商务合作
动脉网APP
可切换为仅中文
AbstractWhether high-frequency phase-locked oscillations facilitate integration (‘binding’) of information across widespread cortical areas is controversial. Here we show with intracranial electroencephalography that cortico-cortical co-ripples (~100-ms-long ~90 Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur.
摘要高频锁相振荡是否有助于跨广泛皮层区域的信息整合(“结合”)是有争议的。在这里,我们通过颅内脑电图显示,在阅读和语义决策期间,在应该发生结合的时间和地点,皮质-皮质共同涟漪(约100毫秒长〜90赫兹振荡)增加。
Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200 to 400 ms post-word-onset. Semantically specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400 to 800 ms, with increased co-rippling between semantic, executive and response areas prior to correct responses.
梭形词形区域与几乎所有语言区域共同波动,最多在单词出现后200至400毫秒。语义指定的目标词在400到800毫秒的词形,语义,执行和响应区域之间引起强烈的共同涟漪,在正确的响应之前,语义,执行和响应区域之间的共同涟漪增加。
Co-ripples were phase-locked at zero lag over long distances (>12 cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition..
Co涟漪在长距离(>12cm)上以零滞后锁相,特别是当许多区域共同涟漪时。以非振荡高伽马指数为指标的一般共激活主要限于梭形和早期视觉区域的早期潜伏期,即共波纹之前。这些发现表明,广泛的同步涟漪可能有助于在认知过程中持续整合多个皮层区域。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间获取更多订阅本期刊每年接收12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元学习更多购买本文在Springer Links上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Cortical ripple and co-ripple characteristics during a reading task.Fig. 2: Co-ripple and co-HGB initial responses to words.Fig. 3: Cortical co-ripples selective for words and semantic decisions.Fig. 4: Response accuracy.Fig. 5: Comparison of controls to co-ripple target responses.Fig. 6: Widespread left-hemisphere phase-locking..
图1:阅读任务期间的皮质纹波和共纹波特征。图2:Co-ripple和Co-HGB对单词的初始响应。图3:对单词和语义决策有选择性的皮质共同涟漪。图4:响应精度。图5:控制与共同涟漪目标响应的比较。图6:广泛的左半球锁相。。
Data availability
数据可用性
The data underlying the present study including electrode localization, ripple detections, phase data and other ripple characteristics are publicly available via Zenodo at https://doi.org/10.1101/2023.05.20.541597 (ref. 73) for density analyses and https://doi.org/10.5281/zenodo.12520199 (ref. 74) for phase analyses.
本研究的基础数据包括电极定位、纹波检测、相位数据和其他纹波特征,可通过Zenodo在https://doi.org/10.1101/2023.05.20.541597(参考文献73)用于密度分析和https://doi.org/10.5281/zenodo.12520199(参考文献74)用于相分析。
Imaging and raw intracranial recordings are available upon reasonable request to the corresponding author..
成像和原始颅内记录可根据通讯作者的合理要求提供。。
Code availability
代码可用性
The MATLAB code underlying the present study is available via Zenodo at https://doi.org/10.1101/2023.05.20.541597 (ref. 73) for co-ripple density analyses and at https://doi.org/10.5281/zenodo.12520199 (ref. 74) for phase-related analyses. Code implementing previously published methods for ripple detection is available on GitHub (https://github.com/iverzh/ripple-detection)..
本研究的MATLAB代码可通过Zenodo获得https://doi.org/10.1101/2023.05.20.541597(参考文献73)用于co波纹密度分析和https://doi.org/10.5281/zenodo.12520199(参考文献74)进行阶段相关分析。GitHub上提供了实现先前发布的纹波检测方法的代码(https://github.com/iverzh/ripple-detection)。。
ReferencesTreisman, A. Solutions to the binding problem: progress through controversy and convergence. Neuron 24, 111–125 (1999).Article
ReferencesTreisman,A。约束问题的解决方案:通过争议和趋同取得进展。神经元24111-125(1999)。文章
Google Scholar
谷歌学者
von der Malsburg, C. & Schneider, W. A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986).Article
von der Malsburg,C。和Schneider,W。神经鸡尾酒会处理器。生物网络。54,29-40(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zandvakili, A. & Kohn, A. Coordinated neuronal activity enhances corticocortical communication. Neuron 87, 827–839 (2015).Article
Zandvakili,A。&Kohn,A。协调的神经元活动增强皮质皮层通讯。神经元87827-839(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).Article
Salinas,E。&Sejnowski,T.J。将神经元活动与神经信息流相关联。神经科学杂志。2539-550(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).Article
Fries,P。神经元伽玛波段同步是皮层计算的基本过程。年。神经科学牧师。32209-224(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).Article
Gray,C.M.,Konig,P.,Engel,A.K。&Singer,W。猫视觉皮层中的振荡反应表现出柱间同步,这反映了整体刺激特性。自然338334-337(1989)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uhlhaas, P. et al. Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).Article
Uhlhaas,P。等人。皮质网络中的神经同步:历史,概念和现状。正面。整数。神经科学。3,17(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 111–125 (1999).Article
Shadlen,M.N。&Movshon,J.A。Synchrony unbound:对时间约束假设的批判性评估。神经元24111-125(1999)。文章
Google Scholar
谷歌学者
Ray, S. & Maunsell, J. H. Do gamma oscillations play a role in cerebral cortex? Trends Cogn. Sci. 19, 78–85 (2015).Article
Ray,S.&Maunsell,J.H。伽马振荡在大脑皮层中起作用吗?趋势认知。科学。19,78-85(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Roelfsema, P. R. Solving the binding problem: assemblies form when neurons enhance their firing rate; they don’t need to oscillate or synchronize. Neuron 111, 1003–1019 (2023).Article
Roelfsema,P.R。解决绑定问题:当神经元提高其放电频率时,就会形成组装体;它们不需要振荡或同步。神经元1111003-1019(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Merker, B. Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci. Biobehav. Rev. 37, 401–417 (2013).Article
Merker,B。皮质伽马振荡:功能关键是激活,而不是认知。神经科学。生物行为。第37401–417版(2013年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vinck, M. et al. Principles of large-scale neural interactions. Neuron 111, 987–1002 (2023).Article
Vinck,M.等人,《大规模神经相互作用原理》。神经元111987-1002(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hayashi, T. et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 229, 117726 (2021).Article
Hayashi,T。等人。非人灵长类动物神经影像学和神经解剖学项目。神经影像229117726(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Halgren, E., Baudena, P., Heit, G., Clarke, J. M. & Marinkovic, K. Spatio-temporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital, temporal and parietal lobes. J. Physiol. 88, 1–50 (1994).CAS
Halgren,E.,Baudena,P.,Heit,G.,Clarke,J.M。&Marinkovic,K。面部和文字处理的时空阶段。人类枕叶、颞叶和顶叶的深度记录电位。J、 生理学。88,1-50(1994)。中科院
Google Scholar
谷歌学者
Nobre, A., Allison, T. & McCarthy, H. Word recognition in the human inferior temporal lobe. Nature 372, 260–263 (1994).Article
Nobre,A.,Allison,T。&McCarthy,H。人类下颞叶的单词识别。自然372260-263(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Thesen, T. et al. Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat. Commun. 3, 1284 (2012).Article
Thesen,T.等人。左梭状回中字母和单词的顺序然后交互处理。国家公社。31284(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113, 8162–8167 (2016).Article
Hirshorn,E.A。等人。在单词阅读过程中解码和破坏左中梭状回活动。程序。国家科学院。科学。美国1138162–8167(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Woolnough, O. et al. Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat. Hum. Behav. 5, 389–398 (2021).Article
Woolnough,O。等人。腹侧视觉通路中正字法和词汇处理的时空动态。自然,哼,行为。5389-398(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boring, M. J. et al. Multiple adjoining word- and face-selective regions in ventral temporal cortex exhibit distinct dynamics. J. Neurosci. 41, 6314–6327 (2021).Article
Boring,M.J。等人。腹侧颞叶皮层中多个相邻的单词和面部选择性区域表现出不同的动力学。J、 神经科学。416314-6327(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chan, A. M. et al. First-pass selectivity for semantic categories in human anteroventral temporal lobe. J. Neurosci. 31, 18119–18129 (2011).Article
Chan,A.M.等人。人类前腹颞叶语义类别的首过选择性。J、 神经科学。3118119–18129(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halgren, E. in Neurobiology of Cognition (eds Scheibel, A. & Weschsler, A.) 103–150 (Guilford, 1990).Halgren, E. et al. Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. J. Physiol. 88, 51–80 (1994).CAS
Halgren,E.《认知神经生物学》(eds Scheibel,A。&Weschsler,A。)103-150(Guilford,1990)。Halgren,E。等人。面部和文字处理的时空阶段。人类额叶和罗兰皮质的深度记录电位。J、 生理学。88,51-80(1994)。中科院
Google Scholar
谷歌学者
Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).Article
Musall,S.,Kaufman,M.T.,Juavinett,A.L.,Gluf,S。&Churchland,A.K。单次试验神经动力学由丰富多样的运动主导。自然神经科学。221677-1686(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peter, A. et al. Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8, e42101 (2019).Article
表面颜色和可预测性决定了V1发射和伽马振荡的背景调制。eLife 8,e42101(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vinck, M. & Bosman, C. A. More gamma more predictions: gamma-synchronization as a key mechanism for efficient integration of classical receptive field inputs with surround predictions. Front. Syst. Neurosci. 10, 35 (2016).Article
Vinck,M。&Bosman,C。A。More gamma More预测:伽玛同步是经典感受野输入与环绕预测有效整合的关键机制。正面。系统。神经科学。10,35(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Singer, W. Recurrent dynamics in the cerebral cortex: integration of sensory evidence with stored knowledge. Proc. Natl Acad. Sci. USA 118, e2101043118 (2021).Article
Singer,W。大脑皮层的复发动力学:感官证据与存储知识的整合。程序。国家科学院。科学。美国118,e2101043118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dickey, C. W. et al. Cortical ripples during NREM sleep and waking in humans. J. Neurosci. https://doi.org/10.1523/jneurosci.0742-22.2022 (2022).Dickey, C. W. et al. Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc. Natl Acad. Sci. USA 119, e2107797119 (2022).Article .
Dickey,C.W。等人,《人类NREM睡眠和醒来时的皮质波纹》。J、 神经科学。https://doi.org/10.1523/jneurosci.0742-22.2022(2022年)。Dickey,C.W。等人。在睡眠、醒来和记忆回忆期间,广泛的涟漪使人类皮层活动同步。程序。国家科学院。科学。美国119,e2107797119(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 10, e68401 (2021).Article
Tong,A.P.S.,Vaz,A.P.,Wittig,J.H.,Inati,S.K。&Zaghloul,K.A。涟漪反映了人类前颞叶的一系列同步尖峰活动。eLife 10,e68401(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verzhbinsky, I. A. et al. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc. Natl Acad. Sci. USA 121, e2312204121 (2024).Article
Verzhbinsky,I.A.等人共同发生的波纹振荡促进了人类皮层位置之间的神经元相互作用。程序。国家科学院。科学。美国121,e2312204121(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Revonsuo, A. & Newman, J. Binding and consciousness. Conscious. Cogn. 8, 123–127 (1999).Article
Revonsuo,A。&Newman,J。绑定和意识。有意识。科恩。8123-127(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).Article
Norman,Y.等人。海马尖波涟漪与人类视觉情节回忆有关。科学365,eaax1030(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).Article
Vaz,A.P.,Inati,S.K.,Brunel,N。和Zaghloul,K.A。内侧颞叶和新皮层之间的耦合波纹振荡恢复了人类的记忆。科学363975-978(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during human memory retrieval. Science 367, 1131–1134 (2020).Article
Vaz,A.P.,Wittig,J.H.,Inati,S.K。&Zaghloul,K.A。在人类记忆检索过程中皮层尖峰序列的回放。科学3671131-1134(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lachaux, J. P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).Article
Lachaux,J.P.,Axmacher,N.,Mormann,F.,Halgren,E。&Crone,N.E。高频神经活动和人类认知:颅内脑电图研究的过去,现在和可能的未来。程序。神经生物学。98279-301(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).Article
Menon,V。&D'Esposito,M。PFC网络在认知控制和执行功能中的作用。神经精神药理学47,90-103(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Humphreys, G. F. & Lambon Ralph, M. A. Fusion and fission of cognitive functions in the human parietal cortex. Cereb. Cortex 25, 3547–3560 (2015).Article
Humphreys,G.F。和Lambon-Ralph,M.A。人类顶叶皮层认知功能的融合和裂变。塞雷布。皮质253547-3560(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Squire, L. R. & Zola, S. M. Amnesia, memory and brain systems. Phil. Trans. R. Soc. Lond. B 352, 1663–1673 (1997).Article
Squire,L.R。&Zola,S.M。健忘症,记忆和大脑系统。菲尔。Trans。R、 社会责任。B 3521663–1673(1997)。文章
CAS
中科院
Google Scholar
谷歌学者
Barron, H. C., Garvert, M. M. & Behrens, T. E. Repetition suppression: a means to index neural representations using BOLD? Phil. Trans. R. Soc. B 371, 20150355 (2016).Article
Barron,H.C.,Garvert,M.M。和Behrens,T.E。重复抑制:一种使用BOLD索引神经表征的方法?菲尔。Trans。R、 Soc.B 37120150355(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dehaene, S. & Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 15, 254–262 (2011).Article
Dehaene,S。&Cohen,L。视觉单词形式区域在阅读中的独特作用。趋势认知。科学。15254-262(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Marinkovic, K. et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron 38, 487–497 (2003).Article
Marinkovic,K。等人。特定情态和超情态词处理的时空动力学。神经元38487-497(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halgren, E. et al. N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. NeuroImage 17, 1101–1116 (2002).Article
Halgren,E。等人N400样脑磁图反应受句子中语义上下文,词频和词类的调节。神经影像171101-1116(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).Article
Huth,A.G.,de Heer,W.A.,Griffiths,T.L.,Theunissen,F.E。和Gallant,J.L。自然语言揭示了人类大脑皮层的语义图。自然532453-458(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).Article
Binder,J.R.,Desai,R.H.,Graves,W.W.&Conant,L.L。语义系统在哪里?120项功能性神经影像学研究的批判性回顾和荟萃分析。塞雷布。皮质192767-2796(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dickey, C. W. et al. Thalamic spindles and upstates coordinate cortical and hippocampal co-ripples in humans. PLoS Biol. (in the press).Bazhenov, M., Rulkov, N. F. & Timofeev, I. Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. J. Neurophysiol.
Dickey,C.W。等人。丘脑纺锤体和上状态协调人类的皮质和海马共同涟漪。《公共科学图书馆·生物学》。(在媒体上)。Bazhenov,M.,Rulkov,N.F。&Timofeev,I。突触连接对快速皮层振荡的长程同步的影响。J、 神经生理学。
100, 1562–1575 (2008).Article .
1001562-1575(2008)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).Article
Wilson,M.A。&McNaughton,B.L。睡眠期间海马整体记忆的重新激活。科学265676-679(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buzsaki, G. Hippocampal sharp wave‐ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).Article
Buzsaki,G。海马尖波纹波:情景记忆和计划的认知生物标志物。海马251073-1188(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).Article
Maingret,N.,Girardeau,G.,Todorova,R.,Goutierre,M。&Zugaro,M。海马-皮质耦合介导睡眠期间的记忆巩固。自然神经科学。1959-964(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2009).Article
Ego-Stengel,V。&Wilson,M.A。休息期间纹波相关海马活动的破坏会损害大鼠的空间学习。海马20,1-10(2009)。文章
Google Scholar
谷歌学者
Jiang, X., Gonzalez-Martinez, J. & Halgren, E. Coordination of human hippocampal sharpwave-ripples during NREM sleep with cortical theta bursts, spindles, downstates and upstates. J. Neurosci. https://doi.org/10.1523/jneurosci.2857-18.2019 (2019).Jiang, X., Gonzalez-Martinez, J. & Halgren, E.
Jiang,X.,Gonzalez-Martinez,J。&Halgren,E。NREM睡眠期间人类海马锐波涟漪与皮质θ爆发,纺锤体,下降状态和上升状态的协调。J、 神经科学。https://doi.org/10.1523/jneurosci.2857-18.2019(2019年)。江,X.,冈萨雷斯-马丁内斯,J.&Halgren,E。
Posterior hippocampal spindle-ripples co-occur with neocortical theta-bursts and down-upstates, and phase-lock with parietal spindles during NREM sleep in humans. J. Neurosci. https://doi.org/10.1523/jneurosci.2858-18.2019 (2019).Rubin, D. B. et al. Learned motor patterns are replayed in human motor cortex during sleep.
在人类NREM睡眠期间,海马后部纺锤体波纹与新皮层θ爆发和向下上升状态共同发生,并与顶叶纺锤体发生相位锁定。J、 神经科学。https://doi.org/10.1523/jneurosci.2858-18.2019(2019年)。Rubin,D.B。等人在睡眠期间,学习到的运动模式会在人类运动皮层中重演。
J. Neurosci. https://doi.org/10.1523/jneurosci.2074-21.2022 (2022).Mashour, G. A., Roelfsema, P., Changeux, J.-P. & Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 105, 776–798 (2020).Article .
J、 神经科学。https://doi.org/10.1523/jneurosci.2074-21.2022(2022年)。Mashour,G.A.,Roelfsema,P.,Changeux,J.-P.&Dehaene,S。意识处理和全球神经元工作空间假说。神经元105776-798(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Francis, W. N. & Kucera, H. Frequency Analysis of English Usage: Lexicon and Grammar (Houghton Mifflin, 1982).Yang, A. I. et al. Localization of dense intracranial electrode arrays using magnetic resonance imaging. NeuroImage 63, 157–165 (2012).Article
Francis,W.N。和Kucera,H。英语用法的频率分析:词汇和语法(Houghton-Mifflin,1982)。Yang,A.I.等人。使用磁共振成像定位致密颅内电极阵列。神经影像63157-165(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).Article
Dale,A.M.,Fischl,B。&Sereno,M.I。基于皮质表面的分析I:分割和表面重建。神经影像9179-194(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53, 1–15 (2010).Article
Destrieux,C.,Fischl,B.,Dale,A。&Halgren,E。使用标准解剖命名法自动分割人类皮质回和沟。神经影像53,1-15(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).Article
Glasser,M.F.等人。人类大脑皮层的多模式分裂。自然536171-178(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).Article
Oostenveld,R.,Fries,P.,Maris,E。&Schoffelen,J.M。FieldTrip:用于MEG,EEG和侵入性电生理数据高级分析的开源软件。计算机。因特尔。神经科学。2011156869(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).Article
Bell,A.J.和Sejnowski,T.J.盲分离和盲反褶积的信息最大化方法。神经计算机。71129-1159(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hyvärinen, A. Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371, 20110534 (2013).Article
Hyvärinen,A。独立成分分析:最新进展。菲尔。Trans。R、 Soc.A 37120110534(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).Article
Delorme,A。&Makeig,S。EEGLAB:用于分析单次试验脑电图动力学(包括独立成分分析)的开源工具箱。J、 神经科学。方法134,9-21(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jiang, X. et al. Improved identification and differentiation from epileptiform activity of human hippocampal sharp wave ripples during NREM sleep. Hippocampus 30, 610–622 (2019).Article
Jiang,X.等人改进了NREM睡眠期间人类海马尖波波纹癫痫样活动的识别和区分。海马30610-622(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mak-McCully, R. A. et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun. 8, 15499 (2017).Article
Mak McCully,R.A.等人。人类非快速眼动睡眠期间皮质和丘脑活动的协调。国家公社。815499(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gonzalez, C. E. et al. Theta bursts precede, and spindles follow, cortical and thalamic downstates in human NREM sleep. J. Neurosci. 38, 9989–10001 (2018).Article
Gonzalez,C.E。等人。在人类NREM睡眠中,θ爆发先于皮层和丘脑下降状态,纺锤体随后下降。J、 神经科学。389989-10001(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).Article
Lachaux,J.P.,Rodriguez,E.,Martinerie,J。&Varela,F.J。测量大脑信号中的相位同步。嗯。大脑地图。8194-208(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verzhbinsky, I. A. et al. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc. Natl Acad. Sci. USA 121, e2312204121 (2023).Article
Verzhbinsky,I.A.等人共同发生的波纹振荡促进了人类皮层位置之间的神经元相互作用。程序。国家科学院。科学。美国121,e2312204121(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).Article
Berens,P。CircStat:用于循环统计的MATLAB工具箱。J、 统计软件。31,1-21(2009)。文章
Google Scholar
谷歌学者
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).Article
Benjamini,Y。&Hochberg,Y。控制错误发现率:一种实用而强大的多重测试方法。J、 《联邦统计局汇编》B 57289-300(1995)。文章
Google Scholar
谷歌学者
Rosen, B. Q. & Halgren, E. A whole-cortex probabilistic diffusion tractography connectome. eNeuro https://doi.org/10.1523/ENEURO.0416-20.2020 (2020).Cleary, D. R. et al. Syllable processing is organized in discrete subregions of the human superior temporal gyrus. PLoS Biol. (in the press).Garrett, J.
Rosen,B.Q。&Halgren,E。全皮质概率扩散束成像连接组。eNeuro公司https://doi.org/10.1523/ENEURO.0416-20.2020(2020年)。Cleary,D.R.等人。音节处理是在人类颞上回的离散子区域中组织的。《公共科学图书馆·生物学》。(在媒体上)。加勒特,J。
C. et al. Binding of cortical functional modules by synchronous high frequency oscillations. Zenodo https://doi.org/10.1101/2023.05.20.541597 (2023).Garrett, J. Binding of cortical functional modules by synchronous high frequency oscillations (phase analyses). Zenodo https://doi.org/10.5281/zenodo.12520199 (2024).Download referencesAcknowledgementsWe thank C.
C、 等人。通过同步高频振荡结合皮质功能模块。泽诺多https://doi.org/10.1101/2023.05.20.541597(2023年)。Garrett,J。通过同步高频振荡结合皮质功能模块(相位分析)。泽诺多https://doi.org/10.5281/zenodo.12520199(2024年)。下载参考文献致谢我们感谢C。
Dickey, B. Rosen, L. Breston, E. Mukamel and S. Kajfez for their support. This project was funded by National Institutes of Health grant no. MH117155 (E.H.), National Institutes of Health grant no. T32MH020002 (J.C.G.) and Office of Naval Research grant no. N00014-16-1-2829 (E.H.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Author informationAuthor notesThese authors contributed equally: Thomas Thesen, Eric Halgren.Authors and AffiliationsNeurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USAJacob C.
Dickey,B。Rosen,L。Breston,E。Mukamel和S。Kajfez的支持。该项目由National Institutes of Health grant no.MH117155(E.H.)、National Institutes of Health grant no.T32MH020002(J.C.G.)和海军研究办公室grant no.N00014-16-1-2829(E.H.)资助。资助者在研究设计,数据收集和分析,决定发表或准备稿件方面没有任何作用。作者信息作者注意到这些作者做出了同样的贡献:托马斯·特森,埃里克·哈格伦。作者和附属机构美国加利福尼亚大学圣地亚哥分校神经科学研究生课程。
Garrett & Ilya A. VerzhbinskyMedical Scientist Training Program, University of California, San Diego, La Jolla, CA, USAIlya A. VerzhbinskyCenter for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USAErik KaestnerDepartment of Neurology, Medical College of Wisconsin, Milwaukee, WI, USAChad CarlsonDepartment of Neurosurgery, New York University Langone School of Medicine, New York, NY, USAWerner K.
Garrett&Ilya A.Verzhbinsky医学科学家培训计划,加利福尼亚大学圣地亚哥分校,加利福尼亚州拉霍亚,USAIlya A.Verzhbinsky多模式成像和遗传学中心,加利福尼亚大学圣地亚哥分校,加利福尼亚州拉霍亚,USAErik KAESTNER威斯康星州医学院神经病学系,威斯康星州密尔沃基,威斯康星州,USAChad卡尔森纽约大学朗根医学院神经外科,纽约,USAWerner K。
DoyleDepartment of Neurology, New York University Langone School.
纽约大学朗根学院多伊尔神经病学系。
PubMed Google ScholarIlya A. VerzhbinskyView author publicationsYou can also search for this author in
PubMed Google ScholarIlya A.VerzhbinskyView作者出版物您也可以在
PubMed Google ScholarErik KaestnerView author publicationsYou can also search for this author in
PubMed Google ScholarErik KaestnerView作者出版物您也可以在
PubMed Google ScholarChad CarlsonView author publicationsYou can also search for this author in
PubMed Google ScholarChad CarlsonView作者出版物您也可以在
PubMed Google ScholarWerner K. DoyleView author publicationsYou can also search for this author in
PubMed Google ScholarWerner K.DoyleView作者出版物您也可以在
PubMed Google ScholarOrrin DevinskyView author publicationsYou can also search for this author in
PubMed Google ScholarOrrin DevinskyView作者出版物您也可以在
PubMed Google ScholarThomas ThesenView author publicationsYou can also search for this author in
PubMed谷歌学术期刊ThesenView author Publications您也可以在
PubMed Google ScholarEric HalgrenView author publicationsYou can also search for this author in
PubMed谷歌学者HalgrenView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: E.H. Data curation: J.C.G., E.K., I.A.V. and T.T. Formal analysis: J.C.G., I.A.V. and E.H. Funding acquisition: E.H., T.T. and O.D. Investigation: T.T., C.C., W.K.D., O.D. and E.H. Methodology: J.C.G. and E.H. Project administration: E.H., T.T.
PubMed谷歌学术贡献概念化:E.H.数据管理:J.C.G.,E.K.,I.A.V.和T.T.正式分析:J.C.G.,I.A.V.和E.H.资金获取:E.H.,T.T.和O.D.调查:T.T.,C.C.,W.K.D.,O.D.和E.H.方法论:J.C.G.和E.H.项目管理:E.H.,T.T。
and O.D. Resources: O.D., W.K.D. and C.C. Software: J.C.G. and I.A.V. Supervision: E.H. and T.T. Visualization: J.C.G. Writing—original draft: E.H. and J.C.G. Writing—review and editing: E.H. and J.C.G.Corresponding authorCorrespondence to.
和O.D.资源:O.D.,W.K.D.和C.C.软件:J.C.G.和I.A.V.监督:E.H.和T.T.可视化:J.C.G.撰写原稿:E.H.和J.C.G.写作评论和编辑:E.H.和J.C.G.相应的作者回复。
Eric Halgren.Ethics declarations
埃里克·哈格伦。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.
《自然人类行为》感谢匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationSupplementary Figs. 1–17 and Tables 1–9.Reporting SummaryRights and permissionsSpringer Nature or its licensor (e.g.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充图1-17和表1-9。报告摘要权利和许可原告性质或其许可人(例如。
a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleGarrett, J.C., Verzhbinsky, I.A., Kaestner, E.
协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Garrett,J.C.,Verzhbinsky,I.A.,Kaestner,E。
et al. Binding of cortical functional modules by synchronous high-frequency oscillations..
等人。通过同步高频振荡结合皮质功能模块。。
Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01952-2Download citationReceived: 25 August 2023Accepted: 09 July 2024Published: 12 August 2024DOI: https://doi.org/10.1038/s41562-024-01952-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Hum Behav(2024)。https://doi.org/10.1038/s41562-024-01952-2Download引文接收日期:2023年8月25日接收日期:2024年7月9日发布日期:2024年8月12日OI:https://doi.org/10.1038/s41562-024-01952-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供