EN
登录

基于MIMIC-IV数据库的脓毒症或脓毒症相关谵妄患者28天死亡率危险因素预测模型

Predictive model of risk factors for 28-day mortality in patients with sepsis or sepsis-associated delirium based on the MIMIC-IV database

Nature 等信源发布 2024-08-13 18:08

可切换为仅中文


AbstractResearch on the severity and prognosis of sepsis with or without progressive delirium is relatively insufficient. We constructed a prediction model of the risk factors for 28-day mortality in patients who developed sepsis or sepsis-associated delirium. The modeling group of patients diagnosed with Sepsis-3 and patients with progressive delirium of related indicators were selected from the MIMIC-IV database.

摘要关于脓毒症伴或不伴进行性谵妄的严重程度和预后的研究相对不足。我们构建了脓毒症或脓毒症相关deli妄患者28天死亡率危险因素的预测模型。从MIMIC-IV数据库中选择诊断为脓毒症-3的患者和相关指标进行性谵妄患者的建模组。

Relevant independent risk factors were determined and integrated into the prediction model. Receiver operating characteristic (ROC) curves and the Hosmer–Lemeshow (HL) test were used to evaluate the prediction accuracy and goodness-of-fit of the model. Relevant indicators of patients with sepsis or progressive delirium admitted to the intensive care unit (ICU) of a 3A hospital in Xinjiang were collected and included in the verification group for comparative analysis and clinical validation of the prediction model.

确定相关的独立风险因素并将其整合到预测模型中。受试者工作特征(ROC)曲线和Hosmer-Lemeshow(HL)检验用于评估模型的预测准确性和拟合优度。收集新疆某三甲医院重症监护病房(ICU)脓毒症或进行性谵妄患者的相关指标,并将其纳入验证组,对预测模型进行比较分析和临床验证。

The total length of stay in the ICU, hemoglobin levels, albumin levels, activated partial thrombin time, and total bilirubin level were the five independent risk factors in constructing a prediction model. The area under the ROC curve of the predictive model (0.904) and the HL test result (χ2 = 8.518) indicate a good fit.

ICU总住院时间,血红蛋白水平,白蛋白水平,活化部分凝血酶时间和总胆红素水平是构建预测模型的五个独立危险因素。预测模型的ROC曲线下面积(0.904)和HL检验结果(χ2=8.518)表明拟合良好。

This model is valuable for clinical diagnosis and treatment and auxiliary clinical decision-making..

该模型对临床诊断和治疗以及辅助临床决策具有重要价值。。

IntroductionSepsis is a life-threatening organ dysfunction caused by the dysregulated response of an organism to infection1. Sepsis and septic shock impact millions of people worldwide yearly, killing between one in three and one in six of those it affects. Sepsis-associated delirium (SAD) is a cerebral dysfunction that occurs during sepsis.

引言脓毒症是一种威胁生命的器官功能障碍,由生物体对感染的反应失调引起1。脓毒症和感染性休克每年影响全球数百万人,其中三分之一至六分之一的人死亡。脓毒症相关deli妄(SAD)是脓毒症期间发生的脑功能障碍。

SAD is among the most serious complications of sepsis and is an independent risk factor for death in patients with sepsis. Its pathophysiological mechanism is complex, with no standard, unified diagnosis or treatment method at present2. Early and accurate identification of high-risk patients and timely adoption of effective therapeutic measures are of great importance to improve patient prognosis.

SAD是脓毒症最严重的并发症之一,是脓毒症患者死亡的独立危险因素。其病理生理机制复杂,目前尚无标准,统一的诊断或治疗方法2。早期准确地识别高危患者并及时采取有效的治疗措施对改善患者预后至关重要。

Currently, the acute physiology and chronic health evaluation II (APACHE II) and sequential organ failure assessment (SOFA) scores are most often applied in clinical practice to assess the condition of patients with sepsis and to evaluate the physiological function of organs, respectively3. The most recent clinical practice guidelines on delirium from the Society of Critical Care Medicine recommend regular assessment of delirium using validated tools, such as the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) or the Intensive Care Delirium Screening Checklist2.

目前,急性生理学和慢性健康评估II(APACHE II)和序贯器官衰竭评估(SOFA)评分在临床实践中最常用于评估脓毒症患者的病情和评估器官的生理功能3。重症监护医学会最近关于deli妄的临床实践指南建议使用经过验证的工具定期评估deli妄,例如重症监护病房(CAM-ICU)的混淆评估方法或重症监护deli妄筛查清单2。

However, early assessment of SAD progress and prediction model sensitivity in patients with sepsis require further research. Risk prediction models have been widely applied in medical research to predict future onset. Although not an integral part of treatment, risk prediction is essential to improve clinical decision-making4.

然而,脓毒症患者SAD进展和预测模型敏感性的早期评估需要进一步研究。风险预测模型已广泛应用于医学研究中,以预测未来的发病。虽然不是治疗的组成部分,但风险预测对于改善临床决策至关重要4。

Moreover, risk prediction models are used to predict the likelihood or risk of the onset of a particular outcome or event in an individual .

此外,风险预测模型用于预测个体发生特定结果或事件的可能性或风险。

Data availability

数据可用性

The MIMIC-IV database is available from https://mimic.physionet.org. The raw data were extracted using structure query language (SQL) and PostgreSQL, as well as using Excel 2019 and IBM SPSS Statistics for Windows (version 26.0) for data entry and analysis, respectively.

MIMIC-IV数据库可从https://mimic.physionet.org.使用结构查询语言(SQL)和PostgreSQL提取原始数据,并分别使用Excel 2019和IBM SPSS Statistics for Windows(版本26.0)进行数据输入和分析。

ReferencesSinger, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).Article

ReferencesSinger,M.等人,《脓毒症和感染性休克(脓毒症-3)的第三个国际共识定义》。JAMA 315801–810(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Atterton, B., Paulino, M. C., Povoa, P. & Martin-Loeches, I. Sepsis associated delirium. Medicina (Kaunas) 56, 240 (2020).Article

Atterton,B.,Paulino,M.C.,Povoa,P。&Martin Loeches,I。败血症相关性谵妄。Medicina(考纳斯)56240(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bahtouee, M., Eghbali, S. S., Maleki, N., Rastgou, V. & Motamed, N. Acute Physiology and Chronic Health Evaluation II score for the assessment of mortality prediction in the intensive care unit: a single-centre study from Iran. Nurs. Crit. Care 24, 375–380 (2019).Article

Bahtouee,M.,Eghbali,S.S.,Maleki,N.,Rastgou,V。&Motamed,N。重症监护病房死亡率预测评估的急性生理学和慢性健康评估II评分:来自伊朗的单中心研究。护士。暴击。Care 24375-380(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rahmatinejad, Z. et al. Comparing in-hospital mortality prediction by senior emergency resident’s judgment and prognostic models in the emergency department. BioMed Res. Int. 2023, 6042762 (2023).Article

Rahmatinejad,Z.等人比较了急诊科高级急诊住院医师的判断和预后模型对住院死亡率的预测。BioMed Res.Int.20236042762(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, R., Zheng, L. & Pan, G. Application and establishment of disease incidence risk prediction models. Chin. J. Health Stat. 32, 724–726 (2015).

Zhang,R.,Zheng,L。和Pan,G。疾病发病风险预测模型的应用和建立。下巴。J、 《健康统计》32724–726(2015)。

Google Scholar

谷歌学者

Chen, L. Construction and Application of Risk Prediction Model for Stroke-Associated Pneumonia in Elderly Stroke Patients [D] (Changchun Univ. of Traditional Chinese Medicine, 2022).

Chen,L。老年卒中患者卒中相关性肺炎风险预测模型的构建与应用[D](长春中医药大学,2022)。

Google Scholar

谷歌学者

Zhao, J. et al. Construction of anomogram for predicting the prognosis of patients with sepsis-associated acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 35, 1255–1261 (2023).PubMed

赵,J。等。用于预测脓毒症相关急性肾损伤患者预后的异常图的构建。中华卫报中冰集久一学。351255-1261(2023)。PubMed出版社

Google Scholar

谷歌学者

Zhou, M. et al. Analysis of Characteristics of the MIMIC-III Database and Implications for Constructing a Shared Traditional Chinese Medicine Dataset. Chin. J. Libr. Inf. Sci. Tradit. Chin. Med. 43, 1–5 (2019).CAS

Zhou,M.等人。MIMIC-III数据库的特征分析及其对构建共享中医药数据集的意义。下巴。J、 伦敦银行同业拆借利率。信息科学。特拉迪特。下巴。医学杂志43,1-5(2019)。中科院

Google Scholar

谷歌学者

Vellido, A., Ribas, V., Morales, C., Ruiz Sanmartín, A. & Ruiz Rodríguez, J. C. Machine learning in critical care: state-of-the-art and a sepsis case study. Biomed. Eng. OnLine 17(S1), 135 (2018).Article

Vellido,A.,Ribas,V.,Morales,C.,Ruiz-Sanmartin,A。&Ruiz-Rodríguez,J.C。重症监护中的机器学习:最新技术和败血症案例研究。生物医学。《工程在线》17(S1),135(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Awad, A., Bader-El-Den, M., McNicholas, J., Briggs, J. & El-Sonbaty, Y. Predicting hospital mortality for intensive care unit patients: time-series analysis. Health Inform. J. 26, 1043–1059 (2020).Article

Awad,A.,Bader El Den,M.,McNicholas,J.,Briggs,J。&El Sonbaty,Y。预测重症监护病房患者的住院死亡率:时间序列分析。健康信息。J、 261043-1059(2020)。文章

Google Scholar

谷歌学者

Ocampo-Quintero, N. et al. Enhancing sepsis management through machine learning techniques: a review. Med. Intensiva (Engl. Ed.) (2020).Rahmatinejad, Z. et al. Internal validation of the predictive performance of models based on three ED and ICU scoring systems to predict inhospital mortality for intensive care patients referred from the emergency department.

Ocampo Quintero,N.等人。通过机器学习技术增强败血症管理:综述。医学强化(英语版)(2020)。Rahmatinejad,Z.等人。基于三种ED和ICU评分系统的模型预测性能的内部验证,用于预测急诊科重症监护患者的住院死亡率。

Biomed. Res. Int. 2022, 3964063 (2022).Tang, J. et al. The relationship between potassium levels and 28-day mortality in sepsis patients: Secondary data analysis using the MIMIC-IV database. Heliyon. 10, e31753 (2024).Article .

生物医学。《国际研究》20223964063(2022年)。Tang,J.等人。脓毒症患者钾水平与28天死亡率之间的关系:使用MIMIC-IV数据库进行二次数据分析。海伦。10,e31753(2024)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, X. et al. The hemoglobin-to-red cell distribution width ratio to predict all-cause mortality in patients with sepsis-associated encephalopathy in the MIMIC-IV database. Int. J. Clin. Pract. 2022, 7141216 (2022).Article

Huang,X。等人。MIMIC-IV数据库中血红蛋白与红细胞分布宽度比预测脓毒症相关性脑病患者的全因死亡率。国际J.临床。实践。20227141216(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, A. E. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016).Article

Johnson,A.E.等人,MIMIC-III,一个可免费访问的重症监护数据库。科学。数据31160035(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fernando, S. M., Rochwerg, B. & Seely. A. J. E. Clinical implications of the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). CMAJ 190, E1058-E1059 (2018).Seymour, C. W. et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

Fernando,S.M.,Rochwerg,B。&Seely。A、 J.E.脓毒症和感染性休克(脓毒症-3)第三次国际共识定义的临床意义。CMAJ 190,E1058-E1059(2018)。Seymour,C.W.等人,《脓毒症临床标准评估:脓毒症和感染性休克(脓毒症-3)的第三个国际共识定义》。

JAMA 315, 762-774. doi (2016). Erratum in: JAMA 315, 2237 (2016).Gao, Y. & Zhang, J. Sample size determination for logistic regression analysis. J. Evid. Based Med. 18, 122–124 (2018)..

JAMA 315762-774。doi(2016)。勘误:JAMA 3152237(2016)。Gao,Y。&Zhang,J。逻辑回归分析的样本量确定。J、 埃维德。基于医学18122-124(2018)。。

Google Scholar

谷歌学者

Qi, S. & Zhou, F. A review of screening methods for sepsis cases from electronic medical record databases. Acad. J. Chin. PLA Med. Sch. 41, 918–929 (2020).

Qi,S。&Zhou,F。从电子病历数据库中筛选败血症病例的方法综述。阿卡德。J、 下巴。解放军医学院。41918-929(2020)。

Google Scholar

谷歌学者

Jia, D. Development of a 28-Day Mortality Risk Prediction Model for Patients with Sepsis-Induced Coagulopathy Based on the MIMIC-III Database [D] (Anhui Medical Univ, 2022).

Jia,D。基于MIMIC-III数据库[D](安徽医科大学,2022)开发脓毒症诱导的凝血病患者28天死亡风险预测模型。

Google Scholar

谷歌学者

Li, Y. M. et al. Simulation study on missing data imputation methods for longitudinal data in cohort studies. Chin. J. Epidemiol. 42, 1889–1894 (2021).CAS

Li,Y.M.等人。队列研究中纵向数据缺失数据插补方法的模拟研究。下巴。J、 流行病。421889-1894(2021)。中科院

Google Scholar

谷歌学者

Wang, Z. et al. Construction of a 28-day Mortality Prediction Model for Patients with Pulmonary Infection Complicated by Sepsis. Shandong Med. J. 63, 37–43 (2023).

Wang,Z.等人。肺部感染合并败血症患者28天死亡率预测模型的构建。山东医学杂志63,37-43(2023)。

Google Scholar

谷歌学者

Ely, E. W. et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291, 1753–1762 (2004).Article

Ely,E.W.等人,deli妄是重症监护病房机械通气患者死亡率的预测因子。JAMA 2911753-1762(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sonneville, R. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 43, 1075–1084 (2017).Article

Sonneville,R.等人。导致败血症相关性脑病的潜在可改变因素。重症监护医学431075-1084(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rahmatinejad, Z. et al. Prognostic utilization of models based on the APACHE II, APACHE IV, and SAPS II scores for predicting in-hospital mortality in emergency department. Am. J. Emerg. Med. 38, 1841–1846 (2020).Article

Rahmatinejad,Z.等人。基于APACHE II,APACHE IV和SAPS II评分的模型的预后利用,用于预测急诊科住院死亡率。《美国急诊医学杂志》381841-1846(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rahmatinejad, Z. et al. Predictive performance of the SOFA and mSOFA scoring systems for predicting in-hospital mortality in the emergency department. Am. J. Emerg. Med. 37, 1237–1241 (2019).Article

Rahmatinejad,Z.等人。SOFA和mSOFA评分系统预测急诊科住院死亡率的预测性能。《美国急诊医学杂志》371237-1241(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rahmatinejad, Z. et al. Comparison of six scoring systems for predicting in-hospital mortality among patients with SARS-COV2 presenting to the emergency department. Indian J. Crit. Care Med. 27, 416–425 (2023).Article

Rahmatinejad,Z.等人。六种评分系统预测急诊科SARS-COV2患者院内死亡率的比较。印度J.Crit.Care Med.27416-425(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, R., Zhou, X., Rui, Q. & Wang, X. Combined predictive value of the risk factors influencing the short-term prognosis of sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 32 (2020).Ishikawa, M. et al. Neutropenic enterocolitis-induced sepsis and disseminated intravascular coagulation after chemotherapy: a case report.

Chen,R.,Zhou,X.,Rui,Q。&Wang,X。影响脓毒症短期预后的危险因素的综合预测价值。《中华卫报》第32期(2020)。Ishikawa,M。等人。化疗后中性粒细胞减少性小肠结肠炎引起的败血症和弥散性血管内凝血:病例报告。

BMC Womens Health 21, 187 (2021).Article .

BMC妇女健康21187(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Snow, G. L. et al. Comparative evaluation of the clinical laboratory-based Intermountain risk score with the Charlson and Elixhauser comorbidity indices for mortality prediction. PLOS ONE 15, e0233495 (2020).Article

Snow,G.L.等人。基于临床实验室的山间风险评分与Charlson和Elixhauser合并症指数的死亡率预测的比较评估。PLOS ONE 15,e0233495(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chou, H. C., Huang, C. T. & Sheng, W. H. Differential roles of comorbidity burden and functional status in elderly and non-elderly patients with infections in general wards. J. Formos. Med. Assoc. 119, 821–828 (2020).Article

Chou,H.C.,Huang,C.T。&Sheng,W.H。普通病房中老年和非老年感染患者合并症负担和功能状态的不同作用。J、 福尔摩斯。医学协会第119821-828号(2020年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Z. X., Lv, X. L. & Yan, J. Serum total bilirubin level is associated with hospital mortality rate in adult critically ill patients: a retrospective study. Front. Med. (Lausanne) 8, 697027 (2021).Patel, J. J. et al. The association of serum bilirubin levels on the outcomes of severe sepsis.

Yang,Z.X.,Lv,X.L。&Yan,J。血清总胆红素水平与成人危重患者的住院死亡率相关:一项回顾性研究。。医学(洛桑)8697027(2021)。Patel,J.J.等人。血清胆红素水平与严重脓毒症预后的关系。

J. Intensive Care Med. 30, 23–29 (2015).Article .

J、 重症监护医学30,23-29(2015)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Chen, J. Establishment and Validation of a Delirium Risk Prediction Model for Neurosurgical ICU Patients [D] (Nanjing Univ, 2020).

Chen,J。神经外科ICU患者谵妄风险预测模型的建立和验证[D](南京大学,2020)。

Google Scholar

谷歌学者

Fan, H. et al. Development and validation of a dynamic delirium prediction rule in patients admitted to the intensive care units (DYNAMIC-ICU): a prospective cohort study. Int. J. Nurs. Stud. 93, 64–73 (2019).Article

Fan,H.等人。重症监护病房(dynamic-ICU)患者动态谵妄预测规则的开发和验证:一项前瞻性队列研究。内景J.努斯。螺柱93,64-73(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, X. Analysis of Risk Factors for Delirium in ICU and Construction of Risk Prediction Model [D]. People's Liberation Army of China Army Medical University, (2017).Li, Y. et al. Research Progress on Risk Prediction Models for Perioperative Hypothermia. Nurs. Res. 35, 3107–3110 (2021).ADS .

朱,X.ICU谵妄危险因素分析及风险预测模型的构建[D]。中国陆军医科大学人民解放军,(2017)。Li,Y。等。围手术期低温风险预测模型的研究进展。护士。第353107-3110号决议(2021年)。广告。

Google Scholar

谷歌学者

Download referencesFundingThis study was funded by the 2022 Critical Care Medicine Runze Fund of the Wu Jieping Medical Foundation (320.6750.2023–02-3).Author informationAuthors and AffiliationsXinjiang Medical University, Urumqi, 830000, ChinaLi Zhang, Yanjie Yang, Hu Peng & Ling YangSchool of Nursing, Xinjiang Medical University, Urumqi, 830000, ChinaLi Zhang, Yanjie Yang, Hu Peng & Ling YangDepartment of Nursing, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, ChinaLi ZhangCentre for Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, ChinaXiang Li & Xiangyou YuDepartment of Traumatology and Orthopaedics, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, ChinaJinyong HuangAuthorsLi ZhangView author publicationsYou can also search for this author in.

下载参考文献资助本研究由吴洁平医学基金会2022年重症医学Runze基金资助(320.6750.2023–02-3)。作者信息作者和附属机构新疆医科大学,乌鲁木齐,830000,ChinaLi Zhang,Yanjie Yang,Hu Peng&Ling Yang新疆医科大学护理学院,乌鲁木齐,830000,ChinaLi Zhang,Yanjie Yang,Hu Peng&Ling Yang新疆医科大学第一附属医院护理科,乌鲁木齐,830054,ChinaLi Zhang新疆医科大学第一附属医院重症医学中心,乌鲁木齐,830054 ations您也可以在中搜索此作者。

PubMed Google ScholarXiang LiView author publicationsYou can also search for this author in

PubMed Google ScholarXiang LiView作者出版物您也可以在

PubMed Google ScholarJinyong HuangView author publicationsYou can also search for this author in

PubMed谷歌学者黄金勇查看作者出版物您也可以在

PubMed Google ScholarYanjie YangView author publicationsYou can also search for this author in

PubMed Google ScholarYanjie YangView作者出版物您也可以在

PubMed Google ScholarHu PengView author publicationsYou can also search for this author in

PubMed Google ScholarHu PengView作者出版物您也可以在

PubMed Google ScholarLing YangView author publicationsYou can also search for this author in

PubMed谷歌学术YangView作者出版物您也可以在

PubMed Google ScholarXiangyou YuView author publicationsYou can also search for this author in

PubMed Google ScholarXiangyou YuView作者出版物您也可以在

PubMed Google ScholarContributionsL.Z. designed, researched and wrote the manuscript, X.L. retrieved and collated the data, J.H. assisted in translating and collating the literature, Y.Y., H.P. and L.Y analyzed the statistical data, and X.Y. the supervisor, guided the overall research plan and process.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献l。Z、 设计,研究和撰写手稿,X.L.检索和整理数据,J.H.协助翻译和整理文献,Y.Y.,H.P.和L.Y分析统计数据,X.Y.主管指导整体研究计划和过程。对应作者对应。

Xiangyou Yu.Ethics declarations

余向友。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, L., Li, X., Huang, J. et al. Predictive model of risk factors for 28-day mortality in patients with sepsis or sepsis-associated delirium based on the MIMIC-IV database.

转载和许可本文引用本文Zhang,L.,Li,X.,Huang,J。等人。基于MIMIC-IV数据库的脓毒症或脓毒症相关deli妄患者28天死亡率危险因素预测模型。

Sci Rep 14, 18751 (2024). https://doi.org/10.1038/s41598-024-69332-4Download citationReceived: 28 October 2023Accepted: 02 August 2024Published: 13 August 2024DOI: https://doi.org/10.1038/s41598-024-69332-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1418751(2024)。https://doi.org/10.1038/s41598-024-69332-4Download引文接收日期:2023年10月28日接收日期:2024年8月2日发布日期:2024年8月13日OI:https://doi.org/10.1038/s41598-024-69332-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsSepsis with deliriumRisk factorsPrediction modelMIMIC- IV database

关键词谵妄风险因素预测模型Mimic-IV数据库

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。