EN
登录

用于多链路太赫兹6G到XG无线的片上拓扑波束形成器

On-chip topological beamformer for multi-link terahertz 6G to XG wireless

Nature 等信源发布 2024-08-14 01:25

可切换为仅中文


AbstractTerahertz (THz) wireless communication holds immense potential to revolutionize future 6G to XG networks with high capacity, low latency and extensive connectivity. Efficient THz beamformers are essential for energy-efficient connections, compensating path loss, optimizing resource usage and enhancing spectral efficiency.

摘要太赫兹(THz)无线通信具有巨大的潜力,有望以高容量,低延迟和广泛的连接彻底改变未来的6G到XG网络。高效的太赫兹波束形成器对于节能连接、补偿路径损耗、优化资源利用和提高频谱效率至关重要。

However, current beamformers face several challenges, including notable loss, limited bandwidth, constrained spatial coverage and poor integration with on-chip THz circuits. Here we present an on-chip broadband THz topological beamformer using valley vortices for waveguiding, splitting and perfect isolation in waveguide phased arrays, featuring 184 densely packed valley-locked waveguides, 54 power splitters and 136 sharp bends.

然而,目前的波束形成器面临着一些挑战,包括显着的损耗,有限的带宽,受限的空间覆盖以及与片上THz电路的集成度差。在这里,我们介绍了一种片上宽带THz拓扑波束形成器,它使用谷涡在波导相控阵中进行波导,分裂和完美隔离,具有184个密集堆积的谷锁定波导,54个功分器和136个急弯。

Leveraging neural-network-assisted inverse design, the beamformer achieves complete 360° azimuthal beamforming with gains of up to 20 dBi, radiating THz signals into free space with customizable user-defined beams. Photoexciting the all-silicon beamformer enables reconfigurable control of THz beams.

利用神经网络辅助逆设计,波束形成器实现了完整的360°方位波束形成,增益高达20dBi,通过可定制的用户定义波束将太赫兹信号辐射到自由空间。光激励全硅波束形成器可实现太赫兹波束的可重构控制。

The low-loss and broadband beamformer enables a 72-Gbps chip-to-chip wireless link over 300 mm and eight simultaneous 40-Gbps wireless links. Using four of these links, we demonstrate point-to-4-point real-time HD video streaming. Our work provides a complementary metal-oxide-semiconductor-compatible THz topological photonic integrated circuit for efficient large-scale beamforming, enabling massive single-input multiple-output and multiple-input and multiple-output systems for terabit-per-second 6G to XG wireless communications..

低损耗宽带波束形成器能够在300毫米范围内实现72 Gbps芯片间无线链路和八个同时进行的40 Gbps无线链路。使用其中的四个链接,我们演示了点对4点实时高清视频流。我们的工作提供了一种互补的金属氧化物-半导体兼容的THz拓扑光子集成电路,用于高效的大规模波束形成,实现了每秒6G到XG无线通信的大规模单输入多输出和多输入多输出系统。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription$29.99 / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 51 print issues and online access$199.00 per yearonly $3.90 per issueLearn moreBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线访问订阅29.99美元/30天浏览所有时间更多订阅本期刊每年收到51期印刷版和在线访问199.00美元每期仅3.90美元更多学习更多购买本文在Springer Links上购买即时访问全文PDFBuy Now价格可能需要缴纳结帐时计算的当地税费。

Additional access options:

其他访问选项:

Log in

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Multi-link THz topological beamformer silicon chip for 6G to XG wireless.Fig. 2: Topological valley-vortices-driven robust guiding, power splitting and channel isolation.Fig. 3: Intrinsic and NN-assisted inverse-designed topological beamformers.Fig. 4: THz wireless communication with eight 40 Gbit s−1 links and point-to-multipoint HDTV streaming..

图1:用于6G到XG无线的多链路THz拓扑波束形成器硅芯片。图2:拓扑谷涡驱动的稳健引导,功率分裂和通道隔离。图3:本征和神经网络辅助逆设计拓扑波束形成器。图4:具有八个40 Gbit s-1链路和点对多点HDTV流的THz无线通信。。

Data availability

数据可用性

All the data in this study are openly available in the NTU research data repository DR-NTU at https://doi.org/10.21979/N9/UKLX3D.

这项研究中的所有数据都可以在NTU研究数据库DR-NTU中公开获得https://doi.org/10.21979/N9/UKLX3D.

ReferencesAlsharif, M. H. & Nordin, R. Evolution towards fifth generation (5G) wireless networks: current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommun. Syst. 64, 617–637 (2017).Article

ReferencesAlsharif,M.H.&Nordin,R。向第五代(5G)无线网络的发展:毫米波,大规模MIMO和小蜂窝部署的当前趋势和挑战。电信。系统。64617-637(2017)。文章

Google Scholar

谷歌学者

Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).Article

Dang,S.,Amin,O.,Shihada,B.&Alouini,M.-S。6G应该是什么?自然电子。3,20-29(2020)。文章

Google Scholar

谷歌学者

Akyildiz, I. F., Kak, A. & Nie, S. 6G and beyond: the future of wireless communications systems. IEEE Access 8, 133995–134030 (2020).Article

Akyildiz,I.F.,Kak,A。&Nie,S。6G及以后:无线通信系统的未来。IEEE Access 8133995–134030(2020)。文章

Google Scholar

谷歌学者

Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).Article

Rappaport,T.S.等人,《100 GHz以上无线通信与应用:6G及以上的机遇与挑战》。IEEE Access 778729–78757(2019)。文章

Google Scholar

谷歌学者

Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).Article

Nagatsuma,T.,Ducournau,G。和Renaud,C.C。光子学加速了太赫兹通信的进步。自然光子。10371-379(2016)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Akyildiz, I. F., Jornet, J. M. & Han, C. Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014).Article

Akyildiz,I.F.,Jornet,J.M。和Han,C。太赫兹波段:无线通信的下一个前沿。物理。。12,16-32(2014)。文章

Google Scholar

谷歌学者

Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).Article

Koenig,S。等人。具有高数据速率的无线亚太赫兹通信系统。自然光子。7977-981(2013)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Fu, X., Yang, F., Liu, C., Wu, X. & Cui, T. J. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Adv. Opt. Mater. 8, 1900628 (2020).Article

Fu,X.,Yang,F.,Liu,C.,Wu,X.&Cui,T.J.太赫兹波束控制技术:从相控阵到现场可编程超表面。高级选项。马特。81900628(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Monnai, Y., Lu, X. & Sengupta, K. Terahertz beam steering: from fundamentals to applications. J. Infrared Millim. Terahertz Waves 44, 169–211 (2023).Article

Monnai,Y.,Lu,X。和Sengupta,K。太赫兹光束控制:从基础到应用。J、 红外毫米。太赫兹波44169-211(2023)。文章

Google Scholar

谷歌学者

Tan, Y. J. et al. Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Opt. Express 30, 27763–27779 (2022).Article

Tan,Y.J.等人。用于6G通信中硅超表面太赫兹波束形成的自适应深度强化学习。选择。Express 3027763–27779(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sengupta, K. & Hajimiri, A. A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 47, 3013–3031 (2012).Article

Sengupta,K。&Hajimiri,A。基于分布式有源散热器的CMOS 0.28太赫兹发电和波束控制阵列。IEEE J.固态电路473013–3031(2012)。文章

ADS

广告

Google Scholar

谷歌学者

Tousi, Y. & Afshari, E. A high-power and scalable 2-D phased array for terahertz CMOS integrated systems. IEEE J. Solid-State Circuits 50, 597–609 (2015).Article

Tousi,Y。&Afshari,E。一种用于太赫兹CMOS集成系统的高功率可扩展二维相控阵。IEEE J.固态电路50597–609(2015)。文章

ADS

广告

Google Scholar

谷歌学者

Che, M. et al. Optoelectronic THz-wave beam steering by arrayed photomixers with integrated antennas. IEEE Photon. Technol. Lett. 32, 979–982 (2020).Article

Che,M.等人。用集成天线阵列光电混合器控制太赫兹波光束。IEEE光子。技术。利特。32979-982(2020)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).Article

Sengupta,K.,Nagatsuma,T。和Mittleman,D.M。太赫兹集成电子和混合电子-光子系统。自然电子。。文章

Google Scholar

谷歌学者

Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).Article

Zeng,Y。等人。具有谷边模式的电泵浦拓扑激光器。自然578246-250(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).Article

Shalaev,M.I.,Walasik,W.,Tsukernik,A.,Xu,Y。&Litchinitser,N.M。在电信波长的光子晶体中,稳健的拓扑保护传输。自然纳米技术。14,31-34(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).Article

Gao,F。等人。谷光子晶体中稳健扭结态的拓扑保护折射。自然物理。14140-144(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Dong, J.-W., Chen, X.-D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).Article

Dong,J.-W.,Chen,X.-D.,Zhu,H.,Wang,Y。&Zhang,X。Valley光子晶体用于控制自旋和拓扑结构。自然物质。16298-302(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).Article

Ma,T。&Shvets,G。All Si valley Hall光子拓扑绝缘体。新J.Phys。18025012(2016)。文章

ADS

广告

Google Scholar

谷歌学者

Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photon. 14, 446–451 (2020).Article

Yang,Y。等人。用于片上通信的太赫兹拓扑光子学。自然光子。14446-451(2020)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Kumar, A. et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun. 13, 5404 (2022).Article

Kumar,A。等人。光可调谐芯片规模拓扑光子学:用于THz 6G通信的160 Gbps波导和解复用器。国家公社。135404(2022年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jia, R. et al. Valley-conserved topological integrated antenna for 100-Gbps THz 6G wireless. Sci. Adv. 9, eadi8500 (2023).Article

Jia,R.等人。用于100 Gbps THz 6G无线的Valley保守拓扑集成天线。科学。Adv.9,eadi8500(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hatsugai, Y. Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851–11862 (1993).Article

Hatsugai,Y。整数量子霍尔效应中的边缘态和布洛赫函数的黎曼表面。物理。B版4811851–11862(1993)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Balanis, C. A. Modern Antenna Handbook (Wiley, 2011).Sen, P., Siles, J. V., Thawdar, N. & Jornet, J. M. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nat. Electron. 6, 164–175 (2023).Article

Balanis,C.A.《现代天线手册》(Wiley,2011)。Sen,P.,Siles,J.V.,Thawdar,N。&Jornet,J.M。用于无线回程应用的多公里和千兆每秒的亚太赫兹通信。自然电子。6164-175(2023)。文章

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe acknowledge the support from the National Research Foundation (NRF) Singapore, grant no. NRF-CRP23-2019-0005 (TERACOMM). G.D. and P.S. acknowledge the characterization testbeds supported by the France 2030 programmes, PEPR (Programmes et Equipements Prioritaires pour la Recherche) and CPER Wavetech.

下载参考文献致谢我们感谢新加坡国家研究基金会(NRF)的支持,批准号为NRF-CRP23-2019-0005(TERACOMM)。G、 D.和P.S.感谢法国2030计划、PEPR(计划和设备优先研究)和CPER Wavetech支持的表征试验台。

The PEPR is operated by the Agence Nationale de la Recherche (ANR), under the grants ANR-22-PEEL-0006 (FUNTERA, PEPR ‘Electronics’) and ANR-22-PEFT-0006 (NF-SYSTERA, PEPR 5 G and beyond—Future Networks). The Contrat de Plan Etat-Region (CPER) WaveTech is supported by the Ministry of Higher Education and Research, the Hauts-de-France Regional Council, the Lille European Metropolis (MEL), the Institute of Physics of the French National Centre for Scientific Research (CNRS) and the European Regional Development Fund (ERDF).Author informationAuthors and AffiliationsDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, SingaporeWenhao Wang, Yi Ji Tan, Thomas CaiWei Tan, Abhishek Kumar & Ranjan SinghCentre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, SingaporeWenhao Wang, Yi Ji Tan, Thomas CaiWei Tan, Abhishek Kumar & Ranjan SinghInstitute of Microelectronics, Agency for Science, Technology and Research, Singapore, SingaporePrakash PitchappaUniversité de Lille, CNRS, UMR 8523 - PhLAM, Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, FrancePascal SzriftgiserUniversité de Lille, CNRS, UMR 8520 - IEMN, Institut d’Electronique, Microélectronique et Nanotechnologie, Lille, FranceGuillaume DucournauDepartment of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA.

PEPR由Nationale de la Recherche(ANR)在ANR-22-PEEL-0006(FUNTERA,PEPR“Electronics”)和ANR-22-PEFT-0006(NF-SYSTERA,PEPR 5G和beyond Future Network)的资助下运营。高等教育和研究部、法兰西上州区域委员会、里尔欧洲大都会(MEL)、法国国家科学研究中心(CNRS)物理研究所和欧洲区域发展基金(ERDF)支持计划-埃塔特地区(CPER)WaveTech。作者信息作者和附属机构新加坡南洋理工大学物理与数学科学学院物理与应用物理系,新加坡王文浩,Tan Yi Ji Tan,Thomas CaiWei Tan,Abhishek Kumar&Ranjan SinghCentre for Disruptive Photonics Technologies,The Photonics Institute,Nanyang Technology University,Singapore,Wenhao Wang,Tan Yi Ji Tan,Thomas CaiWei Tan,Abhishek Kumar&Ranjan SinghInstitute of Microelectronics,Agency for Science,Technology and Research,Singapore Prakash PitchapparUniversitéde Lille,CNRS,里尔环礁和分子,里尔,法国巴黎大学里尔分校,CNRS,UMR 8520-IEMN,电子研究所,微电子和纳米技术,里尔,法国巴黎大学,电子工程系,圣母大学,圣母大学,美国印第安纳州。

PubMed Google ScholarYi Ji TanView author publicationsYou can also search for this author in

PubMed Google ScholarYi Ji TanView作者出版物您也可以在

PubMed Google ScholarThomas CaiWei TanView author publicationsYou can also search for this author in

PubMed Google ScholarThomas CaiWei TanView作者出版物您也可以在

PubMed Google ScholarAbhishek KumarView author publicationsYou can also search for this author in

PubMed Google ScholarAbhishek KumarView作者出版物您也可以在

PubMed Google ScholarPrakash PitchappaView author publicationsYou can also search for this author in

PubMed Google ScholarPrakash PitchappaView作者出版物您也可以在

PubMed Google ScholarPascal SzriftgiserView author publicationsYou can also search for this author in

PubMed Google ScholarPascal Szritgiserview作者出版物您也可以在

PubMed Google ScholarGuillaume DucournauView author publicationsYou can also search for this author in

PubMed Google ScholarGuillaume DucournauView作者出版物您也可以在

PubMed Google ScholarRanjan SinghView author publicationsYou can also search for this author in

PubMed Google ScholarRanjan SinghView作者出版物您也可以在

PubMed Google ScholarContributionsW.W. and R.S. conceived the idea; W.W., Y.J.T., A.K. and R.S. designed the experiments; W.W. performed the simulation; Y.J.T. performed the NN-assisted inverse design of the topological beamformers; P.P. fabricated a portion of the intrinsic AB-type topological beamformer samples; T.C.T.

PubMed谷歌学术贡献软件。W、 R.S.构思了这个想法;W、 W.,Y.J.T.,A.K.和R.S.设计了实验;W、 W.进行了模拟;Y、 ;P、 P.制造了一部分固有的AB型拓扑波束形成器样品;T、 C.T。

led the overall sample fabrication; W.W. performed the on-chip transmission and two-dimensional radiation pattern measurements with the help of T.C.T.; W.W. and R.S. designed the phototunable beamforming experiment; W.W. performed the active tuning measurements with the help of T.C.T.; G.D. performed the vector network analyser transmission, antenna gain and 3D radiation pattern measurements; P.S.

领导整体样品制作;W、 W.在T.C.T.的帮助下进行了片上传输和二维辐射模式测量。;W、 W.和R.S.设计了光可调谐波束形成实验;W、 W.在T.C.T.的帮助下进行了主动调谐测量。;G、 D.进行矢量网络分析仪传输、天线增益和3D辐射方向图测量;P、 S。

and G.D. performed THz wireless communication experiments; W.W., Y.J.T., A.K., G.D. and R.S. analysed all the data; W.W. and R.S. wrote the paper with inputs from all co-authors; and R.S. led the overall project.Corresponding authorCorrespondence to.

和G.D.进行了THz无线通信实验;W、 W.,Y.J.T.,A.K.,G.D.和R.S.分析了所有数据;W、 W.和R.S.在所有合著者的投入下撰写了这篇论文;R.S.领导了整个项目。对应作者对应。

Ranjan Singh.Ethics declarations

兰扬·辛格。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature thanks Yasaman Ghasempour, Jianwei Wang and Daniel van der Weide for their contribution to the peer review of this work. Peer reviewer reports are available.

Nature感谢Yasaman Ghasempour、王建伟和Daniel van der Weide为这项工作的同行评审做出的贡献。同行评审报告可供查阅。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Topological power splitters.Optical images of four-channel (4-CH) a AB-type and b BA-type topological power splitters.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1拓扑功率分配器。四通道(4-CH)a AB型和b BA型拓扑功分器的光学图像。

Type A (B) VPC unit cell is highlighted with a purple (orange) color. The AB-type and BA-type zigzag interfaces are marked with red and blue dotted lines, respectively. The 4-CH AB-type (BA-type) power splitter is composed of an AB-type (BA-type) zigzag interface on the left channel CH 1 and three BA-type (AB-type) zigzag interfaces on the right channels CHs 2-4.Extended Data Fig.

A(B)型专有网络单元以紫色(橙色)突出显示。AB型和BA型之字形界面分别用红色和蓝色虚线标记。4通道AB型(BA型)功分器由左通道CH 1上的AB型(BA型)之字形接口和右通道CHs 2-4上的三个BA型(AB型)之字形接口组成。扩展数据图。

2 Intrinsic broadband topological waveguide phased arrays.Simulated a (c) transmission and b (d) phase of the 16 radiating channels of AB- (BA-) type four-stage topological beamformer. The 16 channels of AB- (BA-) type beamformer have similar transmission while showing intrinsic π (0) phase difference between adjacent channels over the entire broad bandwidth of 26.5 GHz (18.9 GHz).

2固有宽带拓扑波导相控阵。。AB-(BA)型波束形成器的16个通道具有相似的传输,同时在26.5 GHz(18.9 GHz)的整个宽带上显示相邻通道之间的固有π(0)相位差。

e Simulated and measured transmission of BA-type topological beamformers having different numbers of tapers by summing the transmission of all the channels. The shaded gray area of the measured transmission spectrum indicates the standard error.Extended Data Fig. 3 Optical images of AB-type topological beamformers.The optical images show the evolution of the AB-type topological beamformers from the zero-stage having 20 = 1 output taper to four-stage having 24 = 16 output tapers.Extended Data Fig.

。测量的透射光谱的阴影灰色区域表示标准误差。扩展数据图3 AB型拓扑波束形成器的光学图像。光学图像显示了AB型拓扑波束形成器从具有20 =1输出锥度的零级到具有24 =16输出锥度的四级的演变。扩展数据图。

4 Evolution of the far-field radiation pattern of intrinsic AB-type topological beamformer with the stage number.a,b,c Measured and simulated azimuthal radiation patterns of the intrinsic AB-type two-.

4本征AB型拓扑波束形成器远场辐射方向图随级数的演变。a,b,c测量和模拟了本征AB型2-的方位辐射方向图。

Nature 632, 522–527 (2024). https://doi.org/10.1038/s41586-024-07759-5Download citationReceived: 02 April 2024Accepted: 26 June 2024Published: 14 August 2024Issue Date: 15 August 2024DOI: https://doi.org/10.1038/s41586-024-07759-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

自然632522-527(2024)。https://doi.org/10.1038/s41586-024-07759-5Download引文接收日期:2024年4月2日接受日期:2024年6月26日发布日期:2024年8月14日发布日期:2024年8月15日OI:https://doi.org/10.1038/s41586-024-07759-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。