EN
登录

蛋白质语言模型实现了快速灵敏的远程同源物检测

Protein language model enables fast and sensitive remote homolog detection

Nature 等信源发布 2024-08-09 18:00

可切换为仅中文


To handle increasingly large protein databases, a new ultrafast, highly sensitive method — Dense Homolog Retriever (DHR) — detects remote homologs using dense retrieval and protein language models. Its alignment-free nature makes it much faster than traditional approaches, and the newly found remote homologs benefit our understanding of protein evolution, structure and function..

为了处理越来越大的蛋白质数据库,一种新的超快,高灵敏度的方法-密集同源检索器(DHR)-使用密集检索和蛋白质语言模型检测远程同源物。它的无比对性质使其比传统方法快得多,新发现的远程同源物有助于我们对蛋白质进化,结构和功能的理解。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: DHR for fast detection of remote homologs and an improved understanding of proteins.

图1:DHR用于快速检测远程同源物并提高对蛋白质的理解。

ReferencesJumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). This paper proposed AlphaFold2, a deep learning model to predict protein structure accurately.Article

。自然596583-589(2021)。本文提出了AlphaFold2,一种精确预测蛋白质结构的深度学习模型。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Buchfink, B. et al. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). This paper introduced an alignment algorithm that can achieve high sensitivity while being much faster than the gold standards.Article

Buchfink,B。等人。使用DIAMOND进行快速灵敏的蛋白质比对。自然方法12,59-60(2015)。本文介绍了一种对齐算法,该算法可以实现高灵敏度,同时比金标准快得多。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023). This paper proposed a protein language model trained on a large scale and a structure prediction model that uses only a single sequence.Article

Lin,Z.等人。用语言模型预测原子级蛋白质结构的进化尺度。科学3791123-1130(2023)。本文提出了一种大规模训练的蛋白质语言模型和仅使用单个序列的结构预测模型。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alexander, L. et al. Protein target highlights in CASP15: analysis of models by structure providers. Proteins 91, 1571–1599 (2023). This paper presented CASP, a challenge aiming at establishing the current state of the art in protein structure prediction.Article

Alexander,L.等人,《CASP15中的蛋白质靶标亮点:结构提供者对模型的分析》。蛋白质911571-1599(2023)。本文介绍了CASP,这是一项挑战,旨在建立蛋白质结构预测的最新技术。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). This paper proposed an accelerated method and an accessible platform for protein structure prediction.Article

Mirdita,M。等人,ColabFold:使所有人都可以进行蛋白质折叠。自然方法19679-682(2022)。本文提出了一种加速方法和一个可访问的蛋白质结构预测平台。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAdditional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Hong, L. et al. Fast, sensitive detection of protein homologs using deep dense retrieval.

下载参考其他信息出版商的注释Springer Nature对于已发布地图和机构隶属关系中的管辖权主张保持中立。这是Hong,L。等人的总结。使用深度密集检索快速,灵敏地检测蛋白质同源物。

Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02353-6 (2024).Rights and permissionsReprints and permissionsAbout this articleCite this article Protein language model enables fast and sensitive remote homolog detection..

美国国家生物技术公司。https://doi.org/10.1038/s41587-024-02353-6(2024年)。权利和许可打印和许可本文引用本文蛋白质语言模型可实现快速灵敏的远程同源检测。。

Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02359-0Download citationPublished: 09 August 2024DOI: https://doi.org/10.1038/s41587-024-02359-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Biotechnol(2024)。https://doi.org/10.1038/s41587-024-02359-0Download引文发布日期:2024年8月9日OI:https://doi.org/10.1038/s41587-024-02359-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供