商务合作
动脉网APP
可切换为仅中文
AbstractArtificial intelligence (AI) has been extensively researched in medicine, but its practical application remains limited. Meanwhile, there are various disparities in existing AI-enabled clinical studies, which pose a challenge to global health equity. In this study, we conducted an in-depth analysis of the geo-economic distribution of 159 AI-enabled clinical studies, as well as the gender disparities among these studies.
人工智能(AI)在医学上得到了广泛的研究,但其实际应用仍然有限。同时,现有的人工智能临床研究存在各种差异,这对全球健康公平构成了挑战。在这项研究中,我们对159项人工智能临床研究的地理经济分布以及这些研究之间的性别差异进行了深入分析。
We aim to reveal these disparities from a global literature perspective, thus highlighting the need for equitable access to medical AI technologies..
我们的目标是从全球文献的角度揭示这些差异,从而强调公平获得医疗AI技术的必要性。。
In the rapidly developing field of healthcare, artificial intelligence (AI) has emerged as a pivotal force driving innovation in clinical research and improving the efficiency of clinical studies1,2,3,4,5,6. However, despite rapid technological advancements, its practical application in clinical settings remains limited.
在快速发展的医疗保健领域,人工智能(AI)已成为推动临床研究创新和提高临床研究效率的关键力量1,2,3,4,5,6。然而,尽管技术进步迅速,但其在临床环境中的实际应用仍然有限。
Concurrently, there are complex disparities in current AI-enabled clinical studies. These disparities, which include data and algorithms, participants and subjects, and access to cutting-edge technologies7,8,9,10, challenge the equitable implementation of AI solutions11,12.We identified 159 clinical studies of AI-enabled applications from Embase, MEDLINE, and CINAHL through a systematic review.
同时,当前启用AI的临床研究存在复杂的差异。这些差异,包括数据和算法,参与者和受试者,以及对尖端技术的获取7,8,9,10,挑战了人工智能解决方案的公平实施11,12。我们确定了159项来自Embase,MEDLINE和CINAHL的人工智能应用的临床研究。通过系统评价。
Among these studies, 109 were conducted in hospital settings, while 50 took place in non-hospital environments. Notably, 51.6% (82/159) of the studies utilized AI for treatment and management, and 40.9% (65/159) focused on AI-assisted diagnosis, with a significant portion related to gastroenterology (see Supplementary Table 1).
在这些研究中,109项是在医院环境中进行的,而50项是在非医院环境中进行的。值得注意的是,51.6%(82/159)的研究利用AI进行治疗和管理,40.9%(65/159)的研究侧重于AI辅助诊断,其中很大一部分与胃肠病学有关(见补充表1)。
Moreover, 5.0% (8/159) of the studies applied AI for prognosis, and 2.5% (4/159) studies explored its use in patient education. In this study, we primarily analyzed the geo-economic distributions as well as the gender disparities among the study subjects.As depicted in Fig. 1a, the majority of studies were conducted in North America, Europe, and East Asia, with the United States (44 studies) and China (43 studies) leading.
此外,5.0%(8/159)的研究将AI应用于预后,2.5%(4/159)的研究探索了其在患者教育中的应用。。如图1a所示,大多数研究是在北美,欧洲和东亚进行的,美国(44项研究)和中国(43项研究)领先。
A significant portion (74.0%) of the clinical studies were implemented in high-income countries, 23.7% in upper-middle-income countries, 1.7% in lower-middle-income countries, and only one clinical study was conducted in low-income countries (i.e., Mozambique), as shown in Fig. 1b. Meanwhile, we analyzed the geo-economic.
临床研究的很大一部分(74.0%)在高收入国家实施,中高收入国家为23.7%,中低收入国家为1.7%,低收入国家(即莫桑比克)仅进行了一项临床研究,如图1b所示。。
Data availability
数据可用性
The data used in the manuscript can be found in Supplementary Material.
手稿中使用的数据可以在补充材料中找到。
ReferencesRajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).Article
参考文献Rajpurkar,P.,Chen,E.,Banerjee,O。和Topol,E。J。AI在健康和医学方面。《自然医学》28,31-38(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hinton, G. Deep learning—a technology with the potential to transform health care. JAMA 320, 1101–1102 (2018).Article
Hinton,G。深度学习-一种有可能改变医疗保健的技术。JAMA 3201101-1102(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Woo, M. An AI boost for clinical trials. Nature 573, S100–S102 (2019).Article
Woo,M。临床试验的AI促进。Nature 573,S100–S102(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yang, R. et al. Large language models in health care: development, applications, and challenges. Health Care Sci. 2, 255–263 (2023).Article
Yang,R.等人,《医疗保健中的大型语言模型:发展、应用和挑战》。保健科学。2255-263(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ke, Y. H. et al. Enhancing diagnostic accuracy through multi-agent conversations: using large language models to mitigate cognitive bias. Preprint at arXiv:1504.14589 (2024).Han, R. et al. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review.
Ke,Y.H.等人,《通过多智能体对话提高诊断准确性:使用大型语言模型减轻认知偏见》。arXiv预印本:1504.14589(2024)。Han,R.等人,《临床实践中评估人工智能的随机对照试验:范围界定综述》。
Lancet Digit. Health 6, e367–e373 (2024).Article .
柳叶刀数字。健康6,e367–e373(2024)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, I. Y., Joshi, S. & Ghassemi, M. Treating health disparities with artificial intelligence. Nat. Med. 26, 16–17 (2020).Article
Chen,I.Y.,Joshi,S。&Ghassemi,M。用人工智能治疗健康差异。《自然医学》26,16-17(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nordling, L. A fairer way forward for AI in health care. Nature 573, S103–S105 (2019).Article
诺德林(Nordling,L.)是人工智能在医疗保健领域更公平的前进道路。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Celi, L. A. et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review. PLoS Digit. Health 1, e0000022 (2022).Article
。PLoS数字。健康1,e0000022(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, M. et al. A translational perspective towards clinical AI fairness. npj Digit. Med. 6, 1–6 (2023).Article
Liu,M.等人。临床AI公平的翻译观点。npj数字。医学6,1-6(2023)。文章
Google Scholar
谷歌学者
Serra-Burriel, M., Locher, L. & Vokinger, K. N. Development pipeline and geographic representation of trials for artificial intelligence/machine learning-enabled medical devices (2010 to 2023). NEJM AI https://doi.org/10.1056/aipc2300038 (2023).Alberto, I. R. I. et al. A scientometric analysis of fairness in health AI literature.
。NEJM AI公司https://doi.org/10.1056/aipc2300038(2023年)。Alberto,I.R.I.等人,《健康人工智能文献中公平性的科学计量分析》。
PLoS Glob. Public Health 4, e0002513 (2024).Article .
。公共卫生4,e0002513(2024)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Connor, C., Thornley, K. S. & Hanly, P. J. Gender differences in the polysomnographic features of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 161, 1465–1472 (2000).Article
O'Connor,C.,Thornley,K.S。&Hanly,P.J。阻塞性睡眠呼吸暂停多导睡眠图特征的性别差异。Am.J.Respir。暴击。《护理医学》1611465-1472(2000)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cooper, A. J., Gupta, S. R., Moustafa, A. F. & Chao, A. M. Sex/gender differences in obesity prevalence, comorbidities, and treatment. Curr. Obes. Rep. 10, 458–466 (2021).Article
Cooper,A.J.,Gupta,S.R.,Moustafa,A.F。&Chao,A.M。肥胖患病率,合并症和治疗的性别/性别差异。货币。Obes。代表10458–466(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Black, E. & Richmond, R. Improving early detection of breast cancer in sub-Saharan Africa: why mammography may not be the way forward. Glob. Health 15, 1–11 (2019).Article
Black,E.&Richmond,R.改进撒哈拉以南非洲乳腺癌的早期发现:为什么乳房X光检查可能不是前进的方向。全球。健康15,1-11(2019)。文章
Google Scholar
谷歌学者
Hamadeh, N. et al. New World Bank Country Classifications by Income Level: 2022–2023 (World Bank Blogs, 2022).Download referencesAcknowledgementsThis work was supported by the Duke-NUS Signature Research Program funded by the Ministry of Health, Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Health.
Hamadeh,N.等人,《按收入水平划分的世界银行新国家分类:2022-2023》(世界银行博客,2022年)。下载参考文献致谢这项工作得到了新加坡卫生部资助的杜克国立大学签名研究计划的支持。本材料中表达的任何意见,发现和结论或建议均为作者的意见,不反映卫生部的观点。
Additionally, we appreciate Jonathan Liew’s contribution to information extraction during the revision stage.Author informationAuthors and AffiliationsCentre for Quantitative Medicine, Duke-NUS Medical School, Singapore, SingaporeRui Yang, Sabarinath Vinod Nair, Yuhe Ke, Danny D’Agostino, Mingxuan Liu, Yilin Ning & Nan LiuDepartment of Anesthesiology, Singapore General Hospital, Singapore, SingaporeYuhe KeProgramme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, SingaporeNan LiuNUS Artificial Intelligence Institute, National University of Singapore, Singapore, SingaporeNan LiuAuthorsRui YangView author publicationsYou can also search for this author in.
此外,我们感谢乔纳森·刘在修订阶段对信息提取的贡献。作者信息新加坡国立杜克大学医学院定量医学的作者和附属机构Tre,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学人工智能研究所,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学医学院,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学,新加坡国立杜克大学。
PubMed Google ScholarSabarinath Vinod NairView author publicationsYou can also search for this author in
PubMed Google ScholarSabarinath Vinod NairView作者出版物您也可以在
PubMed Google ScholarYuhe KeView author publicationsYou can also search for this author in
PubMed Google ScholarYuhe KeView作者出版物您也可以在
PubMed Google ScholarDanny D’AgostinoView author publicationsYou can also search for this author in
PubMed Google ScholarDanny D'AgostinoView作者出版物您也可以在
PubMed Google ScholarMingxuan LiuView author publicationsYou can also search for this author in
PubMed Google ScholarmamingXuan LiuView作者出版物您也可以在
PubMed Google ScholarYilin NingView author publicationsYou can also search for this author in
PubMed Google ScholarYilin NingView作者出版物您也可以在
PubMed Google ScholarNan LiuView author publicationsYou can also search for this author in
PubMed Google ScholarNan LiuView作者出版物您也可以在
PubMed Google ScholarContributionsN.L. conceived the study. R.Y., S.V.N., M.L., Y.N., and N.L. designed the study. R.Y., S.V.N., Y.K., and D.D. collected data. R.Y. conducted data analyses. R.Y. and S.V.N. drafted the manuscript, with further development by N.L. N.L. supervised the study.
PubMed谷歌学术贡献。五十、 构思了这项研究。R、 Y.,S.V.N.,M.L.,Y.N。和N.L.设计了这项研究。R、 Y.,S.V.N.,Y.K。和D.D.收集了数据。R、 Y.进行了数据分析。R、 。
All authors contributed to the revision of the manuscript and approval of the final version.Corresponding authorCorrespondence to.
所有作者都为稿件的修订和最终版本的批准做出了贡献。对应作者对应。
Nan Liu.Ethics declarations
刘楠。道德宣言
Competing interests
相互竞争的利益
N.L. is an Editorial Board Member for npj Digital Medicine. He played no role in the peer review of this manuscript. The remaining authors declare that there are no other financial or non-financial competing interests.
N、 L.是npj数字医学的编辑委员会成员。他在这份手稿的同行评审中没有发挥任何作用。其余作者声明,没有其他财务或非财务竞争利益。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary MaterialsRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料权利和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleYang, R., Nair, S.V., Ke, Y. et al. Disparities in clinical studies of AI enabled applications from a global perspective.
转载和许可本文引用本文Yang,R.,Nair,S.V.,Ke,Y。等人。从全球角度来看,人工智能应用的临床研究存在差异。
npj Digit. Med. 7, 209 (2024). https://doi.org/10.1038/s41746-024-01212-7Download citationReceived: 03 March 2024Accepted: 01 August 2024Published: 10 August 2024DOI: https://doi.org/10.1038/s41746-024-01212-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj数字。医学杂志7209(2024)。https://doi.org/10.1038/s41746-024-01212-7Download引文接收日期:2024年3月3日接受日期:2024年8月1日发布日期:2024年8月10日OI:https://doi.org/10.1038/s41746-024-01212-7Share。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供