EN
登录

CHD家族基因的分子特征及其致癌作用——基于生物信息学和生物学分析的泛癌分析

Molecular characteristics and oncogenic role of CHD family genes: a pan-cancer analysis based on bioinformatic and biological analysis

Nature 等信源发布 2024-08-15 09:56

可切换为仅中文


AbstractChromodomain helicase DNA-binding protein (CHD) gene family, an ATP (adenosine triphosphate) -dependent chromatin remodeler family, is involved in multiple developmental process and tumor development. However, there have been none pan-cancer analyses of this family. The expression levels, survival profiles, mutation profiles and immune infiltration of the CHD family genes from TCGA and TARGET database were analyzed using online tools or R packages.

摘要染色体结构域解旋酶DNA结合蛋白(CHD)基因家族是一个依赖ATP(三磷酸腺苷)的染色质重塑家族,参与多种发育过程和肿瘤的发展。但是,尚未对该家族进行泛癌分析。使用在线工具或R软件包分析了来自TCGA和TARGET数据库的CHD家族基因的表达水平,存活谱,突变谱和免疫浸润。

Interestingly, all types of CHD gene expressions were associated with the prognosis of Neuroblastoma, Acute lymphoblastic leukemia-Phase 3 and Acute Myeloid Leukemia (All P < 0.05). Knock down of CHD7 and CHD9 in K562 (human erythromyeloblastoid leukemia) and HEC-1-B (human endometrial adenocarcinoma) cells significantly inhibit cell proliferation and migration (P < 0.05).

有趣的是,所有类型的CHD基因表达均与神经母细胞瘤,急性淋巴细胞白血病3期和急性髓细胞白血病的预后相关(均P<0.05)。敲除K562(人红髓母细胞白血病)和HEC-1-B(人子宫内膜腺癌)细胞中的CHD7和CHD9可显着抑制细胞增殖和迁移(P<0.05)。

Proliferation, colony formation and migration assays were performed in CHD7 and CHD9 knockdown K562 and HBC-1-B cell lines. Mechanisms were also analyzed by PPI and GO ontology for our experiments. Histone modification, especially the methylation of H3K4, might be involved in CHD7 and CHD9 related oncogenesis.

在CHD7和CHD9敲低的K562和HBC-1-B细胞系中进行增殖,集落形成和迁移测定。。组蛋白修饰,特别是H3K4的甲基化,可能与CHD7和CHD9相关的肿瘤发生有关。

Through bioinformatic analysis, we showed CHD genes significantly affected the prognosis of different tumor types, including childhood tumor. Our findings provide new insights into the function and mechanism of CHD gene family, especially in CHD7 and CHD9..

通过生物信息学分析,我们发现CHD基因显着影响不同肿瘤类型的预后,包括儿童肿瘤。我们的发现为CHD基因家族的功能和机制提供了新的见解,尤其是在CHD7和CHD9中。。

IntroductionThe CHD (chromosome domain helicase DNA binding protein) gene family is categorized within the adenosine triphosphate (ATP)-dependent chromatin remodeler family, overseeing chromatin remodeling, as indicated by its nomenclature. This family comprises ATP-dependent chromatin remodelers that play indispensable roles in diverse developmental processes.

引言CHD(染色体结构域解旋酶DNA结合蛋白)基因家族被归类为三磷酸腺苷(ATP)依赖性染色质重塑家族,监督染色质重塑,如其命名法所示。该家族包括ATP依赖性染色质重塑剂,它们在不同的发育过程中起着不可或缺的作用。

ATP-dependent chromatin remodeling complexes fall into four subfamilies: switching/sucrose nonfermenting (SWI-SNF), imitation switch (ISWI), CHD, and inositol-requiring 80 (INO80). These subfamilies share a conserved ATPase-containing domain, utilizing ATP hydrolysis to modulate histone-DNA interactions, thereby contributing significantly to organ development and cancer pathogenesis1.

ATP依赖的染色质重塑复合物分为四个亚家族:开关/蔗糖非发酵(SWI-SNF),模拟开关(ISWI),CHD和肌醇需要80(INO80)。这些亚家族共享一个保守的含ATPase的结构域,利用ATP水解来调节组蛋白-DNA相互作用,从而对器官发育和癌症发病机制做出重大贡献1。

The CHD gene family exerts its functional impact by binding to chromatin, influencing transcription activation, and modulating the epigenome through chromatin remodeling processes.While substantial investigations have been conducted on the CHD gene family across diverse cancer types, a comprehensive pan-cancer analysis of the entire CHD gene family is lacking.

CHD基因家族通过与染色质结合,影响转录激活以及通过染色质重塑过程调节表观基因组来发挥其功能影响。尽管已经对不同癌症类型的冠心病基因家族进行了大量研究,但缺乏对整个冠心病基因家族的全面泛癌分析。

Despite the considerable volume of recent cancer studies, the mechanisms by which the CHD gene family influences tumorigenesis and progression, particularly for newly discovered members, remained insufficiently elucidated. For instance, CHD1, identified in 1993, plays crucial roles in various tumors, notably prostate and breast cancers2,3,4.

尽管最近进行了大量的癌症研究,但CHD基因家族影响肿瘤发生和发展的机制,特别是对于新发现的成员,仍未得到充分阐明。例如,1993年发现的CHD1在各种肿瘤中起着至关重要的作用,尤其是前列腺癌和乳腺癌2,3,4。

In contrast, CHD9, reported since 2005, has received limited attention regarding its functions in cancer5. Moreover, the mechanisms of the CHD family are diverse, encompassing distinct cell fates and signal pathways. For example, CHD1 in ovarian cancer interacts with miR-30a-5p, inhibiting the Wnt/β-catenin signaling pathway6.

相比之下,自2005年以来报道的CHD9在癌症中的功能受到的关注有限5。此外,冠心病家族的机制多种多样,包括不同的细胞命运和信号通路。例如,卵巢癌中的CHD1与miR-30a-5p相互作用,抑制Wnt/β-连环蛋白信号通路6。

CHD4 promote.

CHD4升级。

Pan-cancer expression profiles of CHD gene familyInitially, an exhaustive analysis of the expression levels of the CHD gene family was conducted across all 33 cancers within TCGA (The Cancer Genome Atlas) database in comparison to control samples. Gene expression data and DEGs (Differentially Expressed Genes) between cancers and normal tissues were shown using the parameter of log2FC > 1, q value cut-off = 0.01 with ANOVA method.

。使用ANOVA方法,使用log2FC>1,q值截止值=0.01的参数显示癌症和正常组织之间的基因表达数据和DEG(差异表达基因)。

Strikingly, among these cancers, the expression of CHD5 exhibited a very low level (Figure S1A). Further scrutiny focused on cancer types with more than five normal controls in TCGA (Figure S1B-J). Utilizing the GEPIA2 tools, which merges normal controls from TCGA and the GTEx database as its input controls, generated preferable gene expression data for the CHD gene family (Fig. 1).

。进一步的审查集中在TCGA中有五个以上正常对照的癌症类型(图S1B-J)。利用GEPIA2工具,将TCGA的正常对照和GTEx数据库合并为其输入对照,为CHD基因家族生成了更好的基因表达数据(图1)。

In-depth examination revealed distinctive expression patterns for each member. For instance, CHD1 showed significant up-regulation in THYM (Thymoma) but down-regulation in LUSC (Lung Squamous Cell Carcinoma), OV (Ovarian Cancer), TGCT (Testicular Cancer), UCEC (Uterine Corpus Endometrial Cancer) and UCS (Uterine Carcinosarcoma) (Fig. 1a).

深入检查发现每个成员都有独特的表达模式。例如,CHD1在胸腺(胸腺瘤)中显示出显着的上调,但在LUSC(肺鳞状细胞癌),OV(卵巢癌),TGCT(睾丸癌),UCEC(子宫体子宫内膜癌)和UCS(子宫癌)中显示出下调肉瘤)(图1a)。

Similarly, CHD2 displayed parallel trends, being up-regulated in THYM and down-regulated in LUSC, OV, SKCM (Melanoma), UCEC and UCS (Fig. 1b). CHD3 exhibited up-regulation in LAML (Acute Myeloid Leukemia), PAAD (Pancreatic Cancer) and THYM, contrasted by down-regulation in CESC (Cervical Cancer), COAD (Colon Cancer), GBM (Glioblastoma), KICH (Kidney Chromophobe), OV, READ (Rectal Cancer), TGCT, THCA (Thyroid Cancer), UCEC and UCS (Fig. 1c).

同样,CHD2显示出平行的趋势,在胸腺中上调,在LUSC,OV,SKCM(黑色素瘤),UCEC和UCS中下调(图1b)。CHD3在LAML(急性骨髓性白血病),PAAD(胰腺癌)和THYM中表现出上调,而在CESC(宫颈癌),COAD(结肠癌),GBM(胶质母细胞瘤),KICH(肾嫌色细胞),OV,READ(直肠癌),TGCT,THCA(甲状腺癌),UCEC和UCS中则下调(图1c)。

CHD4, conversely, demonstrated significant up-regulation in DLBC (Large B-cell Lymphoma), GBM, LGG (Lower Grade Glioma), PAAD and THYM (Fig. 1d). Noteworthy was the down-regulation of CHD5 in GB.

相反,CHD4在DLBC(大B细胞淋巴瘤),GBM,LGG(低级胶质瘤),PAAD和胸腺中表现出显着的上调(图1d)。值得注意的是GB中CHD5的下调。

PPI network was generated with STRING database and modified by Cytoscape software (version 3.9.1). The confidence score cutoff was set to 0.4 and the top 100 proteins interacted with CHD7 or CHD9 were chosen to intersect with DEGs (fold changes > 2 and P value < 0.01) downloaded from GEPIA2 in LAML, UCEC and UCS, respectively (Table S1).

PPI网络由STRING数据库生成,并由Cytoscape软件(版本3.9.1)修改。置信度得分截止值设置为0.4,选择与CHD7或CHD9相互作用的前100个蛋白质与分别从LAML,UCEC和UCS中的GEPIA2下载的DEG相交(倍数变化>2和P值<0.01)(表S1)。

Up-regulated and down-regulated intersecting DEGs in above cancers were calculated respectively (Table S2). The intersecting DEGs were shown in Venn diagram as well and used to perform GO analysis.Gene Ontology (GO) analysis of intersecting genesGene ontology analysis was performed by R package “clusterProfiler” (version 4.2.1) with identified DEGs from Venn diagram.

分别计算上述癌症中上调和下调的交叉DEG(表S2)。相交的DEG也显示在维恩图中,并用于执行GO分析。交叉基因的基因本体论(GO)分析基因本体论分析由R软件包“clusterProfiler”(版本4.2.1)进行,并从维恩图中识别出DEG。

The adjusted P value < 0.01 was thought to be significant. Biological process (BP), cellular component (CC) and molecular function (MF) sub-ontology were all enriched. Up-regulated DEGs and down-regulated DEGs were enriched separately..

调整后的P值<0.01被认为是显着的。生物过程(BP),细胞成分(CC)和分子功能(MF)子本体都得到了丰富。上调的DEG和下调的DEG分别富集。。

Data availability

数据可用性

All the data used in this paper were downloaded from GDC TCGA database and GDC TARGET database (https://xenabrowser.net/datapages) 36.

本文使用的所有数据均从GDC TCGA数据库和GDC TARGET数据库下载(https://xenabrowser.net/datapages)36页。

AbbreviationsACC:

缩写ACC:

Adrenocortical carcinoma

肾上腺皮质癌

BLCA:

BLCA:

Bladder Urothelial Carcinoma

膀胱尿路上皮癌

BRCA:

BRCA:

Breast invasive carcinoma

乳腺浸润癌

CESC:

CESC:

Cervical squamous cell carcinoma and endocervical adenocarcinoma

宫颈鳞状细胞癌和宫颈腺癌

CHOL:

乔尔:

Cholangio carcinoma

COAD:

COAD:

Colon adenocarcinoma

结肠腺癌

DLBC:

DLBC:

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

淋巴肿瘤弥漫性大B细胞淋巴瘤

ESCA:

ESCA:

Esophageal carcinoma

食管癌

GBM:

GBM:

Glioblastoma multiforme

多形性胶质母细胞瘤

HNSC:

HNSC:

Head and Neck squamous cell carcinoma

头颈部鳞状细胞癌

KICH:

基奇:

Kidney Chromophobe

肾嫌色细胞

KIRC:

柯克:

Kidney renal clear cell carcinoma

肾透明细胞癌

KIRP:

唧唧:

Kidney renal papillary cell carcinoma

肾乳头状细胞癌

LAML:

拉姆尔:

Acute Myeloid Leukemia

急性骨髓性白血病

LGG:

LGG:

Brain Lower Grade Glioma

脑低级别胶质瘤

LIHC:

LIHC公司:

Liver hepatocellular carcinoma

肝细胞肝癌

LUAD:

鲁德:

Lung adenocarcinoma

肺腺癌

LUSC:

LUSC:

Lung squamous cell carcinoma

肺鳞状细胞癌

MESO:

中观:

Mesothelioma

间皮瘤

OV:

OV:

Ovarian serous cystadenocarcinoma

卵巢浆液性囊腺癌

PAAD:

路径:

Pancreatic adenocarcinoma

胰腺癌

PCPG:

PCPG:

Pheochromocytoma and Paraganglioma

嗜铬细胞瘤和副神经节瘤

PRAD:

PRAD:

Prostate adenocarcinoma

前列腺腺癌

READ:

阅读:

Rectum adenocarcinoma

直肠腺癌

SARC:

SARC公司:

Sarcoma

肉瘤

SKCM:

SKCM:

Skin cutaneous melanoma

皮肤黑色素瘤

STAD:

STAD:

Stomach adenocarcinoma

胃腺癌

TGCT:

TGCT:

Testicular germ cell tumors

睾丸生殖细胞肿瘤

THCA:

THCA:

Thyroid carcinoma

甲状腺癌

THYM:

百里香:

Thymoma

胸腺瘤

UCEC:

UCEC:

Uterine Corpus Endometrial Carcinoma

子宫体子宫内膜癌

UCS:

UCS:

Uterine Carcinosarcoma

子宫癌肉瘤

UVM:

UVM:

Uveal melanoma

葡萄膜黑色素瘤

ALL-P3:

ALL-P3:

Acute lymphoblastic leukemia-Phase 3

急性淋巴细胞白血病3期

AML:

反洗钱:

Acute Myeloid Leukemia

急性骨髓性白血病

CCSK:

CCSK:

Clear cell sarcoma of the kidney

肾透明细胞肉瘤

NBL:

NBL:

Neuroblastoma

神经母细胞瘤

OS:

操作系统:

Osteosarcoma

骨肉瘤

RT:

室温:

Rhabdoid tumor

横纹肌样瘤

WT:

重量:

Wilms tumor

肾母细胞瘤

ReferencesReyes, A. A., Marcum, R. D. & He, Y. Structure and function of chromatin remodelers. J. Mol. Biol. 433, 166929. https://doi.org/10.1016/j.jmb.2021.166929 (2021).Article

参考文献Reyes,A.A.,Marcum,R.D。和He,Y。染色质重塑剂的结构和功能。J、 分子生物学。43316929年。https://doi.org/10.1016/j.jmb.2021.166929(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Delmas, V., Stokes, D. G. & Perry, R. P. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl. Acad. Sci. USA 90, 2414–2418. https://doi.org/10.1073/pnas.90.6.2414 (1993).Article

Delmas,V.,Stokes,D.G。&Perry,R.P。一种哺乳动物DNA结合蛋白,含有一个染色体结构域和一个SNF2/SWI2样解旋酶结构域。程序。纳特尔。阿卡德。科学。美国902414-2418。https://doi.org/10.1073/pnas.90.6.2414(1993年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H., Gigi, L. & Zhao, D. CHD1, a multifaceted epigenetic remodeler in prostate cancer. Front Oncol. 13, 1123362. https://doi.org/10.3389/fonc.2023.1123362 (2023).Article

Li,H.,Gigi,L。&Zhao,D。CHD1,前列腺癌的多方面表观遗传重塑剂。前部Oncol。131123362。https://doi.org/10.3389/fonc.2023.1123362(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488. https://doi.org/10.1038/nature21357 (2017).Article

赵,D。等。染色质重塑因子CHD1在PTEN缺陷型癌症中的合成重要性。自然542484-488。https://doi.org/10.1038/nature21357(2017年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shur, I. & Benayahu, D. Characterization and functional analysis of CReMM, a novel chromodomain helicase DNA-binding protein. J. Mol. Biol. 352, 646–655. https://doi.org/10.1016/j.jmb.2005.06.049 (2005).Article

Shur,I。&Benayahu,D。新型色域解旋酶DNA结合蛋白CReMM的表征和功能分析。J、 分子生物学。352646-655。https://doi.org/10.1016/j.jmb.2005.06.049(2005年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. MiR-30a-5p/CHD1 axis enhances cisplatin sensitivity of ovarian cancer cells via inactivating the Wnt/beta-catenin pathway. Anticancer Drugs 33, 989–998. https://doi.org/10.1097/CAD.0000000000001397 (2022).Article

Wang,X。等人。MiR-30a-5p/CHD1轴通过失活Wnt/β-连环蛋白途径增强卵巢癌细胞对顺铂的敏感性。抗癌药物33989-998。https://doi.org/10.1097/CAD.0000000000001397(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Y. et al. CHD4 mutations promote endometrial cancer stemness by activating TGF-beta signaling. Am. J. Cancer Res. 8, 903–914 (2018).CAS

Li,Y。等人。CHD4突变通过激活TGF-β信号传导促进子宫内膜癌干性。Am.J.Cancer Res.8903-914(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Y. et al. CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors. Cancer Res. 80, 3880–3891. https://doi.org/10.1158/0008-5472.CAN-20-1049 (2020).Article

Wang,Y。等人。CHD4作为缺氧诱导因子的共激活因子促进乳腺癌进展。癌症研究803880-3891。https://doi.org/10.1158/0008-5472.CAN-20-1049(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, J., Lv, X., Wei, B., Gong, X. & Chen, L. CHD4 mediates SOX2 transcription through TRPS1 in luminal breast cancer. Cell Signal 100, 110464. https://doi.org/10.1016/j.cellsig.2022.110464 (2022).Article

。细胞信号100110464。https://doi.org/10.1016/j.cellsig.2022.110464(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Paul, S. et al. Chd5 requires PHD-mediated histone 3 binding for tumor suppression. Cell Rep. 3, 92–102. https://doi.org/10.1016/j.celrep.2012.12.009 (2013).Article

Paul,S.等人Chd5需要PHD介导的组蛋白3结合才能抑制肿瘤。细胞代表3,92-102。https://doi.org/10.1016/j.celrep.2012.12.009(2013年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Badodi, S. et al. Convergence of BMI1 and CHD7 on ERK signaling in medulloblastoma. Cell Rep. 21, 2772–2784. https://doi.org/10.1016/j.celrep.2017.11.021 (2017).Article

Badodi,S.等人。BMI1和CHD7在髓母细胞瘤中对ERK信号传导的趋同。细胞代表212772-2784。https://doi.org/10.1016/j.celrep.2017.11.021(2017年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, M., Ding, N., Zhuang, S. & Li, Y. LINC01410/miR-23c/CHD7 functions as a ceRNA network to affect the prognosis of patients with endometrial cancer and strengthen the malignant properties of endometrial cancer cells. Mol. Cell Biochem. 469, 9–19. https://doi.org/10.1007/s11010-020-03723-9 (2020).Article .

Lu,M.,Ding,N.,Zhuang,S。&Li,Y。LINC01410/miR-23c/CHD7作为ceRNA网络起作用,影响子宫内膜癌患者的预后并增强子宫内膜癌细胞的恶性特性。分子细胞生物化学。469,9-19。https://doi.org/10.1007/s11010-020-03723-9(2020年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rother, M. B. et al. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nat. Commun. 11, 5775. https://doi.org/10.1038/s41467-020-19502-5 (2020).Article

Rother,M.B.等人,CHD7和53BP1调节DNA双链断裂重新连接的不同途径。国家公社。115775年。https://doi.org/10.1038/s41467-020-19502-5(2020年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Durak, O. et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci. 19, 1477–1488. https://doi.org/10.1038/nn.4400 (2016).Article

Durak,O。等人,Chd8通过细胞周期的转录调控和Wnt信号传导介导皮质神经发生。自然神经科学。191477-1488年。https://doi.org/10.1038/nn.4400(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nishiyama, M., Skoultchi, A. I. & Nakayama, K. I. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-beta-catenin signaling pathway. Mol. Cell Biol. 32, 501–512. https://doi.org/10.1128/MCB.06409-11 (2012).Article

Nishiyama,M.,Skoultchi,A.I。和Nakayama,K.I。CHD8募集组蛋白H1对于抑制Wntβ-连环蛋白信号通路至关重要。分子细胞生物学。。https://doi.org/10.1128/MCB.06409-11(2012年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sawada, G. et al. CHD8 is an independent prognostic indicator that regulates Wnt/beta-catenin signaling and the cell cycle in gastric cancer. Oncol. Rep. 30, 1137–1142. https://doi.org/10.3892/or.2013.2597 (2013).Article

Sawada,G。等人CHD8是一种独立的预后指标,可调节Wnt/β-连环蛋白信号传导和胃癌细胞周期。Oncol公司。代表301137–1142。https://doi.org/10.3892/or.2013.2597(2013年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feng, W. et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun. 8, 14758. https://doi.org/10.1038/ncomms14758 (2017).Article

Feng,W。等人。通过激活神经元分化程序,Chd7对于哺乳动物的大脑发育是必不可少的。国家公社。814758页。https://doi.org/10.1038/ncomms14758(2017年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia, T., Pan, Z. & Zhang, J. CircPDZD8 promotes gastric cancer progression by regulating CHD9 via sponging miR-197-5p. Aging (Albany, NY) 12, 19352–19364. https://doi.org/10.18632/aging.103805 (2020).Article

Xia,T.,Pan,Z。&Zhang,J。CircPDZD8通过海绵状miR-197-5p调节CHD9来促进胃癌进展。老龄化(纽约州奥尔巴尼)1219352-19364。https://doi.org/10.18632/aging.103805(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mardinian, K., Adashek, J. J., Botta, G. P., Kato, S. & Kurzrock, R. SMARCA4: implications of an altered chromatin-remodeling gene for cancer development and therapy. Mol. Cancer Ther. 20, 2341–2351. https://doi.org/10.1158/1535-7163.MCT-21-0433 (2021).Article

Mardinian,K.,Adashek,J.J.,Botta,G.P.,Kato,S。&Kurzrock,R.SMARCA4:染色质重塑基因改变对癌症发展和治疗的影响。分子癌症治疗。202341-2351。https://doi.org/10.1158/1535-7163.MCT-21-0433(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fabian, J. et al. GRHL1 acts as tumor suppressor in neuroblastoma and is negatively regulated by MYCN and HDAC3. Cancer Res. 74, 2604–2616. https://doi.org/10.1158/0008-5472.CAN-13-1904 (2014).Article

Fabian,J。等人,GRHL1在神经母细胞瘤中起肿瘤抑制剂的作用,并受MYCN和HDAC3的负调控。癌症研究742604-2616。https://doi.org/10.1158/0008-5472.CAN-13-1904。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, Y. et al. EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by up-regulating cell cycle related genes in lung cancer. Cell Death Dis. 12, 430. https://doi.org/10.1038/s41419-021-03721-9 (2021).Article

He,Y。等人。EGFR-ERK诱导的GRHL1激活通过上调肺癌中的细胞周期相关基因来促进细胞周期进程。细胞死亡Dis。12430页。https://doi.org/10.1038/s41419-021-03721-9(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shang, S. et al. TRIB3 reduces CD8(+) T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci. Transl. Med. 14, eabf0992. https://doi.org/10.1126/scitranslmed.abf0992 (2022).Article

Shang,S。等人,TRIB3通过抑制结直肠癌中的STAT1-CXCL10轴来减少CD8(+)T细胞浸润并诱导免疫逃避。科学。翻译。医学14,eabf0992。https://doi.org/10.1126/scitranslmed.abf0992(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, J. J. et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat. Commun. 11, 3660. https://doi.org/10.1038/s41467-020-17385-0 (2020).Article

Yu,J。J。等人。TRIB3-EGFR相互作用促进肺癌进展并定义治疗靶标。国家公社。113660。https://doi.org/10.1038/s41467-020-17385-0(2020年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, J. M. et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat. Commun. 10, 5720. https://doi.org/10.1038/s41467-019-13700-6 (2019).Article

Yu,J.M.等人,TRIB3通过抑制FOXO1降解和增强SOX2转录来支持乳腺癌干性。国家公社。105720年。https://doi.org/10.1038/s41467-019-13700-6(2019年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Filippou, P. S., Karagiannis, G. S. & Constantinidou, A. Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 39, 2040–2054. https://doi.org/10.1038/s41388-019-1124-8 (2020).Article

Filippou,P.S.,Karagiannis,G.S。和Constantinidou,A。Midkine(MDK)生长因子:癌症进展的关键参与者和有希望的治疗靶点。癌基因392040-2054。https://doi.org/10.1038/s41388-019-1124-8(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Z. et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat. Commun. 12, 6500. https://doi.org/10.1038/s41467-021-26770-2 (2021).Article

Wang,Z.等。用单细胞RNA测序破译人肺腺癌的细胞谱系规范。国家公社。126500。https://doi.org/10.1038/s41467-021-26770-2(2021年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. et al. TXNRD1: A key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro. Oxid. Med. Cell Longev. 2021, 7674565. https://doi.org/10.1155/2021/7674565 (2021).Article

Liu,S。等人。TXNRD1:一种参与体外半胱氨酸耗竭诱导的CML细胞铁浓化的关键调节剂。氧化剂。。。https://doi.org/10.1155/2021/7674565(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weng, M. L. et al. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1alpha pathway suppression. Nat. Commun. 11, 1869. https://doi.org/10.1038/s41467-020-15795-8 (2020).Article

Weng,M.L.等人。禁食通过Fdft1介导的AKT/mTOR/HIF1alpha途径抑制抑制结直肠癌中的有氧糖酵解和增殖。国家公社。111869年。https://doi.org/10.1038/s41467-020-15795-8(2020年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bonilla, B., Hengel, S. R., Grundy, M. K. & Bernstein, K. A. RAD51 gene family structure and function. Annu. Rev. Genet. 54, 25–46. https://doi.org/10.1146/annurev-genet-021920-092410 (2020).Article

Bonilla,B.,Hengel,S.R.,Grundy,M.K。和Bernstein,K.A。RAD51基因家族结构和功能。年。Genet牧师。54,25-46。https://doi.org/10.1146/annurev-genet-021920-092410(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, Y. et al. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J. Clin. Invest. 131, e140837. https://doi.org/10.1172/JCI140837 (2021).Article

Fang,Y。等人MAL2通过抑制肿瘤抗原呈递来驱动乳腺癌的免疫逃避。J、 临床。投资。131,e140837。https://doi.org/10.1172/JCI140837(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jeong, J. et al. MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Rep. 37, 110160. https://doi.org/10.1016/j.celrep.2021.110160 (2021).Article

Jeong,J。等人,MAL2介导乳腺癌细胞中富含脂筏的膜突起内稳定的HER2信号复合物的形成。。https://doi.org/10.1016/j.celrep.2021.110160(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560. https://doi.org/10.1093/nar/gkz430 (2019).Article

Tang,Z.,Kang,B.,Li,C.,Chen,T。&Zhang,Z。GEPIA2:用于大规模表达谱分析和交互分析的增强型web服务器。核酸研究47,W556-W560。https://doi.org/10.1093/nar/gkz430(2019年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, T. et al. TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514. https://doi.org/10.1093/nar/gkaa407 (2020).Article

Li,T。等人。TIMER20用于分析肿瘤浸润性免疫细胞。核酸研究48,W509-W514。https://doi.org/10.1093/nar/gkaa407(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095 (2012).Article

Cerami,E。等人。cBio癌症基因组学门户:探索多维癌症基因组学数据的开放平台。癌症发现。2401-404。https://doi.org/10.1158/2159-8290.CD-12-0095(2012年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1. https://doi.org/10.1126/scisignal.2004088 (2013).Article

Gao,J。等人。使用cBioPortal对复杂癌症基因组学和临床概况进行综合分析。科学。信号6,pl1。https://doi.org/10.1126/scisignal.2004088(2013年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678. https://doi.org/10.1038/s41587-020-0546-8 (2020).Article

Goldman,M.J.等人。通过Xena平台可视化和解释癌症基因组学数据。。38675-678。https://doi.org/10.1038/s41587-020-0546-8(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Dr. Chuantao Fang for technical support of R scripts and Dr. Weijun Feng for advice of manuscripts. This work was supported by the Grant from National Natural Science Foundation of China (No. 82301840 to Jie Cheng).Author informationAuthor notesThese authors contributed equally: Yujia Lu, Jiebang Jiang and Zhihong He.Authors and AffiliationsShanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaYujia LuJiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, ChinaJiebang JiangDepartment of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaZhihong He & Zhouzhou BaoShanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaZhouzhou BaoDepartment of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, ChinaXin ChenCenter for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, ChinaXin ChenInstitute of Gastrointestinal Surgery and Translational Medicine, Tongji University, School of Medicine, Shanghai, ChinaXin ChenCenter for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaJie ChengShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, ChinaJie ChengAuthorsYujia LuView author publicationsYou can also search for this author in.

下载参考文献致谢我们感谢方川涛博士对R脚本的技术支持,以及冯伟军博士对稿件的建议。这项工作得到了国家自然科学基金(第82301840号给Jie Cheng)的资助。作者信息作者注意到这些作者做出了同样的贡献:陆玉嘉,蒋洁邦和何志红。,上海交通大学医学院仁济医院,上海,中国上海,上海辅助生殖与生殖遗传学重点实验室,上海,中国上海,Chengjie ChengAuthorsYujia LuView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarJiebang JiangView author publicationsYou can also search for this author in

PubMed谷歌学者Jiebang JiangView作者出版物您也可以在

PubMed Google ScholarZhihong HeView author publicationsYou can also search for this author in

PubMed Google ScholarZhihong HeView作者出版物您也可以在

PubMed Google ScholarZhouzhou BaoView author publicationsYou can also search for this author in

PubMed Google ScholarZhouzhou BaoView作者出版物您也可以在

PubMed Google ScholarXin ChenView author publicationsYou can also search for this author in

PubMed Google ScholarXin ChenView作者出版物您也可以在

PubMed Google ScholarJie ChengView author publicationsYou can also search for this author in

PubMed Google ScholarJie ChengView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization, Y.L. and J.C.; methodology, Y.L., J.J and Z.H.; software, X.C.; validation, J.J. and X.C; formal analysis, Z.H.; investigation, Y.L.; resources, Z.H.; data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, All authors; visualization, Z.H; supervision, Z.B, X.C and J.C.; project administration, Z.B, X.C and J.C.; funding acquisition, J.C.

PubMed谷歌学术贡献概念化,Y.L.和J.C。;方法论,Y.L.,J.J和Z.H。;软件,X.C。;验证,J.J.和X.C;形式分析,Z.H。;调查,Y.L。;资源,Z.H。;数据管理,Y.L。;撰写原稿准备,Y.L。;写作评论和编辑,所有作者;可视化,Z.H;监督,Z.B,X.C和J.C。;项目管理,Z.B,X.C和J.C。;。

All authors have read and agreed to the published version of the manuscript.Corresponding authorsCorrespondence to.

所有作者均已阅读并同意稿件的发布版本。通讯作者通讯。

Zhouzhou Bao, Xin Chen or Jie Cheng.Ethics declarations

周周宝、陈欣或程洁。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Table 1.Supplementary Table 2.Supplementary Table 3.Supplementary Table 4.Supplementary Table 5.Supplementary Figures.Rights and permissions.

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充表1。补充表2。补充表3。补充表4。补充表5。补充数字。权限和权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleLu, Y., Jiang, J., He, Z. et al. Molecular characteristics and oncogenic role of CHD family genes: a pan-cancer analysis based on bioinformatic and biological analysis.

转载和许可本文引用本文Lu,Y.,Jiang,J.,He,Z。等人。CHD家族基因的分子特征和致癌作用:基于生物信息学和生物学分析的泛癌分析。

Sci Rep 14, 18923 (2024). https://doi.org/10.1038/s41598-024-68644-9Download citationReceived: 01 March 2024Accepted: 25 July 2024Published: 15 August 2024DOI: https://doi.org/10.1038/s41598-024-68644-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1418923(2024)。https://doi.org/10.1038/s41598-024-68644-9Download引文接收日期:2024年3月1日接受日期:2024年7月25日发布日期:2024年8月15日OI:https://doi.org/10.1038/s41598-024-68644-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Keywords

关键词

CHD gene familyPan-cancerKnock downEpigenomeChildhood tumor

CHD基因家族癌基因敲除表观遗传机制良性肿瘤

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。