EN
登录

哺乳动物发育和疾病中的DNA甲基化

DNA methylation in mammalian development and disease

Nature 等信源发布 2024-08-12 19:46

可切换为仅中文


AbstractThe DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes.

摘要DNA甲基化领域已经从发现和基因组表征的阶段成熟到寻求对这种修饰如何促进发育,衰老和疾病的更深入功能理解的阶段。特别是,在过去的十年中,我们看到了许多令人兴奋的机制发现,这些发现大大扩展了我们对这种通用的,进化上古老的修饰如何被纳入强大的表观遗传密码的认识。

Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer.

在这里,我们总结了目前对哺乳动物寿命中出现的不同DNA甲基化景观的理解,并讨论了它们如何与其他调控层相互作用以支持多种基因组功能。然后,我们回顾了在衰老和向癌症的体细胞转变过程中发现的替代模式的兴趣日益增加。

Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype..

除了单细胞和长读测序技术的进步外,这些领域的集体见解为将DNA甲基化的生化和遗传特征与细胞生理学,发育潜力和表型联系起来提供了新的机会。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: The somatic DNA methylation landscape.Fig. 2: Major hubs of DNMT-supported genome regulation.Fig. 3: Dynamic DNA methylation landscapes during early embryonic and germ-line development.Fig. 4: Aberrant DNA methylation changes during tumorigenesis.Fig. 5: Sources and examples of intermolecular and intramolecular DNA methylation heterogeneity..

图1:体细胞DNA甲基化景观。图2:DNMT支持的基因组调控的主要枢纽。图3:早期胚胎和种系发育过程中的动态DNA甲基化景观。图4:肿瘤发生过程中异常的DNA甲基化变化。图5:分子间和分子内DNA甲基化异质性的来源和例子。。

ReferencesMattei, A. L., Bailly, N. & Meissner, A. DNA methylation: a historical perspective. Trends Genet. 38, 676–707 (2022).Article

参考文献Mattei,A.L.,Bailly,N。&Meissner,A。DNA甲基化:历史观点。趋势Genet。38676-707(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).Article

Greenberg,M.V.C。和Bourc'his,D。DNA甲基化在哺乳动物发育和疾病中的不同作用。Nat。Rev。Mol。Cell Biol。20590-607(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).Article

Schubeler,D。DNA甲基化的功能和信息含量。自然517321-326(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).Article

Smith,Z.D。和Meissner,A。DNA甲基化:在哺乳动物发育中的作用。Genet自然Rev。14204-220(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zilberman, D. An evolutionary case for functional gene body methylation in plants and animals. Genome Biol. 18, 87 (2017).Article

Zilberman,D。动植物功能基因体甲基化的进化案例。基因组生物学。18,87(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).Article

Suzuki,M.M。和Bird,A。DNA甲基化景观:来自表观基因组学的挑衅性见解。Genet自然Rev。9465-476(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).Article

Jones,P.A。DNA甲基化的功能:岛屿,起始位点,基因体等。Genet自然Rev。13484-492(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scherer, M. et al. Quantitative comparison of within-sample heterogeneity scores for DNA methylation data. Nucleic Acids Res. 48, e46 (2020).Article

Scherer,M.等人。DNA甲基化数据样本内异质性评分的定量比较。核酸研究48,e46(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Constancio, V., Nunes, S. P., Henrique, R. & Jeronimo, C. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells 9, https://doi.org/10.3390/cells9030624 (2020).De Borre, M. et al. Cell-free DNA methylome analysis for early preeclampsia prediction.

Constancio,V.,Nunes,S.P.,Henrique,R。&Jeronimo,C。基于DNA甲基化的液体活检检测作为四种主要癌症类型的检测和预后生物标志物。单元格9,https://doi.org/10.3390/cells9030624(2020年)。De Borre,M.等人。用于早期子痫前期预测的无细胞DNA甲基化组分析。

Nat. Med. 29, 2206–2215 (2023).Article .

《自然医学》292206-2215(2023)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Gowher, H. & Jeltsch, A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem. Soc. Trans. 46, 1191–1202 (2018).Article

Gowher,H。&Jeltsch,A。哺乳动物DNA甲基转移酶:新发现和悬而未决的问题。生物化学。社会事务。461191-1202(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023). This paper provides an extensive base pair-resolution reference of purified human cell types, highlighting the degree to which cellular heterogeneity can impact efforts to accurately call differentially methylated regions or identify intra-individual methylation patterns.Article .

Loyfer,N。等人。正常人类细胞类型的DNA甲基化图谱。自然613355-364(2023)。本文提供了纯化的人类细胞类型的广泛碱基对分辨率参考,强调了细胞异质性在多大程度上可以影响准确调用差异甲基化区域或识别个体内甲基化模式的努力。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022). This paper reports a complete presentation and analysis of human centromeric and pericentromeric sequences and details the epigenetic architecture surrounding the functional kinetochore.Article .

Altemose,N。等人。人类着丝粒的完整基因组和表观遗传图谱。科学376,eabl4178(2022)。本文报告了人类着丝粒和着丝粒周围序列的完整介绍和分析,并详细介绍了围绕功能性动粒的表观遗传结构。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kretzmer, H. et al. Preneoplastic alterations define CLL DNA methylome and persist through disease progression and therapy. Blood Cancer Discov. 2, 54–69 (2021).Article

Kretzmer,H。等人。肿瘤前改变定义了CLL DNA甲基化组,并在疾病进展和治疗过程中持续存在。血癌Discov。2,54-69(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).Article

Horvath,S。&Raj,K。基于DNA甲基化的生物标志物和衰老的表观遗传时钟理论。Genet自然Rev。19371-384(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).Article

Zhang,W.,Qu,J.,Liu,G.H。和Belmonte,J.C.I。衰老的表观基因组及其复兴。Nat。Rev。Mol。Cell Biol。21137-150(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).Article

Field,A.E.等人,《衰老中的DNA甲基化时钟:类别,原因和后果》。分子细胞71882-895(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, Z., Qu, J., Zhang, W. & Liu, G. H. Stress, epigenetics, and aging: unraveling the intricate crosstalk. Mol. Cell 84, 34–54 (2024).Article

Wu,Z.,Qu,J.,Zhang,W。&Liu,G.H。压力,表观遗传学和衰老:解开错综复杂的串扰。分子细胞84,34-54(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Joubert, B. R. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98, 680–696 (2016).Article

Joubert,B.R.等人,《新生儿DNA甲基化与孕期母亲吸烟:全基因组联盟荟萃分析》。上午J。嗯。Genet。98680-696(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmitz, L. L. & Duque, V. In utero exposure to the great depression is reflected in late-life epigenetic aging signatures. Proc. Natl Acad. Sci. USA 119, e2208530119 (2022).Article

Schmitz,L.L。&Duque,V。子宫内暴露于大萧条反映在晚年表观遗传衰老特征中。程序。国家科学院。科学。美国119,e2208530119(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnstone, S. E., Gladyshev, V. N., Aryee, M. J. & Bernstein, B. E. Epigenetic clocks, aging, and cancer. Science 378, 1276–1277 (2022).Article

Johnstone,S.E.,Gladyshev,V.N.,Aryee,M.J。&Bernstein,B.E。表观遗传钟,衰老和癌症。科学3781276-1277(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).Article

Dawson,M.A。癌症表观基因组:概念,挑战和治疗机会。科学3551147-1152(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feinberg, A. P. & Levchenko, A. Epigenetics as a mediator of plasticity in cancer. Science 379, eaaw3835 (2023).Article

Feinberg,A.P。&Levchenko,A。表观遗传学作为癌症可塑性的介质。科学379,eaaw3835(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).Article

Deamer,D.,Akeson,M。和Branton,D。纳米孔测序的三十年。美国国家生物技术公司。34518-524(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).Article

Goodwin,S.,McPherson,J.D。和McCombie,W.R。成熟:下一代测序技术的十年。Genet自然Rev。17333-351(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Janssen, S. M. & Lorincz, M. C. Interplay between chromatin marks in development and disease. Nat. Rev. Genet. 23, 137–153 (2022).Article

Janssen,S.M。和Lorincz,M.C。发育和疾病中染色质标记之间的相互作用。Genet自然Rev。23137-153(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hollwey, E., Briffa, A., Howard, M. & Zilberman, D. Concepts, mechanisms and implications of long-term epigenetic inheritance. Curr. Opin. Genet. Dev. 81, 102087 (2023).Article

Hollwey,E.,Briffa,A.,Howard,M。&Zilberman,D。长期表观遗传的概念,机制和意义。货币。奥平。基因。德文81102087(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fazzari, M. J. & Greally, J. M. Epigenomics: beyond CpG islands. Nat. Rev. Genet. 5, 446–455 (2004).Article

Fazzari,M。J。和Greally,J。M。Epigenomics:超越CpG群岛。Genet自然Rev。5446-455(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).Article

Bickmore,W.A。&van Steensel,B。基因组结构:间期染色体的结构域组织。细胞1521270-1284(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Charlton, J. et al. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol. 25, 327–332 (2018).Article

Charlton,J。等人。新生链DNA甲基化的全球延迟。自然结构。分子生物学。25327-332(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010).Article

对新复制的DNA进行测序揭示了人类复制时间的广泛可塑性。程序。国家科学院。科学。美国107139–144(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).Article

Sharif,J。等人。SRA蛋白Np95通过将Dnmt1募集到甲基化DNA来介导表观遗传。《自然》450908-912(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, C. & Corces, V. G. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166–1170 (2018).Article

Xu,C。&Corces,V。G。新生DNA甲基化组作图揭示了CTCF/粘着蛋白位点半甲基化的遗传。科学3591166-1170(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salhab, A. et al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol. 19, 150 (2018).Article

Salhab,A。等人。对195个DNA甲基化组的综合分析揭示了部分甲基化结构域的共享和细胞特异性特征。基因组生物学。19150(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).Article

Berman,B.P.等人。结直肠癌中局灶性DNA高甲基化和长程低甲基化的区域与核层相关结构域一致。纳特·吉内特。44,40-46(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018). This study reports a comprehensive analysis of PMDs across a large cohort of whole-genome bisulfite sequencing data from human tissues, including their broad developmental conservation and the correlation between local sequence content, proliferative index and DNA methylation loss.Article .

Zhou,W。等人。晚期复制域中的DNA甲基化损失与有丝分裂细胞分裂有关。纳特·吉内特。50591-602(2018)。这项研究报告了对来自人体组织的大量全基因组亚硫酸氢盐测序数据中PMD的综合分析,包括其广泛的发育保守性以及局部序列含量,增殖指数和DNA甲基化损失之间的相关性。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).Article

Lister,R。等人。碱基分辨率的人类DNA甲基化组显示出广泛的表观基因组差异。自然462315-322(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 41, 246–250 (2009).Article

Wen,B.,Wu,H.,Shinkai,Y.,Irizarry,R.A。&Feinberg,A.P。大组蛋白H3赖氨酸9二甲基化染色质块区分与胚胎干细胞的分化。纳特·吉内特。41246-250(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).Article

Guelen,L。等人。通过核层相互作用的作图揭示了人类染色体的结构域组织。自然453948-951(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).Article

Lieberman-Aiden,E。等人。远程相互作用的综合图谱揭示了人类基因组的折叠原理。科学326289-293(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, Q., Luu, P. L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7, 1051–1073 (2015).Article

Du,Q.,Luu,P.L.,Stirzaker,C。&Clark,S.J。甲基CpG结合结构域蛋白:表观基因组的读者。表观基因组学71051-1073(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Endicott, J. L., Nolte, P. A., Shen, H. & Laird, P. W. Cell division drives DNA methylation loss in late-replicating domains in primary human cells. Nat. Commun. 13, 6659 (2022).Article

Endicott,J.L.,Nolte,P.A.,Shen,H。&Laird,P.W。细胞分裂驱动原代人类细胞中晚期复制域的DNA甲基化损失。国家公社。136659(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).Article

Strom,A.R.等人。相分离驱动异染色质结构域的形成。自然547241-245(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Montavon, T. et al. Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat. Commun. 12, 4359 (2021).Article

Montavon,T。等人。H3K9甲基化的完全丧失溶解了小鼠异染色质组织。国家公社。124359(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Poleshko, A. et al. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 8, e49278 (2019).Article

Poleshko,A。等人,H3K9me2通过有丝分裂协调外周异染色质空间定位的遗传。eLife 8,e49278(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shipony, Z. et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119 (2014).Article

Shipony,Z.等人。多能细胞和体细胞表观遗传记忆的动态和静态维持。自然513115-119(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).Article

Ginno,P.A.,Lott,P.L.,Christensen,H.C.,Korf,I。&Chedin,F。R环形成是未甲基化的人CpG岛启动子的独特特征。分子细胞45814-825(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).Article

Xie,W.等。人类胚胎干细胞多向分化的表观基因组学分析。细胞1531134-1148(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014). Together with Xie et al. (2013), this work describes DMVs or canyons as characteristic hallmarks of developmental gene promoters in human and mouse that are particularly sensitive to changes in gene expression or epigenetic disruption.Article .

Jeong,M。等人。由Dnmt3a维持的低DNA甲基化的大保守结构域。纳特·吉内特。46,17-23(2014)。与Xie等人(2013)一起,这项工作将DMV或峡谷描述为人类和小鼠发育基因启动子的特征性标志,这些启动子对基因表达或表观遗传破坏的变化特别敏感。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Y. et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19, 18 (2018).Article

全基因组分析揭示了Polycomb在促进DNA甲基化谷低甲基化中的作用。基因组生物学。19,18(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pachano, T. et al. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat. Genet. 53, 1036–1049 (2021).Article

Pachano,T。等人。孤儿CpG岛扩增平衡的增强子调节活性并确定靶基因反应性。纳特·吉内特。531036-1049(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).Article

Gifford,C.A。等人。人类胚胎干细胞规范化过程中的转录和表观遗传动力学。细胞1531149-1163(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, H. J. et al. Topological isolation of developmental regulators in mammalian genomes. Nat. Commun. 12, 4897 (2021).Article

Wu,H.J.等人。哺乳动物基因组中发育调节因子的拓扑分离。国家公社。124897(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kundu, S. et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65, 432–446.e5 (2017).Article

Kundu,S。等人,Polycomb抑制复合物1产生离散的压缩结构域,这些结构域在分化过程中会发生变化。分子细胞65432-446.e5(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).Article

Lau,M.S。等人。核小体压缩区的突变破坏了Polycomb介导的轴向模式。科学3551081-1084(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kraft, K. et al. Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc. Natl Acad. Sci. USA 119, e2201883119 (2022).Article

Kraft,K。等人。Polycomb介导的基因组结构可以实现H3K27甲基化的远程扩散。程序。国家科学院。科学。美国119,e2201883119(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Isono, K. et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565–577 (2013).Article

SAM结构域聚合将PRC1的亚核聚类与基因沉默联系起来。Dev.Cell 26565–577(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lu, F., Liu, Y., Jiang, L., Yamaguchi, S. & Zhang, Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes. Dev. 28, 2103–2119 (2014).Article

Lu,F.,Liu,Y.,Jiang,L.,Yamaguchi,S。&Zhang,Y。Tet蛋白在增强子活性和端粒延伸中的作用。基因。德文282103-2119(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Verma, N. et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50, 83–95 (2018). This paper describes TET triple knockout human ESCs, which gain substantial intermediate methylation of DMVs and exhibit impeded differentiation into the neural lineage.Article .

TET蛋白保护二价启动子免受人类胚胎干细胞从头甲基化的影响。纳特·吉内特。50,83-95(2018)。本文描述了TET三重敲除人胚胎干细胞,其获得DMV的大量中间甲基化并表现出阻碍分化为神经谱系。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Charlton, J. et al. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat. Genet. 52, 819–827 (2020).Article

Charlton,J。等人,TETs在数千种甲基化体细胞增强子上与多能细胞中的DNMT3活性竞争。纳特·吉内特。52819-827(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dixon, G. et al. QSER1 protects DNA methylation valleys from de novo methylation. Science 372, eabd0875 (2021).Article

Dixon,G。等人QSER1保护DNA甲基化谷免受从头甲基化。科学372,eabd0875(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).Article

Wu,X。&Zhang,Y。TET介导的活性DNA去甲基化:机制,功能及其他。Genet自然Rev。18517-534(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).Article

Ginno,P.A。等人,DNA甲基化转换的基因组规模图确定了DNMT和TET活性的位点特异性依赖性。国家公社。112680(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).Article

Heyn,P。等人。功能获得性DNMT3A突变导致小头侏儒症和Polycomb调节区的高甲基化。纳特·吉内特。51,96-105(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).Article

DNA甲基转移酶基因DNMT3A的突变会导致智力残疾的过度生长综合征。纳特·吉内特。46385-388(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Manzo, M. et al. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421–3434 (2017).Article

Manzo,M。等人。DNMT3A的同工型特异性定位调节二价CpG岛上的DNA甲基化保真度。EMBO J.363421–3434(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, T. et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 88 (2018).Article

Gu,T。等人DNMT3A和TET1合作调节小鼠胚胎干细胞中的启动子表观遗传景观。基因组生物学。19,88(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, T. et al. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat. Genet. 54, 625–636 (2022).Article

Gu,T。等人。DNMT3A的无序N末端结构域识别H2AK119ub,是出生后发育所必需的。纳特·吉内特。54625-636(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weigert, R. et al. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat. Cell Biol. 25, 579–591 (2023). This study describes the genetic and biochemical characterization of the extra-embryonic DNA methylation landscape in mouse trophoblast stem cells, which depends on a global and dynamic interaction between DNMT3B and the PRCs.Article .

Weigert,R。等人。关键抑制途径之间的动态拮抗作用维持胎盘表观基因组。自然细胞生物学。25579-591(2023)。这项研究描述了小鼠滋养层干细胞中胚胎外DNA甲基化景观的遗传和生化特征,这取决于DNMT3B和PRC之间的全局和动态相互作用。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clark, S. J. et al. Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis. Genome Biol. 23, 202 (2022).Article

Clark,S.J.等人,《单细胞多组学分析》将动态DNA甲基化与小鼠早期器官发生过程中的细胞命运决定联系起来。基因组生物学。23202(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cui, X. L. et al. A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nat. Commun. 11, 6161 (2020).Article

Cui,X.L.等人。5-羟甲基胞嘧啶的人体组织图谱通过基因和增强子调节表现出组织特异性。国家公社。116161(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S. & Jacobsen, S. E. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).Article

Stroud,H.,Feng,S.,Morey-Kinney,S.,Pradhan,S。&Jacobsen,S.E。5-羟甲基胞嘧啶与人类胚胎干细胞中的增强子和基因体有关。基因组生物学。12,R54(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rulands, S. et al. Genome-scale oscillations in DNA methylation during exit from pluripotency. Cell Syst. 7, 63–76.e12 (2018).Article

Rulands,S.等人。退出多能性期间DNA甲基化的基因组规模振荡。细胞系统。7,63-76.e12(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rasmussen, K. D. et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes. Dev. 29, 910–922 (2015).Article

Rasmussen,K.D。等人。造血细胞中TET2的缺失导致活性增强子的DNA超甲基化和白血病发生的诱导。基因。德文29910–922(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donaghey, J. et al. Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nat. Genet. 50, 250–258 (2018).Article

Donaghey,J.等人。先驱因子占有率的遗传决定因素和表观遗传效应。纳特·吉内特。50250-258(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).Article

Ziller,M.J.等人绘制了人类基因组的动态DNA甲基化景观。自然500477-481(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jain, D. et al. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet. 13, e1006964 (2017).Article

Jain,D。等人rahu是Dnmt3c的突变等位基因,编码小鼠雄性种系减数分裂和转座子抑制所需的DNA甲基转移酶同源物。PLoS Genet。13,e1006964(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).Article

DNA甲基转移酶DNMT3C保护雄性生殖细胞免受转座子活性的影响。科学354909-912(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jeltsch, A. & Jurkowska, R. Z. Allosteric control of mammalian DNA methyltransferases — a new regulatory paradigm. Nucleic Acids Res. 44, 8556–8575 (2016).Article

Jeltsch,A。&Jurkowska,R.Z。哺乳动物DNA甲基转移酶的变构控制-一种新的调节范例。核酸研究448556-8575(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Molaro, A., Malik, H. S. & Bourc’his, D. Dynamic evolution of de novo DNA methyltransferases in rodent and primate genomes. Mol. Biol. Evol. 37, 1882–1892 (2020).Article

Molaro,A.,Malik,H.S。&Bourc'his,D。啮齿动物和灵长类动物基因组中从头DNA甲基转移酶的动态进化。分子生物学。进化。371882-1892(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).Article

Challen,G.A。等人,Dnmt3a和Dnmt3b在造血干细胞中具有重叠和不同的功能。细胞干细胞15350-364(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. eLife 5, e12975 (2016).Article

Elliott,E.N.,Sheaffer,K.L。&Kaestner,K.H.“从头”DNA甲基转移酶Dnmt3b补偿Dnmt1缺陷的肠上皮。eLife 5,e12975(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, D. Y. et al. Dnmt3a deficiency in the skin causes focal, canonical DNA hypomethylation and a cellular proliferation phenotype. Proc. Natl Acad. Sci. USA 118, e2022760118 (2021).Article

Chen,D.Y.等人,皮肤中Dnmt3a缺乏会导致局灶性,典型的DNA低甲基化和细胞增殖表型。程序。国家科学院。科学。美国118,e2022760118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dukatz, M. et al. H3K36me2/3 binding and DNA binding of the DNA methyltransferase DNMT3A PWWP domain both contribute to its chromatin interaction. J. Mol. Biol. 431, 5063–5074 (2019).Article

Dukatz,M。等人。DNA甲基转移酶DNMT3A PWWP结构域的H3K36me2/3结合和DNA结合都有助于其染色质相互作用。J、 分子生物学。4315063-5074(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ramabadran, R. et al. DNMT3A-coordinated splicing governs the stem state switch towards differentiation in embryonic and haematopoietic stem cells. Nat. Cell Biol. 25, 528–539 (2023).Article

Ramabadran,R。等人。DNMT3A协调剪接控制胚胎和造血干细胞向分化的干状态转换。自然细胞生物学。25528-539(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, Y. et al. Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities. Cell Rep. 42, 113496 (2023).Article

Zheng,Y。等人。NSD1介导的组蛋白甲基化是建立和维持神经元身份所必需的。细胞代表42113496(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019). This paper functionally investigates the relationship between DNMT3A recruitment and NSD1/2-deposited H3K36 methylation, including how PWWP domain-based recognition of this modification is required for intergenic methylation and explains the underlying biology of Tatton–Brown–Rahman syndrome.Article .

组蛋白标记H3K36me2募集DNMT3A并形成基因间DNA甲基化景观。自然573281-286(2019)。本文从功能上研究了DNMT3A募集与NSD1/2沉积的H3K36甲基化之间的关系,包括基因间甲基化如何需要基于PWWP域的这种修饰识别,并解释了Tatton-Brown-Rahman综合征的潜在生物学。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brennan, K. et al. NSD1 mutations deregulate transcription and DNA methylation of bivalent developmental genes in Sotos syndrome. Hum. Mol. Genet. 31, 2164–2184 (2022).Article

Brennan,K。等人。NSD1突变使Sotos综合征中二价发育基因的转录和DNA甲基化失调。嗯,摩尔·吉内特。312164-2184(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021).Article

Weinberg,D.N。等人。DNMT3A募集的两种竞争机制调节PRC1靶向CpG岛上从头DNA甲基化的动力学。纳特·吉内特。53794-800(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).Article

Guo,J.U.等人。成年哺乳动物大脑中非CpG甲基化的分布,识别和调节。自然神经科学。17215-222(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).Article

Hon,G.C.等人。在成年小鼠组织的DNA甲基化图谱中鉴定的胚胎增强子的表观遗传记忆。纳特·吉内特。451198-1206(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).Article

Lister,R.等人。哺乳动物大脑发育过程中的全球表观基因组重构。科学3411237905(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ziller, M. J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).Article

Ziller,M.J.等人。人类细胞类型中非CpG甲基化的基因组分布和样品间变异。PLoS Genet。7,e1002389(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J. et al. Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. eLife 11, e66909 (2022).Article

Li,J。等人。兴奋性神经元中的Dnmt3a敲除会损害出生后突触的成熟并增加抑制性组蛋白修饰H3K27me3。eLife 11,e66909(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164.e16 (2017). This study functionally connects non-CpG methylation to DNMT3A activity in neurons, which is followed by MeCP2 binding to consolidate this secondary wave of epigenetic signal during early critical periods.Article .

Stroud,H。等人。神经元中的早期基因表达调节持久的表观遗传状态。细胞1711151-1164.e16(2017)。这项研究在功能上将非CpG甲基化与神经元中的DNMT3A活性联系起来,然后是MeCP2结合,以在早期关键时期巩固这种表观遗传信号的第二波。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, H. et al. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 624, 366–377 (2023).Article

Liu,H。等人。成年小鼠大脑的单细胞DNA甲基化组和3D多组图谱。自然624366-377(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).Article

Liu,H。等人。单细胞分辨率下小鼠大脑的DNA甲基化图谱。自然598120-128(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).Article

Luo,C。等人。单细胞甲基化组识别哺乳动物皮层中的神经元亚型和调节元件。科学357600–604(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu. Rev. Genomics Hum. Genet. 16, 55–77 (2015).Article

He,Y。&Ecker,J.R。人类基因组中的非CG甲基化。年。基因组学评论Hum.Genet。16,55-77(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).Article

MeCP2识别胞嘧啶甲基化的三核苷酸和二核苷酸序列,以调节哺乳动物大脑中的转录。PLoS Genet。13,e1006793(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).Article

Lyst,M.J。等人。Rett综合征突变消除了MeCP2与NCoR/SMRT共阻遏物的相互作用。自然神经科学。16898-902(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, L. et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112, 5509–5514 (2015).Article

Chen,L。等人。随着神经元成熟,MeCP2与非CG甲基化DNA结合,影响Rett综合征的转录和发病时间。程序。国家科学院。科学。美国1125509–5514(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).Article

Skene,P.J。等人。神经元MeCP2以接近组蛋白八聚体的水平表达,并全面改变染色质状态。分子细胞37457-468(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).Article

de Mendoza,A。等人。脊椎动物大脑非CpG甲基化系统的出现。自然生态。进化。5369-378(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275.e12 (2021).Article

Tillotson,R。等人。神经元非CG甲基化是MeCP2功能的重要靶标。分子细胞811260-1275.e12(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, P., Wang, Y. & Macfarlan, T. S. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet. 33, 871–881 (2017).Article

Yang,P.,Wang,Y。&Macfarlan,T.S。KRAB ZFPs在转座因子抑制和哺乳动物进化中的作用。趋势Genet。33871-881(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosspopoff, O. & Trono, D. Take a walk on the KRAB side. Trends Genet. 39, 844–857 (2023).Article

罗斯·波波夫(Rosspopoff)和特罗诺(Trono)在克拉布(KRAB)一侧散步。趋势Genet。39844-857(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shen, P. et al. Conserved paradoxical relationships among the evolutionary, structural and expressional features of KRAB zinc-finger proteins reveal their special functional characteristics. BMC Mol. Cell Biol. 22, 7 (2021).Article

Shen,P。等人。KRAB锌指蛋白的进化,结构和表达特征之间保守的矛盾关系揭示了它们的特殊功能特征。BMC分子细胞生物学。22,7(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).Article

Jacobs,F.M.等人。KRAB锌指基因ZNF91/93和SVA/L1反转录转座子之间的进化军备竞赛。自然516242-245(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ninova, M. & Fejes Toth, K. New players on the piRNA field. Nat. Struct. Mol. Biol. 27, 777–779 (2020).Article

尼诺娃(Ninova,M.)和费耶斯·托斯(Fejes Toth,K.)是皮尔纳球场上的新球员。自然结构。分子生物学。27777-779(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).Article

Ozata,D.M.,Gainetdinov,I.,Zoch,A.,O'Carroll,D。&Zamore,P.D。PIWI相互作用RNA:具有大功能的小RNA。Genet自然Rev。20,89-108(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schopp, T. et al. TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nat. Commun. 11, 3739 (2020).Article

Schopp,T。等人TEX15是MIWI2指导的转座子DNA甲基化和沉默的重要执行者。国家公社。113739(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zoch, A. et al. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 584, 635–639 (2020).Article

Zoch,A。等人SPOCD1是piRNA指导的从头DNA甲基化的重要执行者。《自然》584635–639(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dura, M. et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat. Genet. 54, 469–480 (2022).Article

Dura,M。等人。精原干细胞参与精子发生需要依赖DNMT3A的DNA甲基化。纳特·吉内特。54469-480(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seczynska, M. & Lehner, P. J. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet. 39, 251–267 (2023).Article

Seczynska,M。&Lehner,P.J。沉默之声:HUSH复杂功能的机制和含义。趋势Genet。39251-267(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Haggerty, C. et al. Dnmt1 has de novo activity targeted to transposable elements. Nat. Struct. Mol. Biol. 28, 594–603 (2021).Article

Haggerty,C。等人,Dnmt1具有针对转座因子的从头活性。自然结构。分子生物学。28594-603(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharif, J. et al. Activation of endogenous retroviruses in Dnmt1–/– ESCs involves disruption of SETDB1-mediated repression by NP95 binding to hemimethylated DNA. Cell Stem Cell 19, 81–94 (2016).Article

Sharif,J。等人。Dnmt1-/-胚胎干细胞中内源性逆转录病毒的激活涉及NP95与半甲基化DNA结合破坏SETDB1介导的抑制作用。细胞干细胞19,81-94(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Johnson, W. L. et al. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299 (2017).Article

Johnson,W.L.等人。SUV39H1在组成型异染色质上的RNA依赖性稳定化。eLife 6,e25299(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Talbert, P. B. & Henikoff, S. What makes a centromere. Exp. Cell Res. 389, 111895 (2020).Article

Talbert,P.B。和Henikoff,S。什么构成着丝粒。Exp.Cell Res.389111895(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Unoki, M. Chromatin remodeling in replication-uncoupled maintenance DNA methylation and chromosome stability: insights from ICF syndrome studies. Genes. Cell 26, 349–359 (2021).Article

Unoki,M。复制中的染色质重塑-解偶联维持DNA甲基化和染色体稳定性:来自ICF综合征研究的见解。基因。细胞26349-359(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).Article

Liao,J.等人。靶向破坏人类胚胎干细胞中的DNMT1,DNMT3A和DNMT3B。纳特·吉内特。47469-478(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014). This study proteomically investigates pericentromeric chromatin in the presence or absence of DNA methylation and identifies a major role for the protein BEND3 in switching epigenetic regulation between constitutive heterochromatin and Polycomb-directed facultative heterochromatin.Article .

Saksouk,N。等人。在着丝粒周围区域形成沉默染色质的冗余机制依赖于BEND3和DNA甲基化。分子细胞56580-594(2014)。这项研究从蛋白质组学角度研究了存在或不存在DNA甲基化的着丝粒染色质,并确定了蛋白质BEND3在组成型异染色质和多梳定向兼性异染色质之间转换表观遗传调控中的主要作用。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Simo-Riudalbas, L. et al. Genome-wide DNA methylation analysis identifies novel hypomethylated non-pericentromeric genes with potential clinical implications in ICF syndrome. PLoS ONE 10, e0132517 (2015).Article

Simo Riudalbas,L。等人。全基因组DNA甲基化分析鉴定了新的低甲基化非着丝粒基因,在ICF综合征中具有潜在的临床意义。PLoS ONE 10,e0132517(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).Article

He,Y.等人。发育中的小鼠胎儿的时空DNA甲基化动力学。《自然》583752-759(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hancock, G. V., Wamaitha, S. E., Peretz, L. & Clark, A. T. Mammalian primordial germ cell specification. Development 148, dev189217 (2021).Article

Hancock,G.V.,Wamaitha,S.E.,Peretz,L。&Clark,A.T。哺乳动物原始生殖细胞规范。发展148,dev189217(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hackett, J. A. & Surani, M. A. DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110328 (2013).Article

Hackett,J.A。&Surani,M.A。哺乳动物生命周期中的DNA甲基化动力学。菲洛斯。事务处理。R、 社会责任。生物科学学士。368201010328(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582.e5 (2019).Article

Chen,D。等人。人类原始生殖细胞是由谱系引发的祖细胞指定的。Cell Rep.294568–4582.e5(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sybirna, A. et al. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat. Commun. 11, 1282 (2020).Article

Sybirna,A。等人。PRDM14在诱导型degrons揭示的人类原始生殖细胞命运中的关键作用。国家公社。11282(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, W. et al. Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. J. Biol. Chem. 294, 8907–8917 (2019).Article

Stella蛋白通过破坏无名指型E3泛素连接酶UHRF1的染色质缔合来促进DNA去甲基化。J、 生物。化学。2948907-8917(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ohno, R. et al. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 140, 2892–2903 (2013).Article

Ohno,R。等人。复制依赖性被动机制调节小鼠原始生殖细胞中的DNA去甲基化。发展1402892-2903(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M. & Saitou, M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340–353 (2013).Article

Kagiwada,S.,Kurimoto,K.,Hirota,T.,Yamaji,M。&Saitou,M。复制偶联的被动DNA去甲基化用于擦除小鼠基因组印记。EMBO J.32340–353(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).Article

Hackett,J.A。等人。种系DNA去甲基化动力学和通过5-羟甲基胞嘧啶的印迹擦除。科学339448-452(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).Article

Seisenberger,S.等人。小鼠原始生殖细胞中全基因组DNA甲基化重编程的动力学。分子细胞48849-862(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eguizabal, C. et al. Characterization of the epigenetic changes during human gonadal primordial germ cells reprogramming. Stem Cell 34, 2418–2428 (2016).Article

Eguizabal,C。等人。人类性腺原始生殖细胞重编程过程中表观遗传变化的表征。干细胞342418-2428(2016)。文章

CAS

中科院

Google Scholar

谷歌学者

Prokopuk, L., Stringer, J. M., Hogg, K., Elgass, K. D. & Western, P. S. PRC2 is required for extensive reorganization of H3K27me3 during epigenetic reprogramming in mouse fetal germ cells. Epigenetics Chromatin 10, 7 (2017).Article

Prokopuk,L.,Stringer,J.M.,Hogg,K.,Elgass,K.D。&Western,P.S。在小鼠胎儿生殖细胞的表观遗传重编程过程中,H3K27me3的广泛重组需要PRC2。表观遗传学染色质10,7(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hill, P. W. S. et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392–396 (2018).Article

表观遗传重编程使原始生殖细胞向生殖细胞的转变成为可能。自然555392-396(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamaguchi, S., Shen, L., Liu, Y., Sendler, D. & Zhang, Y. Role of Tet1 in erasure of genomic imprinting. Nature 504, 460–464 (2013).Article

Yamaguchi,S.,Shen,L.,Liu,Y.,Sendler,D。&Zhang,Y。Tet1在基因组印记擦除中的作用。《自然》504460–464(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

SanMiguel, J. M., Abramowitz, L. K. & Bartolomei, M. S. Imprinted gene dysregulation in a Tet1 null mouse model is stochastic and variable in the germline and offspring. Development 145, dev160622 (2018).Article

SanMiguel,J.M.,Abramowitz,L.K。和Bartolomei,M.S。Tet1空小鼠模型中的印迹基因失调在种系和后代中是随机且可变的。Development 145,dev160622(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prasasya, R. D. et al. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions. Dev. Cell 59, 1010–1027.e8 (2024).Article

Prasasya,R.D。等人。印迹控制区域的重编程和小鼠精子低甲基化区域的模式化需要TET1的迭代氧化。开发单元591010–1027.e8(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hargan-Calvopina, J. et al. Stage-specific demethylation in primordial germ cells safeguards against precocious differentiation. Dev. Cell 39, 75–86 (2016).Article

Hargan-Calvopina,J。等人。原始生殖细胞中的阶段特异性去甲基化可防止早熟分化。Dev.Cell 39,75-86(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lowe, M. G. et al. EED is required for mouse primordial germ cell differentiation in the embryonic gonad. Dev. Cell 57, 1482–1495.e5 (2022).Article

Lowe,M.G。等人,EED是胚胎性腺中小鼠原始生殖细胞分化所必需的。开发单元571482–1495.e5(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, T. C. et al. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 600, 737–742 (2021).Article

Huang,T.C.等人。性别特异性染色质重塑保护生殖细胞的转录。自然600737-742(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guo, F. et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452 (2015).Article

郭,F。等。人类原始生殖细胞的转录组和DNA甲基化组景观。细胞1611437-1452(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shimada, R. & Ishiguro, K. I. Cell cycle regulation for meiosis in mammalian germ cells. J. Reprod. Dev. 69, 139–146 (2023).Article

Shimada,R。&Ishiguro,K.I。哺乳动物生殖细胞减数分裂的细胞周期调控。J、 重新编程。第69139-146页(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).Article

Kobayashi,H。等人。原始生殖细胞的高分辨率DNA甲基化组分析鉴定了小鼠中的性别特异性重编程。Genome Res.23616–627(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, H. et al. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Res. 27, 165–183 (2017).Article

郭,H。等。小鼠和人类胎儿生殖细胞的DNA甲基化和染色质可及性分析。Cell Res.27165–183(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Inoue, K., Ichiyanagi, K., Fukuda, K., Glinka, M. & Sasaki, H. Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genet. 13, e1006926 (2017).Article

Inoue,K.,Ichiyanagi,K.,Fukuda,K.,Glinka,M。&Sasaki,H。在小鼠雄性生殖细胞发育过程中,显性逆转录转座子沉默策略从转录后转换为转录机制。PLoS Genet。13,e1006926(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gahurova, L. et al. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin 10, 25 (2017).Article

Gahurova,L。等人。卵母细胞中从头DNA甲基化时间的转录和染色质决定因素。表观遗传学染色质10,25(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shirane, K., Miura, F., Ito, T. & Lorincz, M. C. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat. Genet. 52, 1088–1098 (2020).Article

Shirane,K.,Miura,F.,Ito,T。&Lorincz,M.C。NSD1沉积的H3K36me2指导小鼠雄性种系中的从头甲基化并抵消Polycomb相关的沉默。纳特·吉内特。521088-1098(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Uehara, R. et al. The DNMT3A ADD domain is required for efficient de novo DNA methylation and maternal imprinting in mouse oocytes. PLoS Genet. 19, e1010855 (2023).Article

DNMT3A ADD结构域是小鼠卵母细胞中有效的从头DNA甲基化和母体印迹所必需的。PLoS Genet。19,e1010855(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, Q. et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51, 844–856 (2019). Together with Shirane et al. (2020), this work conducts detailed investigations of the distinct drivers of H3K36 methylation-based global genome re-methylation in male versus female mouse germ cells; the hypermethylated sperm genome seems to be more dependent on NSD1, whereas oocyte hypermethylation is more restricted to gene bodies as directed by SETD2.Article .

Xu,Q。等人。SETD2调节母体表观基因组,基因组印记和胚胎发育。纳特·吉内特。51844-856(2019)。与Shirane等人(2020)一起,这项工作对雄性和雌性小鼠生殖细胞中基于H3K36甲基化的全球基因组重新甲基化的不同驱动因素进行了详细研究;高甲基化的精子基因组似乎更依赖于NSD1,而卵母细胞高甲基化更局限于SETD2指导的基因体。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).Article

Zhang,B。等人。组蛋白修饰H3K4me3在哺乳动物早期发育中的等位基因重编程。自然537553-557(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).Article

Dahl,J.A。等人。小鼠卵母细胞中广泛的组蛋白H3K4me3结构域调节母体到合子的转变。自然537548-552(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yano, S. et al. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nat. Commun. 13, 4440 (2022).Article

Yano,S。等人,组蛋白H3K36me2和H3K36me3形成了小鼠卵母细胞中DNMT3A依赖性DNA甲基化所必需的染色质平台。国家公社。134440(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brind’Amour, J. et al. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat. Commun. 9, 3331 (2018).Article

Brind'Amour,J。等人。在卵母细胞中转录的LTR逆转录转座子驱动DNA甲基化的物种特异性和遗传性变化。国家公社。93331(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).Article

Smith,Z.D.等人。人类植入前胚胎的DNA甲基化动力学。自然511611-615(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lismer, A. & Kimmins, S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat. Commun. 14, 2142 (2023).Article

Lismer,A。&Kimmins,S。新兴证据表明哺乳动物精子表观基因组可作为胚胎发育的模板。国家公社。142142(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).Article

Heard,E。&Martienssen,R.A。跨代表观遗传:神话和机制。细胞157,95-109(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peat, J. R. et al. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep. 9, 1990–2000 (2014).Article

Peat,J.R。等人。受精卵中的全基因组亚硫酸氢盐测序确定了去甲基化靶标并绘制了TET3氧化的贡献。Cell Rep.91990–2000(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, F. et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15, 447–459 (2014).Article

Guo,F。等人。哺乳动物受精卵中雄性和雌性原核DNA的主动和被动去甲基化。细胞干细胞15447-459(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shen, L. et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459–471 (2014).Article

Shen,L。等人。Tet3和DNA复制介导小鼠受精卵中母本和父本基因组的去甲基化。细胞干细胞15459-471(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Inoue, A. & Zhang, Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194 (2011).Article

Inoue,A。&Zhang,Y。小鼠植入前胚胎中5-羟甲基胞嘧啶的复制依赖性丢失。科学334194(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martire, S. & Banaszynski, L. A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522–541 (2020).Article

Martire,S。&Banaszynski,L.A。组蛋白变体在微调染色质组织和功能中的作用。Nat。Rev。Mol。Cell Biol。21522-541(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136–140 (2018).Article

Li,Y.等人Stella通过阻止DNMT1介导的从头甲基化来保护卵母细胞甲基化组。自然564136-140(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mulholland, C. B. et al. Author correction: recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat. Commun. 11, 6443 (2020).Article

Mulholland,C.B.等人。作者更正:哺乳动物中TET控制和DPPA3/STELLA驱动的被动DNA去甲基化途径的最新进展。国家公社。116443(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tardat, M. et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell 58, 157–171 (2015).Article

Tardat,M。等人,Cbx2以依赖亲本的方式将PRC1靶向小鼠受精卵中的组成型异染色质。分子细胞58157-171(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420 (2008).Article

Puschendorf,M。等人PRC1和Suv39h指定了早期小鼠胚胎中组成型异染色质的亲本不对称性。纳特·吉内特。40411-420(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pailles, M. et al. H3K27me3 at pericentromeric heterochromatin is a defining feature of the early mouse blastocyst. Sci. Rep. 12, 13908 (2022).Article

Pailles,M。等人。着丝粒异染色质处的H3K27me3是早期小鼠胚泡的决定性特征。科学。代表1213908(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Richard Albert, J. et al. Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nat. Commun. 11, 5417 (2020).Article

Richard Albert,J。等人。父本基因组的母体DNMT3A依赖性从头甲基化抑制早期胚胎中的基因表达。国家公社。115417(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Amouroux, R. et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18, 225–233 (2016).Article

Amouroux,R。等人。从头DNA甲基化驱动小鼠受精卵中5hmC的积累。自然细胞生物学。18225-233(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, Y., Li, T. D., Modzelewski, A. J. & Siomi, H. Retrotransposon renaissance in early embryos. Trends Genet. 40, 39–51 (2024).Article

Guo,Y.,Li,T.D.,Modzelewski,A.J。&Siomi,H。早期胚胎中的逆转录转座子复兴。趋势Genet。40,39-51(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Courtois, A., Schuh, M., Ellenberg, J. & Hiiragi, T. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198, 357–370 (2012).Article

Courtois,A.,Schuh,M.,Ellenberg,J。&Hiiragi,T。在哺乳动物早期发育过程中,从减数分裂到有丝分裂纺锤体组装的过渡是逐渐的。J、 细胞生物学。198357-370(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).Article

Wang,L.等人。哺乳动物亲本DNA甲基化组的编程和遗传。细胞157979-991(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shahbazi, M. N. & Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20, 878–887 (2018).Article

Shahbazi,M.N。和Zernicka-Goetz,M。解构和重建小鼠和人类早期胚胎。自然细胞生物学。20878-887(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schlesinger, S. & Meshorer, E. Open chromatin, epigenetic plasticity, and nuclear organization in pluripotency. Dev. Cell 48, 135–150 (2019).Article

Schlesinger,S。&Meshorer,E。开放染色质,表观遗传可塑性和多能性中的核组织。Dev.Cell 48135-150(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).Article

Smith,Z.D.等人。早期哺乳动物胚胎中DNA甲基化的独特调控阶段。《自然》484339–344(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Andrews, S. et al. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat. Commun. 14, 371 (2023).Article

Andrews,S。等人。从头DNA甲基化在胎盘发育中的机制和功能揭示了DNMT3B的重要作用。国家公社。14371(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dahlet, T. et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153 (2020).Article

Dahlet,T。等人。小鼠胚胎的全基因组分析揭示了DNA甲基化对转录完整性的重要性。国家公社。113153(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, Z. D. et al. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549, 543–547 (2017).Article

Smith,Z.D.等人。胚外谱系的表观遗传限制反映了体细胞向癌症的转变。自然549543-547(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Joshi, O. et al. Dynamic reorganization of extremely long-range promoter–promoter interactions between two states of pluripotency. Cell Stem Cell 17, 748–757 (2015).Article

Joshi,O.等人。两种多能性状态之间极远距离启动子-启动子相互作用的动态重组。细胞干细胞17748-757(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiang, Y. et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat. Genet. 52, 95–105 (2020).Article

Xiang,Y。等人。原肠胚形成的表观基因组分析确定了引发多能性的独特染色质状态。纳特·吉内特。52,95-105(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLaughlin, K. et al. DNA methylation directs polycomb-dependent 3D genome re-organization in naive pluripotency. Cell Rep. 29, 1974–1985 e1976 (2019).Article

McLaughlin,K。等人。DNA甲基化指导多梳依赖性3D基因组在幼稚多能性中的重组。Cell Rep.291974–1985 e1976(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walter, M., Teissandier, A., Perez-Palacios, R. & Bourc’his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5, e11418 (2016). This paper reports the global dynamics between DNA and H3K27 methylated chromatin in mouse ESCs as they affect retrotransposon expression; it demonstrates the ability of pluripotent cells to switch between these two alternatively modified chromatin states for global genome suppression.Article .

Walter,M.,Teissandier,A.,Perez-Palacios,R。&Bourc'his,D。表观遗传开关确保了转座子在胚胎干细胞中DNA甲基化动态丧失时的抑制。eLife 5,e11418(2016)。本文报道了小鼠胚胎干细胞中DNA和H3K27甲基化染色质之间的全球动态,因为它们影响逆转录转座子的表达;它证明了多能细胞在这两种交替修饰的染色质状态之间切换以抑制全球基因组的能力。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).Article

Loda,A.,Collombet,S。&Heard,E。X染色体失活期间时间和空间的基因调控。Nat。Rev。Mol。Cell Biol。23231-249(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).Article

Theunissen,T.W。等人。定义幼稚人类多能状态的分子标准。细胞干细胞19502-515(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).Article

Guo,G.等人,《直接从人类内部细胞团的分离细胞中获得的幼稚多能干细胞》,《干细胞代表》6437-446(2016)。文章

CAS

中科院

Google Scholar

谷歌学者

van Mierlo, G. et al. Integrative proteomic profiling reveals PRC2-dependent epigenetic crosstalk maintains ground-state pluripotency. Cell Stem Cell 24, 123–137.e8 (2019).Article

van Mierlo,G。等人。综合蛋白质组学分析揭示了依赖PRC2的表观遗传串扰维持基态多能性。细胞干细胞24123-137.e8(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).Article

Marks,H.等人。基态多能性的转录和表观基因组基础。细胞149590-604(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, P. & Wu, J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 31, 312–333 (2024).Article

Du,P。&Wu,J。全能和多能干细胞状态的标志。细胞干细胞31312-333(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Arez, M. et al. Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation. Nat. Commun. 13, 5432 (2022).Article

Arez,M.等人。小鼠iPSC中的印迹保真度取决于供体细胞的性别和培养基配方。国家公社。135432(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).Article

Pastor,W.A。等人。幼稚的人类多能细胞具有甲基化景观,没有胚泡或种系记忆。细胞干细胞18323-329(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schulz, M. et al. DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation. Nat. Struct. Mol. Biol. 31, 102–114 (2024).Article

Schulz,M。等人。DNA甲基化限制了胚胎干细胞分化中协调的种系和神经命运。自然结构。分子生物学。31102-114(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).Article

Dai,H。Q。等人。TET介导的DNA去甲基化通过调节Lefty-Nodal信号传导来控制原肠胚形成。自然538528-532(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cheng, S. et al. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 185, 3169–3185.e20 (2022).Article

Cheng,S.等人。原肠胚形成过程中TET蛋白的内在和外在作用。细胞1853169-3185.e20(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mukamel, Z. et al. DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation. Nat. Struct. Mol. Biol. 29, 1252–1265 (2022).Article

Mukamel,Z。等人。DNA甲基转移酶3A和3B在小鼠原肠胚形成过程中靶向特定序列。自然结构。分子生物学。291252-1265(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lauria, A. et al. DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells. Nat. Commun. 14, 367 (2023).Article

Lauria,A。等人,DNMT3B支持小鼠胚胎干细胞的中胚层分化。国家公社。14367(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Q. et al. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat. Commun. 14, 2922 (2023).Article

Li,Q。等人。碱基编辑介导的Dnmt基因家族的一步失活揭示了DNA甲基化在小鼠原肠胚形成过程中的关键作用。国家公社。142922(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grosswendt, S. et al. Epigenetic regulator function through mouse gastrulation. Nature 584, 102–108 (2020).Article

Grosswendt,S。等人。通过小鼠原肠胚形成的表观遗传调节功能。自然584102-108(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, M. & Zernicka-Goetz, M. Principles of self-organization of the mammalian embryo. Cell 183, 1467–1478 (2020).Article

Zhu,M。&Zernicka-Goetz,M。哺乳动物胚胎自组织原理。细胞1831467-1478(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schroeder, D. I. et al. The human placenta methylome. Proc. Natl Acad. Sci. USA 110, 6037–6042 (2013).Article

Schroeder,D.I.等人,人类胎盘甲基化组。程序。国家科学院。科学。美国1106037–6042(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50, 96–105 (2018).Article

Zhang,Y。等人。小鼠胚胎早期谱系规范期间的动态表观基因组景观。纳特·吉内特。50,96-105(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Andergassen, D., Smith, Z. D., Kretzmer, H., Rinn, J. L. & Meissner, A. Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Dev. Cell 56, 2995–3005 e2994 (2021).Article

Andergassen,D.,Smith,Z.D.,Kretzmer,H.,Rinn,J.L。&Meissner,A。多种表观遗传机制在胚胎和胚外谱系中维持亲本印记。Dev.Cell 562995–3005 e2994(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Z., Yin, Q., Inoue, A., Zhang, C. & Zhang, Y. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. Adv. 5, eaay7246 (2019).Article

Chen,Z.,Yin,Q.,Inoue,A.,Zhang,C。&Zhang,Y。等位基因H3K27me3到等位基因DNA甲基化开关在胚外细胞中维持非典型印迹。科学。Adv.5,eaay7246(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanna, C. W. et al. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol. 20, 225 (2019). This paper thoroughly examines alternative non-canonical imprinting mechanisms within the mouse placental lineage and identifies a major role for LTR-derived transcription to bookmark these sequences for tissue and parent of origin-specific de novo methylation after pre-implantation development.Article .

Hanna,C.W。等人。内源性逆转录病毒插入驱动胚胎外组织中的非典型印记。基因组生物学。20225(2019)。本文彻底研究了小鼠胎盘谱系内的替代非经典印迹机制,并确定了LTR衍生转录在植入前发育后将这些序列标记为组织和亲本特异性从头甲基化的主要作用。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017).Article

Inoue,A.,Jiang,L.,Lu,F.,Suzuki,T。&Zhang,Y。母体H3K27me3控制DNA甲基化非依赖性印迹。自然547419-424(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hemberger, M., Hanna, C. W. & Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21, 27–43 (2020).Article

Hemberger,M.,Hanna,C.W。和Dean,W。小鼠和人类早期胎盘发育的机制。Genet自然Rev。21,27-43(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).Article

Swift,J。等人。核纤层蛋白A具有组织硬度并增强基质定向分化。科学3411240104(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Skory, R. M. et al. The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization. Nat. Commun. 14, 3101 (2023).Article

核层通过肌动蛋白组织将机械力耦合到植入前胚胎中的细胞命运。国家公社。143101(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wagner, G. P., Kshitiz, Dighe, A. & Levchenko, A. The coevolution of placentation and cancer. Annu. Rev. Anim. Biosci. 10, 259–279 (2022).Article

Wagner,G.P.,Kshitiz,Dighe,A。和Levchenko,A。胎盘和癌症的共同进化。年。阿尼姆牧师。生物科学。10259-279(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sakaue, M. et al. DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr. Biol. 20, 1452–1457 (2010).Article

Sakaue,M。等人。DNA甲基化对于胚外谱系的生长和存活是必不可少的。货币。生物学201452-1457(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oakes, C. C. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48, 253–264 (2016). This paper investigates the underlying epigenetic heterogeneity of human B cell maturation, including the presence of a latent fraction of memory B cells that exhibit low genomic methylation levels and resemble patterns found within chronic lymphocytic leukaemia.Article .

Oakes,C.C.等人。B细胞成熟过程中的DNA甲基化动力学是慢性淋巴细胞白血病疾病表型的连续性基础。纳特·吉内特。48253-264(2016)。本文研究了人类B细胞成熟的潜在表观遗传异质性,包括记忆B细胞的潜在部分的存在,其表现出低基因组甲基化水平并且类似于慢性淋巴细胞白血病中发现的模式。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kulis, M. et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 47, 746–756 (2015).Article

Kulis,M。等人。人类B细胞分化过程中DNA甲基化组的全基因组指纹。纳特·吉内特。47746-756(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl Acad. Sci. USA 109, 10522–10527 (2012).Article

Heyn,H.等人。新生儿和百岁老人的不同DNA甲基化组。程序。国家科学院。科学。美国10910522-10527(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Posfai, E., Lanner, F., Mulas, C. & Leitch, H. G. All models are wrong, but some are useful: establishing standards for stem cell-based embryo models. Stem Cell Rep. 16, 1117–1141 (2021).Article

Posfai,E.,Lanner,F.,Mulas,C。&Leitch,H.G。所有模型都是错误的,但有些是有用的:建立基于干细胞的胚胎模型的标准。干细胞代表161117-1141(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).Article

Di Micco,R.,Krizhanovsky,V.,Baker,D。&D'Adda Di Fagagna,F。衰老中的细胞衰老:从机制到治疗机会。Nat。Rev。Mol。Cell Biol。22,75-95(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, a019505 (2016).Article

Baylin,S.B。&Jones,P.A。癌症的表观遗传决定因素。冷泉兔。透视图。生物学杂志8,a019505(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).Article

Campisi,J。衰老,细胞衰老和癌症。年。生理学评论。75685-705(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).Article

Heitzer,E.,Haque,I.S.,Roberts,C.E.S。&Speicher,M.R。基因组学驱动的肿瘤学中液体活检的当前和未来前景。Genet自然Rev。20,71-88(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).Article

Zhang,W。等人。衰老干细胞。Werner综合征干细胞模型揭示了异染色质改变是人类衰老的驱动因素。科学3481160-1163(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).Article

De Cecco,M。等人。复制衰老细胞的基因组经历全局表观遗传变化,导致基因沉默和转座因子激活。衰老细胞12247-256(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).Article

Cruickshanks,H.A。等人。衰老细胞具有癌症表观基因组的特征。自然细胞生物学。151495-1506(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, W. et al. DNA methylation patterns separate senescence from transformation potential and indicate cancer risk. Cancer Cell 33, 309–321.e5 (2018).Article

Xie,W。等人。DNA甲基化模式将衰老与转化潜能分开,并指示癌症风险。癌细胞33309-321.e5(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).Article

Lopez-Otin,C.,Blasco,M.A.,Partridge,L.,Serrano,M。&Kroemer,G。衰老的标志:膨胀的宇宙。细胞186243-278(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). This paper presents an entrained model to identify age-associated CpG methylation signatures, which could be applied to human tissues and show substantial acceleration in primary human tumour samples.Article .

Horvath,S。人体组织和细胞类型的DNA甲基化年龄。基因组生物学。14,R115(2013)。本文提出了一种夹带模型来识别与年龄相关的CpG甲基化特征,该特征可应用于人体组织,并在原发性人类肿瘤样本中显示出显着的加速。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).Article

与衰老相关的DNA甲基化动力学是哺乳动物物种寿命变化的分子读数。基因组生物学。19,22(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).Article

Lu,A.T.等人。哺乳动物组织中的普遍DNA甲基化年龄。《自然衰老》31144-1166(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meer, M. V., Podolskiy, D. I., Tyshkovskiy, A. & Gladyshev, V. N. A whole lifespan mouse multi-tissue DNA methylation clock. eLife 7, e40675 (2018).Article

Meer,M.V.,Podolskiy,D.I.,Tyshkovskiy,A。&Gladyshev,V.N。全寿命小鼠多组织DNA甲基化时钟。eLife 7,e40675(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).Article

Stubbs,T.M。等。小鼠多组织DNA甲基化年龄预测因子。基因组生物学。18,68(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).Article

Bell,C.G.等人,《DNA甲基化衰老时钟:挑战与建议》。基因组生物学。20249(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Acosta-Rodriguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).Article

Acosta-Rodriguez,V。等人。早发热量限制的昼夜节律排列促进雄性C57BL/6J小鼠的寿命。科学3761192-1202(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).Article

Wang,T。等人。侏儒症,卡路里限制和雷帕霉素治疗减缓了小鼠肝脏的表观遗传衰老特征。基因组生物学。18,57(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cole, J. J. et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 18, 58 (2017).Article

Cole,J.J.等人。延长小鼠寿命的多种干预措施抑制了关键基因调控区域与年龄相关的表观遗传变化。基因组生物学。18,58(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).Article

Ocampo,A。等人。通过部分重编程在体内改善与年龄相关的标志。细胞1671719-1733.e12(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kurita, M. et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature 561, 243–247 (2018).Article

Kurita,M。等人。伤口驻留细胞的体内重编程产生皮肤上皮组织。自然561243-247(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).Article

Browder,K.C.等人。体内部分重编程改变了小鼠生理衰老过程中与年龄相关的分子变化。自然衰老2243-253(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).Article

Yang,J.H.等人。表观遗传信息的丧失是哺乳动物衰老的原因。细胞186305-326.e27(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).Article

Lu,Y.等人。重新编程以恢复年轻的表观遗传信息并恢复视力。自然588124-129(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Olova, N., Simpson, D. J., Marioni, R. E. & Chandra, T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell 18, e12877 (2019).Article

Olova,N.,Simpson,D.J.,Marioni,R.E。&Chandra,T。部分重编程在丧失体细胞身份之前诱导表观遗传年龄的稳定下降。衰老细胞18,e12877(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wagner, W. Epigenetic aging clocks in mice and men. Genome Biol. 18, 107 (2017).Article

Wagner,W。小鼠和男性的表观遗传衰老时钟。基因组生物学。18107(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trapp, A., Kerepesi, C. & Gladyshev, V. N. Profiling epigenetic age in single cells. Nat. Aging 1, 1189–1201 (2021).Article

Trapp,A.,Kerepesi,C。&Gladyshev,V.N。分析单细胞中的表观遗传年龄。自然衰老11189-1201(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kabacik, S. et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat. Aging 2, 484–493 (2022).Article

Kabacik,S.等人。表观遗传年龄与人类细胞衰老标志之间的关系。《自然衰老》2484-493(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horvath, S., Lu, A. T., Cohen, H. & Raj, K. Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation. Aging 11, 3238–3249 (2019).Article

Horvath,S.,Lu,A.T.,Cohen,H。&Raj,K。雷帕霉素延缓角质形成细胞的表观遗传衰老,与其对复制衰老,增殖和分化的影响无关。年龄113238-3249(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Minteer, C. J. et al. More than bad luck: cancer and aging are linked to replication-driven changes to the epigenome. Sci. Adv. 9, eadf4163 (2023).Article

Minteer,C.J。等人不仅运气不好:癌症和衰老与复制驱动的表观基因组变化有关。科学。Adv.9,eadf4163(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rakyan, V. K. et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20, 434–439 (2010).Article

Rakyan,V.K。等人。人类衰老相关的DNA超甲基化优先发生在二价染色质结构域。Genome Res.20434–439(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010). Together with Rakyan et al. (2010), this work reports computational investigations of the genomic distribution and putative regulatory function of age-dependent DNA methylation changes, and notes an enrichment for bivalent domain-regulated developmental gene promoters as also found in patient tumours.Article .

在干细胞中被抑制的基因的年龄依赖性DNA甲基化是癌症的标志。Genome Res.20440–446(2010)。与Rakyan等人(2010)一起,这项工作报告了对年龄依赖性DNA甲基化变化的基因组分布和推定调控功能的计算研究,并注意到在患者肿瘤中也发现了二价结构域调控的发育基因启动子的富集。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, N. et al. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol. Cell 83, 1659–1676.e11 (2023).Article

Yang,N。等人。衰老过程中形成的超静止染色质状态被再生逆转。分子细胞831659–1676.e11(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ito, T., Teo, Y. V., Evans, S. A., Neretti, N. & Sedivy, J. M. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22, 3480–3492 (2018).Article

Ito,T.,Teo,Y.V.,Evans,S.A.,Neretti,N。&Sedivy,J.M。polycomb染色质修饰剂通过不同的DNA损伤和组蛋白甲基化依赖性途径调节细胞衰老。Cell Rep.223480–3492(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gaiti, F. et al. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 569, 576–580 (2019).Article

Gaiti,F。等人。慢性淋巴细胞白血病的表观遗传进化和谱系史。自然569576-580(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, K. C. et al. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nat. Genet. 53, 1456–1468 (2021).Article

Johnson,K.C.等人。单细胞多模式胶质瘤分析确定了细胞可塑性和环境应激反应的表观遗传调节因子。纳特·吉内特。531456-1468(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bian, S. et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science 362, 1060–1063 (2018). This paper generates high-coverage base pair-resolution maps from single cells taken from multiple colorectal tumours and demonstrates that global hypomethylation and CGI hypermethylation patterns are largely shared across cells from the same tumour, including within their derived metastases.Article .

Bian,S.等人。人类结直肠癌的单细胞多组学测序和分析。科学3621060-1063(2018)。本文从多个结直肠肿瘤的单个细胞中生成高覆盖率碱基对分辨率图,并证明全球低甲基化和CGI高甲基化模式在同一肿瘤的细胞中(包括在其衍生的转移瘤中)大部分共享。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vidal, E. et al. A DNA methylation map of human cancer at single base-pair resolution. Oncogene 36, 5648–5657 (2017).Article

Vidal,E。等人。单碱基对分辨率的人类癌症DNA甲基化图谱。癌基因365648-5657(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hutter, C. & Zenklusen, J. C. The cancer genome atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).Article

Hutter,C.&Zenklusen,J.C.《癌症基因组图谱:创造超越其数据的持久价值》。细胞173283-285(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Diede, S. J. et al. Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer. Epigenetics 8, 1254–1260 (2013).Article

Diede,S.J.等人。人类癌症和基因工程小鼠癌症模型之间启动子CpG岛DNA超甲基化的根本差异。表观遗传学81254-1260(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paz, M. F. et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 63, 1114–1121 (2003).CAS

Paz,M.F.等人。人类癌细胞系中DNA甲基化的系统概况。癌症研究631114-1121(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).Article

Schlesinger,Y.等人。Polycomb介导的组蛋白H3 Lys27甲基化预标记了癌症中从头甲基化的基因。纳特·吉内特。39232-236(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).Article

Ohm,J.E。等人。干细胞样染色质模式可能使肿瘤抑制基因易于DNA高甲基化和遗传沉默。纳特·吉内特。39237-242(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).Article

Widschwendter,M。等人。癌症中的表观遗传干细胞特征。纳特·吉内特。39157-158(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).Article

Liao,H.K.等人。通过CRISPR/Cas9介导的反式表观遗传调控进行体内靶基因激活。细胞1711495-1507.e15(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).Article

Amabile,A。等人。通过命中和运行靶向表观遗传编辑对内源基因进行遗传沉默。细胞167219-232.e14(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).Article

Capper,D。等人。基于DNA甲基化的中枢神经系统肿瘤分类。自然555469-474(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).Article

Hoadley,K.A。等人。起源细胞模式主导了来自33种癌症的10000种肿瘤的分子分类。细胞173291-304.e6(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abu-Remaileh, M. et al. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res. 75, 2120–2130 (2015).Article

Abu Remaileh,M。等人。慢性炎症诱导了一种新的表观遗传程序,该程序在肠腺瘤和结直肠癌中是保守的。癌症研究752120-2130(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, E. et al. Genome-wide methylation analysis shows similar patterns in Barrett’s esophagus and esophageal adenocarcinoma. Carcinogenesis 34, 2750–2756 (2013).Article

全基因组甲基化分析显示Barrett食管和食管腺癌的模式相似。致癌作用342750-2756(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lo, E. K. W. et al. Comprehensive DNA methylation analysis indicates that pancreatic intraepithelial neoplasia lesions are acinar-derived and epigenetically primed for carcinogenesis. Cancer Res. 83, 1905–1916 (2023).Article

Lo,E.K.W.等人的综合DNA甲基化分析表明,胰腺上皮内瘤变病变是腺泡衍生的,并且在表观遗传学上引发了癌变。癌症研究831905-1916(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020).Article

Bick,A.G.等人在97691个全基因组中遗传了克隆造血的原因。《自然》586763-768(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).Article

Kar,S.P.等人对200453个个体的全基因组分析为克隆造血的原因和后果提供了新的见解。纳特·吉内特。541155-1166(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).Article

Jaiswal,S。等人。与不良结局相关的年龄相关克隆性造血。N、 英语。J、 医学杂志3712488-2498(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).Article

Xie,M.等人。与克隆造血扩增和恶性肿瘤相关的年龄相关突变。《自然医学》201472-1478(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, Y. et al. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Nat. Cancer 3, 188–202 (2022).Article

Xie,Y。等人。SETD2缺失扰乱了肾癌表观遗传景观,促进了转移,并对组蛋白伴侣复合物产生了可行的依赖性。《自然癌症》3188-202(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).Article

癌症基因组图谱研究网络等。乳头状肾细胞癌的综合分子表征。N、 英语。J、 医学杂志374135-145(2016)。文章

Google Scholar

谷歌学者

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).Article

癌症基因组图谱研究网络。透明细胞肾细胞癌的综合分子表征。《自然》499,43-49(2013)。文章

Google Scholar

谷歌学者

Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).Article

Pirozzi,C.J。&Yan,H。IDH突变对癌症发展和治疗的影响。国家修订临床。Oncol公司。18645-661(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10, 1262 (2019).Article

Harutyunyan,A.S。等人,H3K27M诱导PRC2介导的抑制性H3K27me2/me3的染色质扩散缺陷,对胶质瘤肿瘤发生至关重要。国家公社。101262(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes. Dev. 27, 985–990 (2013).Article

Chan,K.M.等人。小儿神经胶质瘤中的组蛋白H3.3K27M突变可重编程H3K27甲基化和基因表达。基因。Dev.27985–990(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).Article

Noushmehr,H。等人。鉴定定义神经胶质瘤不同亚组的CpG岛甲基化表型。癌细胞17510-522(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hetzel, S. et al. Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nat. Cancer 3, 768–782 (2022).Article

Hetzel,S。等人。急性淋巴细胞白血病显示出独特的高度甲基化基因组。《自然癌症》3768-782(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pawel, K. & Maria Malgorzata, S. CpG island methylator phenotype — a hope for the future or a road to nowhere? Int. J. Mol. Sci. 23, 830 (2022).Article

Pawel,K。&Maria Malgorzata,S。CpG岛甲基化表型-未来的希望还是无路可走?Int.J.Mol.Sci。23830(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feinberg, A. P., Koldobskiy, M. A. & Gondor, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).Article

Feinberg,A.P.,Koldobskiy,M.A。和Gondor,A。癌症病因和进展中的表观遗传调节剂,修饰剂和介质。Genet自然Rev。17284-299(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heyn, H. et al. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol. 17, 11 (2016).Article

Heyn,H。等人。表观基因组分析检测人类癌症中异常的超增强子DNA甲基化。基因组生物学。17,11(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).Article

Flavahan,W.A.,Gaskell,E。和Bernstein,B.E。表观遗传可塑性和癌症的标志。科学357,eaal2380(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).Article

Landau,D.A。等人。局部无序甲基化形成了慢性淋巴细胞白血病肿瘤内甲基化组变异的基础。癌细胞26813-825(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pastore, A. et al. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat. Commun. 10, 1874 (2019).Article

Pastore,A。等人。表观遗传修饰的协调破坏导致CLL中染色质状态和转录异质性的差异。国家公社。101874(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chaligne, R. et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat. Genet. 53, 1469–1479 (2021).Article

Chaligne,R。等人。胶质瘤转录细胞状态的表观遗传编码,遗传性和可塑性。纳特·吉内特。531469-1479(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44, 1207–1214 (2012).Article

Landan,G。等人。表观遗传多态性与正常和癌组织中差异甲基化区域的随机形成。纳特·吉内特。441207-1214(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jenkinson, G., Pujadas, E., Goutsias, J. & Feinberg, A. P. Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat. Genet. 49, 719–729 (2017).Article

Jenkinson,G.,Pujadas,E.,Goutsias,J.&Feinberg,A.P。势能景观确定了表观基因组的信息论性质。纳特·吉内特。49719-729(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, H. et al. Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res. 39, 4099–4108 (2011).Article

Xie,H.等人。DNA甲基化模式变异的全基因组定量评估。核酸研究394099-4108(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).Article

Hansen,K.D.等人增加了癌症类型表观遗传结构域的甲基化变异。纳特·吉内特。43768-775(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ortiz-Barahona, V. et al. Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer. Mol. Cancer 22, 83 (2023).Article

Ortiz-Barahona,V。等人。5-甲基胞嘧啶RNA甲基转移酶NSUN7的表观遗传失活与肝癌的临床结果和治疗脆弱性有关。分子癌症22,83(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Janin, M. et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 138, 1053–1074 (2019).Article

胶质瘤中RNA甲基转移酶NSUN5的表观遗传损失靶向核糖体以驱动应激适应性翻译程序。神经病学报。1381053-1074(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stresemann, C. & Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8–13 (2008).Article

Stresemann,C。&Lyko,F。DNA甲基转移酶抑制剂氮杂胞苷和地西他滨的作用模式。Int.J.Cancer 123,8-13(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bates, S. E. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650–663 (2020).Article

Bates,S.E。癌症的表观遗传疗法。N、 英语。J、 医学383650-663(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cowan, L. A., Talwar, S. & Yang, A. S. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics 2, 71–86 (2010).Article

Cowan,L.A.,Talwar,S。和Yang,A.S。DNA甲基化抑制剂会在实体瘤中起作用吗?阿扎胞苷和地西他滨治疗实体瘤的临床经验回顾。表观基因组学2,71-86(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).Article

Esteller,M。CpG岛高甲基化和肿瘤抑制基因:蓬勃发展的现在,更光明的未来。癌基因215427-5440(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).Article

Brocks,D。等人。DNMT和HDAC抑制剂诱导长末端重复序列中编码的隐蔽转录起始位点。纳特·吉内特。491052-1060(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).Article

Roulois,D。等人。DNA去甲基化剂通过内源性转录物诱导病毒模拟来靶向结直肠癌细胞。细胞162961-973(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020).Article

Mehdipour,P。等人。表观遗传疗法诱导倒置SINE的转录和ADAR1依赖性。《自然》588169-173(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015). Together with Roulois et al. (2015), this work experimentally investigates the transcriptional and cellular effects of global de-methylating agents in cancer cell lines, which trigger transcription of ERV-derived double-stranded RNAs and downstream activation of the interferon response pathway.Article .

Chiappinelli,K.B。等人抑制DNA甲基化通过包括内源性逆转录病毒在内的dsRNA在癌症中引起干扰素反应。细胞162974-986(2015)。与Roulois等人(2015)一起,这项工作通过实验研究了全球去甲基化剂在癌细胞系中的转录和细胞效应,这些细胞系触发ERV衍生的双链RNA的转录和干扰素反应途径的下游激活。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).Article

Nam,A.S.,Chaligne,R。&Landau,D.A。通过单细胞多组学整合癌症进化的遗传和非遗传决定因素。Genet自然Rev。22,3-18(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Campillo-Marcos, I. et al. Single-cell multiomics analysis of myelodysplastic syndromes and clinical response to hypomethylating therapy. Cancer Res. Commun. 4, 365–377 (2024).Article

Campillo-Marcos,I。等。骨髓增生异常综合征的单细胞多组学分析和对低甲基化治疗的临床反应。Cancer Res.Commun公司。4365-377(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schnegg-Kaufmann, A. S. et al. Contribution of mutant HSC clones to immature and mature cells in MDS and CMML, and variations with AZA therapy. Blood 141, 1316–1321 (2023).Article

Schnegg-Kaufmann,A.S.等人。突变HSC克隆对MDS和CMML中未成熟和成熟细胞的贡献,以及AZA疗法的变异。血液1411316-1321(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Galardi, F. et al. Cell-free DNA-methylation-based methods and applications in oncology. Biomolecules 10, 1677 (2020).Article

Galardi,F。等人。基于无细胞DNA甲基化的方法及其在肿瘤学中的应用。生物分子101677(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Locke, W. J. et al. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet. 10, 1150 (2019).Article

Locke,W.J.等人,《DNA甲基化癌症生物标志物:临床翻译》。正面。基因。101150(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018). This landmark study showcases the potential for targeted enrichment of cell-free DNA by methylation status to serve as a non-invasive diagnostic that both detects and classifies circulating tumour DNA by origin, even at very low inputs and fractions of tumour DNA.Article .

Shen,S.Y.等人。使用无浆细胞DNA甲基化组进行敏感的肿瘤检测和分类。自然563579-583(2018)。这项具有里程碑意义的研究表明,通过甲基化状态靶向富集无细胞DNA的潜力,可以作为一种非侵入性诊断,即使在非常低的输入和肿瘤DNA分数下,也可以通过起源检测和分类循环肿瘤DNA。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, M. C. et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31, 745–759 (2020).Article

Liu,M.C.等人。使用无细胞DNA中的甲基化特征进行敏感和特异的多癌检测和定位。安科。31745-759(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).Article

Bettegowda,C。等人。早期和晚期人类恶性肿瘤中循环肿瘤DNA的检测。科学。翻译。医学杂志6224RA224(2014)。文章

Google Scholar

谷歌学者

Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).Article

Diehl,F。等人。循环突变DNA以评估肿瘤动力学。《自然医学》14985-990(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kustanovich, A., Schwartz, R., Peretz, T. & Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 20, 1057–1067 (2019).Article

Kustanovich,A.,Schwartz,R.,Peretz,T。&Grinspun,A。循环无细胞DNA的生死。癌症生物学。他们。201057-1067(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Avni, B. et al. Chronic graft versus host disease detected by tissue-specific cell-free DNA methylation biomarkers. J. Clin. Invest. 134, e163541 (2023).Article

Avni,B。等人。通过组织特异性无细胞DNA甲基化生物标志物检测的慢性移植物抗宿主病。J、 临床。投资。134,e163541(2023)。文章

Google Scholar

谷歌学者

Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).Article

Moss,J.等人,《全面的人类细胞类型甲基化图谱》揭示了健康和疾病中循环无细胞DNA的起源。国家公社。95068(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023). This study describes the use of DNA methylation signatures detected by direct long-read sequencing to subtype central nervous system tumours in real time, showcasing the potential of these technologies to accelerate diagnosis and inform treatment within hours.Article .

Vermeulen,C。等人。手术期间超快速深度学习中枢神经系统肿瘤分类。自然622842-849(2023)。这项研究描述了通过直接长读测序检测到的DNA甲基化特征实时用于亚型中枢神经系统肿瘤,展示了这些技术在数小时内加速诊断和告知治疗的潜力。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Laugesen, A., Hojfeldt, J. W. & Helin, K. Role of the Polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 6, a026575 (2016).Article

Laugesen,A.,Hojfeldt,J。W。和Helin,K。Polycomb抑制复合物2(PRC2)在转录调控和癌症中的作用。冷泉兔。透视图。医学杂志6,a026575(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, J., Yang, C., Wu, C., Cui, W. & Wang, L. DNA methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy. Cancers 12, 2123 (2020).Article

Zhang,J.,Yang,C.,Wu,C.,Cui,W。&Wang,L。癌症中的DNA甲基转移酶:生物学,悖论,畸变和靶向治疗。癌症122123(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fahey, C. C. & Davis, I. J. SETting the stage for cancer development: SETD2 and the consequences of lost methylation. Cold Spring Harb. Perspect. Med. 7, a026468 (2017).Article

Fahey,C.C.&Davis,I.J.为癌症发展奠定了基础:SETD2和甲基化丧失的后果。冷泉兔。透视图。医学杂志7,a026468(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lio, C. J., Yuita, H. & Rao, A. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood 134, 1487–1497 (2019).Article

Lio,C.J.,Yuita,H。&Rao,A。淋巴和骨髓恶性肿瘤中表观遗传调节因子TET家族的失调。血液1341487-1497(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dukatz, M. et al. DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation. J. Biol. Chem. 298, 102462 (2022).Article

DNA甲基转移酶DNMT3A与CpG位点和侧翼序列元件形成相互作用网络,以实现有效的甲基化。J、 生物。化学。298102462(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Linhart, H. G. et al. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes. Dev. 21, 3110–3122 (2007).Article

Dnmt3b通过基因特异性从头甲基化和转录沉默促进体内肿瘤发生。基因。Dev.213110–3122(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Targets and genomic constraints of ectopic Dnmt3b expression. eLife 7, e40757 (2018).Article

Zhang,Y.等人。异位Dnmt3b表达的靶标和基因组限制。eLife 7,e40757(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Azevedo Portilho, N. et al. The DNMT1 inhibitor GSK-3484862 mediates global demethylation in murine embryonic stem cells. Epigenetics Chromatin 14, 56 (2021).Article

Azevedo Portilho,N。等人。DNMT1抑制剂GSK-3484862介导小鼠胚胎干细胞的整体去甲基化。表观遗传学染色质14,56(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pappalardi, M. B. et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2, 1002–1017 (2021). This paper describes the discovery and characterization of a highly specific, reversible DNMT1 inhibitor, which blocks successful catalytic engagement with target DNA and triggers DNMT1 proteolysis.Article .

Pappalardi,M.B.等人发现了一种一流的可逆DNMT1选择性抑制剂,可改善急性髓细胞白血病的耐受性和疗效。《自然癌症》21002-1017(2021)。本文描述了一种高度特异性,可逆的DNMT1抑制剂的发现和表征,该抑制剂可阻止与靶DNA的成功催化结合并触发DNMT1蛋白水解。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).Article

Qi,L.S.等人将CRISPR重新用作RNA引导的平台,用于基因表达的序列特异性控制。细胞1521173-1183(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waryah, C. B., Moses, C. & Arooj, M. & Blancafort, P. Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Methods Mol. Biol. 1767, 19–63 (2018).Article

Waryah,C.B.,Moses,C。&Arooj,M。&Blancafort,P。锌指,TALEs和CRISPR系统:表观基因组编辑工具的比较。方法分子生物学。1767,19-63(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).Article

Nakamura,M.,Gao,Y.,Dominguez,A.A。&Qi,L.S。CRISPR技术用于精确的表观基因组编辑。自然细胞生物学。23,11-22(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goell, J. H. & Hilton, I. B. CRISPR/Cas-based epigenome editing: advances, applications, and clinical utility. Trends Biotechnol. 39, 678–691 (2021).Article

Goell,J。H。和Hilton,I。B。基于CRISPR/Cas的表观基因组编辑:进展,应用和临床实用性。趋势生物技术。39678-691(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McDonald, J. I. et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open. 5, 866–874 (2016).Article

McDonald,J.I.等人。用于诱导位点特异性DNA甲基化的可重编程CRISPR/Cas9系统。生物钟打开。5866-874(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).Article

Liu,X.S.等人。编辑哺乳动物基因组中的DNA甲基化。细胞167233-247.e17(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).Article

Gilbert,L.A。等人。基因组规模的CRISPR介导的基因抑制和激活控制。细胞159647-661(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).Article

Thakore,P.I.等人。通过CRISPR-Cas9阻遏物进行高度特异性的表观基因组编辑,以沉默远端调控元件。自然方法121143-1149(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kungulovski, G. et al. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8, 12 (2015).Article

Kungulovski,G。等人。用染色质修饰剂对内源性基因座进行靶向表观基因组编辑并不能稳定维持。表观遗传学染色质8,12(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).Article

Nunez,J.K.等人。基于CRISPR的表观基因组编辑的全基因组可编程转录记忆。细胞1842503-2519.e17(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).Article

Galonska,C。等人。dCas9甲基转移酶足迹的全基因组追踪。国家公社。9597(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).Article

基于dCas9的表观基因组编辑表明,组蛋白甲基化的获得不足以抑制靶基因。核酸研究459901-9916(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rajaram, N., Kouroukli, A. G., Bens, S., Bashtrykov, P. & Jeltsch, A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin 16, 41 (2023).Article

Rajaram,N.,Kouroukli,A.G.,Bens,S.,Bashtrykov,P。&Jeltsch,A。通过靶向等位基因特异性DNA甲基化开发超特异性表观基因组编辑。表观遗传学染色质16,41(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bashtrykov, P., Rajaram, N. & Jeltsch, A. Efficient targeted DNA methylation with dCas9-coupled DNMT3A–DNMT3L methyltransferase. Methods Mol. Biol. 2577, 177–188 (2023).Article

Bashtrykov,P.,Rajaram,N。&Jeltsch,A。使用dCas9偶联的DNMT3A-DNMT3L甲基转移酶进行有效的靶向DNA甲基化。方法分子生物学。2577177-188(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).Article

Stepper,P。等人。嵌合dCas9–Dnmt3a–Dnmt3L甲基转移酶的有效靶向DNA甲基化。核酸研究451703-1713(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pflueger, C. et al. A modular dCas9–SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9–DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).Article

Pflueger,C。等人。模块化dCas9-SunTag DNMT3A表观基因组编辑系统克服了直接融合dCas9-DNMT3A构建体的普遍脱靶活性。基因组研究281193-1206(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, Y. H. et al. DNA epigenome editing using CRISPR–Cas SunTag-directed DNMT3A. Genome Biol. 18, 176 (2017).Article

Huang,Y.H.等人。使用CRISPR-Cas SunTag指导的DNMT3A进行DNA表观基因组编辑。基因组生物学。18176(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Geen, H., Tomkova, M., Combs, J. A., Tilley, E. K. & Segal, D. J. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 50, 3239–3253 (2022).Article

O'Geen,H.,Tomkova,M.,Combs,J.A.,Tilley,E.K.&Segal,D.J.KRAB-dCas9+ DNMT3和Ezh2-dCas9+ DNMT3命中并运行表观基因组编辑的遗传基因沉默的决定因素。核酸研究503239-3253(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).Article

Yeo,N.C.等人。用于靶向哺乳动物基因调控的增强型CRISPR阻遏物。自然方法15611-616(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brocken, D. J. W., Tark-Dame, M. & Dame, R. T. dCas9: a versatile tool for epigenome editing. Curr. Issues Mol. Biol. 26, 15–32 (2018).Article

Brocken,D。J。W.,Tark Dame,M。&Dame,R。T。dCas9:用于表观基因组编辑的多功能工具。货币。问题分子生物学。26,15-32(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Noviello, G., Gjaltema, R. A. F. & Schulz, E. G. CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression. Nat. Commun. 14, 3225 (2023).Article

Noviello,G.,Gjaltema,R.A.F。&Schulz,E.G。CasTuner是一种基于degron和CRISPR/Cas的工具包,用于内源基因表达的类似调节。国家公社。143225(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lau, C. H. & Suh, Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res. 27, 489–509 (2018).Article

Lau,C.H。&Suh,Y。使用CRISPR技术进行体内表观基因组编辑和转录调控。转基因研究27489-509(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).Article

Gemberling,M.P.等人。使用基于CRISPR的系统进行体内表观基因组编辑的转基因小鼠。自然方法18965-974(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).Article

Yesbolatova,A。等人。生长素诱导型degron 2技术可在酵母,哺乳动物细胞和小鼠中提供快速降解控制。国家公社。115701(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).Article

Nabet,B。等人。用于立即和靶向特异性蛋白质降解的dTAG系统。自然化学。生物学14431-441(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).Article

Schreiber,J.等人。沿着单个DNA链区分胞嘧啶,甲基胞嘧啶和羟甲基胞嘧啶的纳米孔错误率。程序。国家科学院。科学。美国11018910-18915(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).Article

Simpson,J.T.等人。使用纳米孔测序检测DNA胞嘧啶甲基化。自然方法14407-410(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).Article

Liu,Y.等。牛津纳米孔测序的DNA甲基化调用工具:调查和人类表观基因组范围的评估。基因组生物学。22295(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).Article

Nurk,S。等人。人类基因组的完整序列。科学376,44-53(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).Article

Clark,S.J.,Harrison,J.,Paul,C.L。和Frommer,M。甲基化胞嘧啶的高灵敏度作图。核酸研究222990-2997(1994)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).Article

Liu,Y.等人。无亚硫酸氢盐直接检测5-甲基胞嘧啶和5-羟甲基胞嘧啶的碱基分辨率。美国国家生物技术公司。37424-429(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).Article

Vaisvila,R。等人。酶促甲基测序从皮克DNA中以单碱基分辨率检测DNA甲基化。基因组研究311280-1289(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).Article

Smallwood,S.A.等人。用于评估表观遗传异质性的单细胞全基因组亚硫酸氢盐测序。Nat。方法11817-820(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).Article

Rozenblatt Rosen,O.,Stubbington,M.J.T.,Regev,A。&Teichmann,S.A。人类细胞图谱:从视觉到现实。自然550451-453(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors thank all members of the Meissner, Smith and Kretzmer laboratories for thoughtful discussions and feedback in topics related to this manuscript. The authors thank H. Kretzmer, C. Haggerty, J. Charlton, M. Cui, J. Villagrana, R. Tornisiello and K.

下载参考文献致谢作者感谢Meissner,Smith和Kretzmer实验室的所有成员对与本手稿相关的主题进行了深思熟虑的讨论和反馈。作者感谢H.Kretzmer,C.Haggerty,J.Charlton,M.Cui,J.Villagrana,R.Tornisiello和K。

Tse for discussions on topics related to this work. This work was supported by the Max Planck Society (A.M.), the NIH New Innovator Award DP2HD108774 (Z.D.S.), Mathers Foundation (Z.D.S.) and Chen Innovation Award (Z.D.S.).Author informationAuthors and AffiliationsDepartment of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USAZachary D.

这项工作得到了马克斯·普朗克学会(A.M.)、美国国立卫生研究院新创新者奖DP2HD108774(Z.D.S.)、马瑟斯基金会(Z.D.S.)和陈创新奖(Z.D.S.)的支持。作者信息作者和附属机构美国康涅狄格州纽黑文耶鲁医学院耶鲁干细胞中心遗传学系。

SmithDepartment of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, GermanySara Hetzel & Alexander MeissnerAuthorsZachary D. SmithView author publicationsYou can also search for this author in.

SmithDepartment of Genome Regulation,Max Planck Institute for Molecular Genetics,Berlin,GermanySara Hetzel&Alexander MeissnerAuthorsZachary D.SmithView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarSara HetzelView author publicationsYou can also search for this author in

PubMed Google ScholarSara HetzelView作者出版物您也可以在

PubMed Google ScholarAlexander MeissnerView author publicationsYou can also search for this author in

PubMed Google ScholarAlexander MeissnerView作者出版物您也可以在

PubMed Google ScholarContributionsAll authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. A.M and Z.D.S. wrote the article.Corresponding authorsCorrespondence to

PubMed谷歌学术贡献所有作者都研究了文章的数据,为内容的讨论做出了重大贡献,并在提交前审查和/或编辑了手稿。A、 M和Z.D.S.写了这篇文章。通讯作者通讯

Zachary D. Smith or Alexander Meissner.Ethics declarations

扎卡里·D·史密斯或亚历山大·梅斯纳。道德宣言

Competing interests

相互竞争的利益

A.M. and Z.D.S. are inventors on a patent related to hypermethylated CGI targets in cancer. Z.D.S. and A.M. are co-founders and scientific advisers of Harbinger Health. S.H. declares no competing interests.

A、 M.和Z.D.S.是一项与癌症中高甲基化CGI靶标相关的专利的发明人。Z、 D.S.和A.M.是先兆健康的联合创始人和科学顾问。S。H、 宣布没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Genetics thanks Yi Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然评论》遗传学感谢张毅和另一位匿名审稿人为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Glossary‘2 cell’ or ‘totipotent’ programmes

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。词汇表“2单元”或“全能”计划

Early zygotic genome activation signatures within mammalian embryos, typically characterized by a limited transcriptional burst from retrotransposon-derived sequences during the early cleavage divisions.

哺乳动物胚胎内的早期合子基因组激活特征,通常以早期卵裂分裂期间逆转录转座子衍生序列的有限转录爆发为特征。

B compartments

B隔间

Genomic compartments characterized by chromosome capture technologies and found to overlap with numerous additional features of constitutively methylated heterochromatin.

基因组区室以染色体捕获技术为特征,并发现与组成型甲基化异染色质的许多其他特征重叠。

Bimodal methylation pattern

双峰甲基化模式

When measured for a population of somatic cells, the CpG methylation status frequently maintains very high methylation (close to 100%) for CpG-poor sequences or very low methylation (close to 0%) for CpG-rich sequences.

当对体细胞群体进行测量时,CpG甲基化状态对于CpG贫乏的序列经常保持非常高的甲基化(接近100%),对于富含CpG的序列则保持非常低的甲基化(接近0%)。

Bivalent domains

二价结构域

Genomic territories typically found over developmental gene promoters, with an architecture of broadly distributed histone H3 lysine 27 trimethylation (H3K27me3) and CpG island (CGI)-enriched H3K4me3.

基因组区域通常存在于发育基因启动子上,具有广泛分布的组蛋白H3赖氨酸27三甲基化(H3K27me3)和富含CpG岛(CGI)的H3K4me3的结构。

CXXC domain

CXXC domain

A cysteine-X-X-cysteine-X-X-cysteine motif-containing zinc finger domain that shows preferential binding to unmethylated CpG-containing sequences and is found within multiple chromatin modifiers associated with CpG island (CGI) regulation.

含有锌指结构域的半胱氨酸-X-X-半胱氨酸-X-X-半胱氨酸基序,其显示出与未甲基化的含CpG序列的优先结合,并且在与CpG岛(CGI)调节相关的多个染色质修饰剂中发现。

DNA methylation valleys

DNA甲基化谷

(DMVs). Multi-kilobase genomic territories that are generally maintained in a constitutively unmethylated state, often comprise multiple CpG islands (CGIs) and tend to surround the transcription start sites of developmental genes.

(DMV)。通常维持在组成型非甲基化状态的多千碱基基因组区域通常包含多个CpG岛(CGI),并且倾向于围绕发育基因的转录起始位点。

Endogenous retroviruses

内源性逆转录病毒

(ERVs). Endogenous retrotransposons derived from exogenous retroviruses that largely function according to their biology, including tRNA-primed reverse transcription and assembly of cytoplasmic viral-like capsids.

(ERVs)。源自外源逆转录病毒的内源性逆转录转座子,其主要根据其生物学功能发挥作用,包括tRNA引发的逆转录和细胞质病毒样衣壳的组装。

Epigenetic clocks

表观遗传钟

Inferences of chronological or biological age through the measurement of methylation at limited subsets of CpG dinucleotides.

通过测量CpG二核苷酸有限亚群的甲基化来推断时间或生物学年龄。

Epigenetic transmission

表观遗传传递

The propagation of a phenotypic or molecular signature without underlying genetic control, including over cell division (mitotic) or organismal generations (transgenerational).

表型或分子特征的传播,没有潜在的遗传控制,包括细胞分裂(有丝分裂)或生物世代(跨代)。

Epi-polymorphisms

Epi多态性

The within sample-based deviation in CpG methylation patterns across individually measured sequencing reads; generally, higher numbers of epi-polymorphisms are indicative of greater cellular or allelic heterogeneity within the sample.

单独测量的测序读数中CpG甲基化模式的基于样本内的偏差;通常,较高数量的epi多态性表明样品中更大的细胞或等位基因异质性。

Facultative heterochromatin

兼性异染色质

A generic term for more dynamic, less repetitive heterochromatin that emerges within developmental contexts and typically functions in the process of inducible gene regulation.

一个通用术语,表示在发育环境中出现的更具动态性,重复性更低的异染色质,通常在诱导型基因调控过程中起作用。

Induced pluripotency

诱导多能性

The direct induction of embryonic stem cell (ESC) transcriptional programmes and functional properties using a reduced number of stem cell-associated factors.

使用减少数量的干细胞相关因子直接诱导胚胎干细胞(ESC)转录程序和功能特性。

Intracisternal A-type particles

脑池内A型粒子

(IAPs). A major rodent endogenous retrovirus (ERV) named for the detection of viral-like particles within the cisternae of the endoplasmic reticulum; a frequent model for characterizing epigenetic regulator function.

(IAPs)。一种主要的啮齿动物内源性逆转录病毒(ERV),以检测内质网池内的病毒样颗粒而命名;表征表观遗传调节功能的常见模型。

Isocitrate dehydrogenase

异柠檬酸脱氢酶

(IDH). An enzyme that catalyses decarboxylation of isocitrate into α-ketoglutarate, a major metabolic intermediate of the Krebs cycle that also serves as an essential co-factor for histone demethylases and ten–eleven translocation (TET) enzymes.

(IDH)。一种催化异柠檬酸脱羧成α-酮戊二酸的酶,α-酮戊二酸是克雷布斯循环的主要代谢中间体,也是组蛋白脱甲基酶和十一易位(TET)酶的重要辅助因子。

Krüppel-associated box domain zinc finger proteins

Krüppel相关的box结构域锌指蛋白

(KRAB-ZFPs). A rapidly evolving gene family that largely functions to repress parasitic genomic elements; these proteins contain an amino-terminal KRAB domain for recruiting epigenetic repressor complexes and a carboxy-terminal array of zinc fingers to enable sequence-specific binding.

(KRAB ZFPs)。一个快速发展的基因家族,其主要功能是抑制寄生虫基因组元件;这些蛋白质含有用于募集表观遗传阻遏物复合物的氨基末端KRAB结构域和锌指的羧基末端阵列,以实现序列特异性结合。

Lamina-associated domains

薄层相关域

(LADs). Large-scale genomic features characterized by high-frequency interactions with the nuclear lamina, which is enriched for constitutively methylated heterochromatin.

(小伙子们)。大规模基因组特征的特征是与核层的高频相互作用,核层富含组成型甲基化异染色质。

Large organized chromatin K9 modifications

大量有组织的染色质K9修饰

(LOCKs). Large-scale genomic features characterized by generally inert, gene-poor DNA, found via profiling of the heterochromatic modification histone H3 lysine 9 dimethylation (H3K9me2).

(锁)。通过分析异色修饰组蛋白H3赖氨酸9二甲基化(H3K9me2)发现的大规模基因组特征,其特征是通常是惰性的,基因贫乏的DNA。

Long interspersed nuclear elements

长散布的核元素

(LINEs). Ancient non-viral derived retrotransposons that comprise large fractions of mammalian genomes and replicate via a unique mechanism that primes reverse transcription directly from host DNA.

(行)。古代非病毒衍生的逆转录转座子,包含大部分哺乳动物基因组,并通过直接从宿主DNA引发逆转录的独特机制进行复制。

Nucleosome remodelling and deacetylase (NuRD) complex

核小体重塑和脱乙酰酶(NuRD)复合物

An ATP-dependent chromatin remodelling complex associated with gene silencing and heterochromatin assembly, including subunits involved in nucleosome positioning and histone deacetylation.

与基因沉默和异染色质组装相关的ATP依赖性染色质重塑复合物,包括参与核小体定位和组蛋白脱乙酰化的亚基。

Oncometabolite

肿瘤代谢物

A term used for metabolites that generically exhibit higher levels in tumours versus healthy cells, including mutant isocitrate dehydrogenase (IDH)-produced 2-hydroxyglutarate that grossly inhibits ten–eleven translocation (TETs) and histone demethylases within glioblastomas (GBMs) and myeloid leukaemias..

一个术语,用于描述在肿瘤中通常比健康细胞表现出更高水平的代谢物,包括突变的异柠檬酸脱氢酶(IDH)产生的2-羟基戊二酸,其严重抑制胶质母细胞瘤(GBM)和髓样白血病中的10-11易位(TET)和组蛋白脱甲基酶。。

Shannon’s entropy

香农熵

A general measurement of information content within a distribution; used in DNA methylation research to distinguish how intermediate methylation is distributed across cell populations from individually measured sequencing reads.

分布中信息内容的一般度量;用于DNA甲基化研究,以区分中间甲基化如何从单独测量的测序读数分布在细胞群中。

Topologically associated domains

拓扑关联域

(TADs). Genomic territories that are predicted by chromatin conformation capture assays to self-interact with a higher than average frequency and are often restricted by CTCF-enriched boundary elements.

(TADs)。通过染色质构象捕获分析预测的基因组区域以高于平均频率的自我相互作用,并且通常受到富含CTCF的边界元素的限制。

Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleSmith, Z.D., Hetzel, S.

权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Smith,Z.D.,Hetzel,S。

& Meissner, A. DNA methylation in mammalian development and disease..

&Meissner,A。哺乳动物发育和疾病中的DNA甲基化。。

Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00760-8Download citationAccepted: 24 June 2024Published: 12 August 2024DOI: https://doi.org/10.1038/s41576-024-00760-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Genet(2024年)。https://doi.org/10.1038/s41576-024-00760-8Download引文接受日期:2024年6月24日发布日期:2024年8月12日OI:https://doi.org/10.1038/s41576-024-00760-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供