misteli, T. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162, 911–923 (2015).Article

Shachar,S.,Voss,T.C.,Pegoraro,G.,Sciascia,N。&Misteli,T。使用高通量成像作图鉴定基因定位因子。细胞162911-923(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jowhar, Z. et al. Effects of human sex chromosome dosage on spatial chromosome organization. Mol. Biol. Cell 29, 2458–2469 (2018).Article

Jowhar,Z.等人。人类性染色体剂量对空间染色体组织的影响。分子生物学。细胞292458-2469(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502-1515.e10 (2019).Article

Finn,E.H.等人,《空间基因组组织中的广泛异质性和内在变异》。细胞1761502-1515.e10(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, D. S. et al. High-throughput Oligopaint screen identifies druggable 3D genome regulators. Nature https://doi.org/10.1038/s41586-023-06340-w (2023).Article

Park,D.S.等人。高通量Oligopaint屏幕识别可药用的3D基因组调节剂。自然https://doi.org/10.1038/s41586-023-06340-w(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).Article

Neumann,B。等人。通过延时显微镜对人类基因组进行表型分析,揭示了细胞分裂基因。《自然》464721–727(2010)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).Article

Ki-67作为生物表面活性剂分散有丝分裂染色体。自然535308-312(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kubben, N. et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 165, 1361–1374 (2016).Article

Kubben,N.等人。过早衰老中抗氧化剂NRF2途径的抑制。细胞1651361-1374(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Samwer, M. et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956-972.e23 (2017).Article

Samwer,M。等人。DNA交叉桥接从一组有丝分裂染色体形成单个核。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jevtić, P. et al. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep. 20, (2019).Schibler, A. C., Jevtic, P., Pegoraro, G., Levy, D. L. & Misteli, T. Identification of epigenetic modulators as determinants of nuclear size and shape.

Jevtić,P。等人。核孔蛋白ELYS通过控制NPC数量和核进口能力来调节核大小。EMBO Rep.20,(2019)。Schibler,A.C.,Jevtic,P.,Pegoraro,G.,Levy,D.L。&Misteli,T。鉴定表观遗传调节剂作为核大小和形状的决定因素。

Elife 12, (2023).Stavreva, D. A. et al. Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75, 1161-1177.e11 (2019).Article .

埃利夫12,(2023)。Stavreva,D.A。等人。通过类固醇激素释放模式和转录因子迁移率的转录爆发和共爆发调节。分子细胞751161-1177.e11(2019)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878-2895.e20 (2021).Article

新生RNA的动态成像揭示了转录动力学和随机剪接位点选择的一般原理。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ljosa, V. & Carpenter, A. E. Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput. Biol. 5, e1000603 (2009).Article

Ljosa,V。&Carpenter,A.E。介绍用于基于细胞筛选的二维荧光显微镜图像的定量分析。PLoS计算机。生物学5,e1000603(2009)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imbert, A. et al. FISH-quant v2: A scalable and modular tool for smFISH image analysis. RNA N. Y. N 28, 786–795 (2022).Article

Imbert,A。等人。FISH quant v2:用于smFISH图像分析的可扩展和模块化工具。RNA N.Y.N 28786–795(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Carpenter, A. E. et al. Cell Profiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).Article

Carpenter,A.E.等人,《细胞轮廓仪:用于识别和量化细胞表型的图像分析软件》。基因组生物学。7,R100(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stirling, D. R. et al. Cell Profiler 4: Improvements in speed, utility and usability. BMC Bioinform. 22, 433 (2021).Article

Stirling,D.R.等人,《细胞轮廓仪4:速度、实用性和可用性的改进》。。22433(2021)。文章

Google Scholar

谷歌学者

Linkert, M. et al. Metadata matters: Access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).Article

元数据很重要:在现实世界中访问图像数据。J、 细胞生物学。189777-782(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. Chapter 14, Unit14.20 (2010).Moore, J. et al. OME-Zarr: A cloud-optimized bioimaging file format with international community support. bioRxiv 2023.02.17.528834 (2023).Misteli, T.

Edelstein,A.,Amodaj,N.,Hoover,K.,Vale,R。&Stuurman,N。使用μManager对显微镜进行计算机控制。货币。普罗托克。分子生物学。第14章,Unit14.20(2010)。Moore,J。et al。OME Zarr:一种得到国际社会支持的云优化生物成像文件格式。bioRxiv 2023.02.17.528834(2023)。米斯特利,T。

The self-organizing genome: Principles of genome architecture and function. Cell 183, 28–45 (2020).Article .

自组织基因组:基因组结构和功能的原理。细胞183,28-45(2020)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).Article

Lieberman-Aiden,E。等人。远程相互作用的综合图谱揭示了人类基因组的折叠原理。科学326289-293(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305-320.e24 (2017).Article

Rao,S。S。P。等人。粘着蛋白损失消除了所有环结构域。细胞171305-320.e24(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luppino, J. M. et al. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat. Genet. 52, 840–848 (2020).Article

Luppino,J.M.等人,Cohesin促进随机域混合,以确保正确调节边界近端基因。纳特·吉内特。52840-848(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep 15, 210–218 (2016).Article

Natsume,T.,Kiyomitsu,T.,Saga,Y。&Kanemaki,M.T。通过生长素诱导的degron标记与短同源供体在人类细胞中快速消耗蛋白质。Cell Rep 15210–218(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. CB 21, 399–405 (2011).Article

Przewloka,M.R。等人。CENP-C是动粒组装的结构平台。货币。生物学CB 21399-405(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).Article

Foley,E.A。&Kapoor,T.M。微管附着和纺锤体组装检查点在动粒处的信号传导。Nat。Rev。Mol。Cell Biol。14,25-37(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muller, H., Gil, J. & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. Trends Genet. TIG 35, 565–578 (2019).Article

Muller,H.,Gil,J。&Drinnenberg,I.A。着丝粒对空间基因组结构的影响。趋势Genet。TIG 35565-578(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).Article

。科学372984-989(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kiskowski, M. A., Hancock, J. F. & Kenworthy, A. K. On the use of Ripley’s K-function and its derivatives to analyze domain size. Biophys. J. 97, 1095–1103 (2009).Article

Kiskowski,M.A.,Hancock,J.F。&Kenworthy,A.K。关于使用Ripley的K函数及其导数来分析域大小。生物物理。J、 971095-1103(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213-226.e18 (2019).Article

Rodriguez,J。等人。人类基因的内在动力学揭示了表达异质性的基础。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of Image analysis. Nat. Methods 9, 671–675 (2012).Article

Schneider,C.A.,Rasband,W.S。和Eliceiri,K.W。NIH Image to ImageJ:25年的图像分析。自然方法9671-675(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahlers, J. et al. napari: A multi-dimensional image viewer for Python. Zenodo https://doi.org/10.5281/zenodo.8115575 (2023).Pape, C. et al. MoBIE: A Fiji plugin for sharing and exploration of multi-modal cloud-hosted big image data. Nat. Methods 20, 475–476 (2023).Article

Ahlers,J.等人,《napari:Python的多维图像查看器》。泽诺多https://doi.org/10.5281/zenodo.8115575(2023年)。MoBIE:一个斐济插件,用于共享和探索多模式云托管的大图像数据。自然方法20475-476(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barry, D. J., Gerri, C., Bell, D. M., D’Antuono, R. & Niakan, K. K. GIANI—Open-source software for automated analysis of 3D microscopy images. J. Cell Sci. 135, 259511 (2022).Article

Barry,D.J.,Gerri,C.,Bell,D.M.,D'Antuono,R.&Niakan,K.K.GIANI用于自动分析3D显微镜图像的开源软件。J、 细胞科学。135259511(2022)。文章

Google Scholar

谷歌学者

Ritchie, A., Laitinen, S., Katajisto, P. & Englund, J. I. “Tonga”: A novel toolbox for straightforward bioimage analysis. Front. Comput. Sci. 4, (2022).Fillbrunn, A. et al. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. 261, 149–156 (2017).Article

Ritchie,A.,Laitinen,S.,Katajisto,P.&Englund,J.I.“汤加”:一种用于直接生物图像分析的新型工具箱。正面。计算机。科学。4,(2022年)。Fillbrunn,A。等人,KNIME用于生命科学数据的可重复跨域分析。J、 生物技术。261149-156(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dietz, C. & Berthold, M. R. KNIME for open-source bioimage analysis: A tutorial. Adv. Anat. Embryol. Cell Biol. 219, 179–197 (2016).Article

Dietz,C.&Berthold,M.R.KNIME用于开源生物图像分析:教程。高级解剖学。胚胎。细胞生物学。219179-197(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gudla, P. R., Nakayama, K., Pegoraro, G. & Misteli, T. SpotLearn: Convolutional neural network for detection of fluorescence in situ hybridization (FISH) signals in high-throughput imaging approaches. Cold Spring Harb. Symp. Quant. Biol. 82, 57–70 (2017).Article

Gudla,P.R.,Nakayama,K.,Pegoraro,G。&Misteli,T。SpotLearn:用于在高通量成像方法中检测荧光原位杂交(FISH)信号的卷积神经网络。冷泉兔。症状。数量。生物学杂志82,57-70(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zaki, G. et al. A deep learning pipeline for nucleus segmentation. Cytom. A 97, 1248–1264 (2020).Article

Zaki,G。等人。用于细胞核分割的深度学习管道。Cytom公司。A 971248-1264(2020)。文章

Google Scholar

谷歌学者

Savulescu, A. F. et al. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH. Cell Rep. Methods 1, 100068 (2021).Article

Savulescu,A.F.等人用DypFISH询问smFISH数据中的RNA和蛋白质空间亚细胞分布。细胞代表方法110068(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bahry, E. et al. RS-FISH: Precise, interactive, fast, and scalable FISH spot detection. Nat. Methods 19, 1563–1567 (2022).Article

Bahry,E。等人。RS-FISH:精确,交互式,快速和可扩展的鱼点检测。自然方法191563-1567(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: An open-source computational platform for the deep learning era. Nat. Methods 16, 1199–1200 (2019).Article

Ouyang,W.,Mueller,F.,Hjelmare,M.,Lundberg,E.&Zimmer,C.ImJoy:深度学习时代的开源计算平台。自然方法161199-1200(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).Article

Hart,T。等人。高分辨率CRISPR筛选揭示了适应性基因和基因型特异性癌症负债。细胞1631515-1526(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Finn, E., Misteli, T. & Pegoraro, G. High-throughput DNA FISH (hiFISH). Methods Mol. Biol. 2532, 245–274 (2022).Article

Finn,E.,Misteli,T。&Pegoraro,G。高通量DNA鱼(hiFISH)。方法分子生物学。2532245-274(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Coulon, A. et al. Kinetic competition during the transcription cycle results in stochastic RNA processing. Elife 3, (2014).Bannon, D. et al. DeepCell 2.0: Automated cloud deployment of deep learning models for large-scale cellular image analysis. Preprint at https://doi.org/10.1101/505032 (2018).Stringer, C., Wang, T., Michaelos, M.

Coulon,A。等人。转录周期中的动力学竞争导致随机RNA加工。Elife 3,(2014)。Bannon,D.等人,《DeepCell 2.0:用于大规模细胞图像分析的深度学习模型的自动云部署》。预印于https://doi.org/10.1101/505032(2018年)。斯特林格,C.,王,T.,迈克尔,M。

& Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).Article .

&Pachitariu,M。Cellpose:细胞分割的通用算法。。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hollandi, R. et al. Nucleus segmentation: Towards automated solutions. Trends Cell Biol. 32, 295–310 (2022).Article

。趋势细胞生物学。32295-310(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pachitariu, M. & Stringer, C. Cellpose 2.0: How to train your own model. Nat. Methods 19, 1634–1641 (2022).Article

Pachitariu,M。和Stringer,C。Cellpose 2.0:如何训练自己的模型。自然方法191634-1641(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).Article

Greenwald,N.F.等人。使用大规模数据注释和深度学习对具有人类水平性能的组织图像进行全细胞分割。。40555-565(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, X., Li, H. & Zhou, X. Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circuits Syst. Regul. Pap. 53, 2405–2414 (2006).Article

Yang,X.,Li,H。&Zhou,X。使用标记控制分水岭进行核分割,使用均值漂移进行跟踪,并在延时显微镜中进行卡尔曼滤波。IEEE Trans。电路系统。法规。巴普。532405-2414(2006)。文章

Google Scholar

谷歌学者

Soille, P. Morphological Image Analysis (Springer, 2004). https://doi.org/10.1007/978-3-662-05088-0.Ulicna, K., Vallardi, G., Charras, G. & Lowe, A. R. Automated deep lineage tree analysis using a Bayesian single cell tracking approach. Front. Comput. Sci. 3, (2021).Kalman, R. E. A new approach to linear filtering and prediction problems.

Soille,P。形态学图像分析(Springer,2004)。https://doi.org/10.1007/978-3-662-05088-0.Ulicna,K.,Vallardi,G.,Charras,G。&Lowe,A.R。使用贝叶斯单细胞跟踪方法进行自动深度谱系树分析。正面。计算机。科学。。Kalman,R.E。线性滤波和预测问题的新方法。

J. Basic Eng. 82, 35–45 (1960).Article .

J、 基础工程82,35–45(1960)。文章。

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Moen, E. et al. Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning. Preprint at https://doi.org/10.1101/803205 (2019).Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955).Article

Moen,E.等人。通过深度学习在活细胞成像实验中进行精确的细胞追踪和谱系构建。预印于https://doi.org/10.1101/803205。Kuhn,H.W。分配问题的匈牙利方法。导航。研究专家。Q、 2,83-97(1955)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).Article

Lowe,D.G。来自尺度不变关键点的独特图像特征。国际J.计算机。可见。60,91-110(2004)。文章

Google Scholar

谷歌学者

Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008).Article

Bay,H.,Ess,A.,Tuytelaars,T。和Van Gool,L。加速了强大的功能(SURF)。计算机。可见。图像理解。110346-359(2008)。文章

Google Scholar

谷歌学者

Ma, W. et al. Remote sensing image registration with modified SIFT and enhanced feature matching. IEEE Geosci. Remote Sens. Lett. 14, 3–7 (2017).Article

Ma,W。等人。改进SIFT和增强特征匹配的遥感图像配准。IEEE Geosci。远程传感器Lett。14,3-7(2017)。文章

ADS

广告

Google Scholar

谷歌学者

Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).Article

Thompson,R.E.,Larson,D.R。&Webb,W.W。对单个荧光探针进行精确的纳米定位分析。生物物理。J、 822775-2783(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nelson, G. et al. QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy. J. Microsc. 284, 56–73 (2021).Article

Nelson,G.等人,《QUAREP LiMi:一项由社区推动的倡议,旨在为光学显微镜中的仪器和图像建立质量评估和再现性指南》。J、 微型计算机。284,56-73(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hammer, M. et al. Towards community-driven metadata standards for light microscopy: Tiered specifications extending the OME model. Nat. Methods 18, 1427–1440 (2021).Article

Hammer,M.等人,《走向社区驱动的光学显微镜元数据标准:扩展OME模型的分层规范》。自然方法181427-1440(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rigano, A. et al. Micro-Meta App: An interactive tool for collecting microscopy metadata based on community specifications. Nat. Methods 18, 1489–1495 (2021).Article

Rigano,A。等人。Micro Meta App:一种基于社区规范收集显微镜元数据的交互式工具。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hartley, M. et al. The bioimage archive—Building a home for life-sciences microscopy data. J. Mol. Biol. 434, 167505 (2022).Article

生物图像档案馆为生命科学显微镜数据建立了一个家园。J、 分子生物学。434167505(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank all the members of the Misteli and Larson laboratories for insightful discussions on high-throughput imaging and automated image analysis. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

下载参考文献致谢我们要感谢Misteli和Larson实验室的所有成员就高通量成像和自动图像分析进行了深入的讨论。这项工作利用了NIH HPC Biowulf集群的计算资源(http://hpc.nih.gov)。

We would like to thank the NIH HPC group for their help with data management and software package management. Finally, we would also like to thank the anonymous reviewers for their constructive criticism and feedback for our work, which have substantially improved the original version of the manuscript.

我们要感谢NIH HPC小组在数据管理和软件包管理方面的帮助。最后,我们还要感谢匿名审稿人对我们的工作提出的建设性批评和反馈,这些批评和反馈大大改进了手稿的原始版本。

Research in the Misteli Lab, Larson Lab, and HiTIF was supported by the Intramural Research Program of the NIH, NCI, Center for Cancer Research via 1-ZIA-BC010309-24, 1-ZIA-BC011383-12, and 1-ZIC-BC011567-09, respectively.FundingOpen access funding provided by the National Institutes of Health.Author informationAuthor notesThese authors contributed equally: Faisal Almansour, Krishnendu Guin and Varun Sood.Authors and AffiliationsHigh-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USAAdib Keikhosravi & Gianluca PegoraroCell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USAFaisal Almansour, Krishnendu Guin, Varun Sood & Tom MisteliSystem Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USAChristopher H.

Misteli实验室,Larson实验室和HiTIF的研究得到了NIH,NCI,癌症研究中心的壁内研究计划的支持,分别通过1-ZIA-BC010309-24、1-ZIA-BC011383-12和1-ZIC-BC011567-09。基金由国立卫生研究院提供的开放获取资金。作者信息作者注意到,这些作者做出了同样的贡献:费萨尔·阿尔曼苏尔,克里斯南多·奎恩和瓦伦·索德。作者和附属机构国家癌症研究所,国家卫生研究所,贝塞斯达,马里兰州,20892,USADIB Keikhosravi&Gianluca PegoraroCell基因组生物学,国家癌症研究所,国家卫生研究所,贝塞斯达,马里兰州,20892,USAFaisal Almansour,Krishnendu Guin,Varun Sood&Tom MisteliSystem基因表达生物学,国家癌症研究所,国家卫生研究所,贝塞斯达,马里兰州,20892,USAChristoper H。

Bohrer, Nadezda A. Fursova, Varun Sood & Daniel R. LarsonDepartment of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical School, Washington, DC, 20057, USAFaisal AlmansourAuthorsAdib KeikhosraviView author publicationsYou can also search for this author in.

Bohrer,Nadezda A.Fursova,Varun Sood&Daniel R.LarsonDepartment of Biochemistry and Molecular and Cellular Biology,Georgetown University Medical School,Washington,DC,20057,USAFaisal AlmansourAuthorsAdib KeikhosraviView author Publications您也可以在中搜索这位作者。

PubMed Google ScholarFaisal AlmansourView author publicationsYou can also search for this author in

PubMed Google ScholarFaisal AlmansourView作者出版物您也可以在

PubMed Google ScholarChristopher H. BohrerView author publicationsYou can also search for this author in

PubMed Google ScholarChristopher H.BohrerView作者出版物您也可以在

PubMed Google ScholarNadezda A. FursovaView author publicationsYou can also search for this author in

PubMed Google ScholarNadezda A.FursovaView作者出版物您也可以在

PubMed Google ScholarKrishnendu GuinView author publicationsYou can also search for this author in

PubMed Google ScholarKrishnendu GuinView作者出版物您也可以在

PubMed Google ScholarVarun SoodView author publicationsYou can also search for this author in

PubMed Google ScholarVarun SoodView作者出版物您也可以在

PubMed Google ScholarTom MisteliView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel R. LarsonView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel R.LarsonView作者出版物您也可以在

PubMed Google ScholarGianluca PegoraroView author publicationsYou can also search for this author in

PubMed Google ScholarGianluca PegoraroView作者出版物您也可以在

PubMed Google ScholarContributionsA.K. and G.P. established the requirements for HiTIPS. A.K. wrote all the HiTIPS code base. F.A., K.G., and V.S. performed cell culture and treated cells for DNA FISH, IF, and live cell imaging, respectively. F.A., K.G., and V.S. acquired the images with high-throughput microscopes.

PubMed谷歌学术贡献。K、 和G.P.制定了HiTIPS的要求。A、 K.编写了所有HiTIPS代码库。F、 。F、 A.,K.G。和V.S.用高通量显微镜获取了这些图像。

A.K., F.A., and K.G. analyzed the high-throughput imaging datasets using HiTIPS and performed statistical analysis and plotting. A.K., F.A., K.G., V.S., N.F., C.H.B., D.R.L., and T.M., and G.P. provided guidance and feedback on the algorithms for image analysis and on the design of the graphical user interface.

A、 K.,F.A。和K.G.使用HiTIPS分析了高通量成像数据集,并进行了统计分析和绘图。A、 K.,F.A.,K.G.,V.S.,N.F.,C.H.B.,D.R.L.,和T.M.,以及G.P.提供了关于图像分析算法和图形用户界面设计的指导和反馈。

A.K. and G.P. wrote the manuscript. All authors edited and approved the manuscript.Corresponding authorCorrespondence to.

A、 K.和G.P.写了手稿。所有作者都编辑并批准了手稿。对应作者对应。

Gianluca Pegoraro.Ethics declarations

吉安卢卡·佩戈拉罗。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleKeikhosravi, A., Almansour, F., Bohrer, C.H. et al. High-throughput image processing software for the study of nuclear architecture and gene expression.

转载和许可本文引用本文Keikhosravi,A.,Almansour,F.,Bohrer,C.H。等人。用于研究核结构和基因表达的高通量图像处理软件。

Sci Rep 14, 18426 (2024). https://doi.org/10.1038/s41598-024-66600-1Download citationReceived: 27 October 2023Accepted: 02 July 2024Published: 08 August 2024DOI: https://doi.org/10.1038/s41598-024-66600-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1418426(2024)。https://doi.org/10.1038/s41598-024-66600-1Download引文接收日期:2023年10月27日接收日期:2024年7月2日发布日期:2024年8月8日OI:https://doi.org/10.1038/s41598-024-66600-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

CentromeresChromatin structureHigh-throughput screeningImage processingPhenotypic screeningSoftwareTranscription

着丝粒染色质结构高通量筛选图像处理表型筛选软件翻译

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。