EN
登录

Glass和Pointed的协同激活促进果蝇眼盘中的神经元身份

Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc

Nature 等信源发布 2024-08-17 03:01

可切换为仅中文


AbstractThe integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1–R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass.

摘要外在信号与细胞内在转录因子的整合可以指导祖细胞分化为不同的细胞命运。在发育中的果蝇眼中,光感受器R1-R7的分化需要由转录因子介导的EGFR信号传导,我们的单细胞RNA-Seq分析表明,相同的光感受器需要眼睛特异性转录因子玻璃。

We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes.

我们发现玻璃的异位表达和EGFR信号的激活以一种指向依赖的方式协同诱导翼盘中的神经元基因表达。靶向DamID揭示了玻璃和尖头在发育中的光感受器的基因组中共享许多结合位点。与转录组学数据的比较表明,尖头和玻璃通过中间转录因子诱导光感受器分化,包括冗余同源物刮擦和刮伤,以及直接激活神经元效应基因。

Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells..

我们的数据揭示了多层转录网络的协同激活,这是EGFR信号在玻璃表达细胞中诱导神经元身份的机制。。

IntroductionHow cell fates are specified is a central question in developmental biology. Although some fates are determined by direct lineage inheritance or stochastic choice, cell–cell signaling is the most common mechanism for assigning cells distinct fates. However, most signaling pathways are used in multiple developmental contexts and induce specific differentiation pathways through interactions with tissue-specific transcription factors1.

。尽管某些命运是由直接谱系遗传或随机选择决定的,但细胞间信号传导是分配细胞不同命运的最常见机制。然而,大多数信号通路用于多种发育背景,并通过与组织特异性转录因子的相互作用诱导特定的分化途径1。

These intrinsic factors may determine cellular identity, while extrinsic signals control the time of onset and spatial location of differentiation. For example, cells are committed to the eosinophil lineage by expression of GATA transcription factors, but eosinophil maturation and expansion require interleukin-5 signaling2.

这些内在因素可能决定细胞身份,而外在信号控制分化的起始时间和空间位置。例如,细胞通过表达GATA转录因子致力于嗜酸性粒细胞谱系,但嗜酸性粒细胞成熟和扩增需要白细胞介素-5信号传导2。

Intrinsic and extrinsic inputs can be integrated at the transcriptional level; in spinal motor neuron differentiation, the retinoic acid receptor recruits the histone acetyltransferase CBP to activate chromatin on target genes of the intrinsic transcription factor Neurogenin 23. Combinatorial regulation of differentiation by intrinsic factors and extrinsic signaling is thought to occur frequently during development, but there are few examples for which the mechanism of transcriptional integration has been studied at a genome-wide scale.Differentiation of Drosophila photoreceptor neurons from eye disc epithelial progenitors is a well-characterized system in which external signals and intrinsic factors are known to play important roles.

内在和外在输入可以在转录水平上整合;在脊髓运动神经元分化中,视黄酸受体募集组蛋白乙酰转移酶CBP以激活内在转录因子Neurogenin 23靶基因上的染色质。内在因素和外在信号传导对分化的组合调控被认为在发育过程中经常发生,但在全基因组范围内研究转录整合机制的例子很少。果蝇感光神经元与眼盘上皮祖细胞的分化是一个特征明确的系统,已知外部信号和内在因素在其中起重要作用。

The first photoreceptor in each cluster to differentiate, R8, is specified by the proneural transcription factor Atonal (Ato)4. Differentiation of the other seven photoreceptors in an invariant sequence is induced by the epidermal growth factor (EGFR) ligand Spitz and other signa.

每个簇中第一个分化的光感受器R8由前神经转录因子Atonal(Ato)4指定。表皮生长因子(EGFR)配体Spitz和其他信号诱导其他七个光感受器以不变序列分化。

gl

德国劳埃德船级社

differentially affects photoreceptor subtype differentiation

差异影响光感受器亚型分化

In mutants lacking the zinc finger transcription factor Gl, the number of neurons in each ommatidial cluster is reduced to a variable extent12,13. To understand which photoreceptor subtypes are affected by the loss of gl function, we performed single-cell RNA-Seq (scRNA-Seq) analysis of gl60j null mutant10,11 white prepupal eye discs and compared the results to our previous characterization of wild-type eye discs21.

在缺乏锌指转录因子Gl的突变体中,每个小眼簇中的神经元数量减少到可变的程度12,13。为了了解哪些感光细胞亚型受到gl功能丧失的影响,我们对gl60j无效突变体10,11白色乳头前眼盘进行了单细胞RNA-Seq(scRNA-Seq)分析,并将结果与我们之前对野生型眼盘的表征进行了比较21。

Since the mutant and control datasets were generated at different times, we performed data integration in Seurat to enable a comparative analysis (Fig. 1a). A UMAP plot of the integrated data showed that all of the expected eye cell types were present in the gl mutant, but there was a severe reduction in the numbers of the late-born photoreceptors R1, R6, and R7 and of fully differentiated photoreceptors, and an increase in the proportion of undifferentiated cells assigned to the preproneural (Ppn), morphogenetic furrow (MF) and second mitotic wave (SMW) clusters (Fig. 1b).

由于突变体和对照数据集是在不同的时间生成的,因此我们在Seurat中进行了数据整合,以进行比较分析(图1a)。综合数据的UMAP图显示,gl突变体中存在所有预期的眼细胞类型,但晚期出生的光感受器R1,R6和R7以及完全分化的光感受器的数量严重减少,并且分配给前神经(Ppn),形态发生沟(MF)和第二有丝分裂波(SMW)簇的未分化细胞比例增加(图1b)。

Trajectory inference on the photoreceptor clusters using Monocle 3 showed that in gl mutants, the differentiation trajectories of R1, R6, and R7 were incomplete, missing part of the path that connects them to the differentiated photoreceptor cluster (Fig. 1c, d). The earlier-born photoreceptors showed a more subtle disruption of their trajectories at late differentiation stages (Fig. 1c, d).

使用Monocle 3对光感受器簇进行的轨迹推断表明,在gl突变体中,R1,R6和R7的分化轨迹不完整,缺少将它们连接到分化的光感受器簇的路径的一部分(图1c,d)。早期出生的光感受器在分化后期表现出更微妙的轨迹破坏(图1c,d)。

These data show that gl is important for the differentiation of late-born photoreceptors R1, R6, and R7, and for late photoreceptor differentiation in general.Fig. 1: scRNA-Seq characterization of photoreceptor differentiation defects in gl mutants.a UMAP dimensional plot of scRNA-Seq data from wild-type and gl60j white prepupal eye discs harmonized using the Seurat integration method.

这些数据表明,gl对于晚期感光细胞R1,R6和R7的分化以及一般晚期感光细胞的分化很重要。图1:gl突变体中光感受器分化缺陷的scRNA-Seq表征。使用Seurat整合方法协调来自野生型和gl60j白色prepupal眼盘的scRNA-Seq数据的UMAP维度图。

The same colors.

相同的颜色。

Data availability

数据可用性

All the raw data for scRNA-seq, bulk RNA-Seq, and DamID-Seq have been archived online with Gene Expression Omnibus (GEO) with the accession number GSE256221. Source data are provided with this paper.

scRNA-seq,批量RNA-seq和DamID-seq的所有原始数据均已通过Gene Expression Omnibus(GEO)在线存档,登录号为GSE256221。本文提供了源数据。

Code availability

代码可用性

No custom code was created for this paper. However, we have deposited the code we used to analyze our data in Github71 (https://doi.org/10.5281/zenodo.12770071).

没有为此纸张创建自定义代码。然而,我们已经将用于分析数据的代码存放在Github71中(https://doi.org/10.5281/zenodo.12770071)。

ReferencesPerrimon, N., Pitsouli, C. & Shilo, B. Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 4, a005975 (2012).Article

参考文献Perrimon,N.,Pitsouli,C。&Shilo,B.Z。控制细胞命运和胚胎模式的信号传导机制。冷泉兔。。生物学杂志4,a005975(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mack, E. A. & Pear, W. S. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr. Opin. Hematol. 27, 27–33 (2020).Article

Mack,E.A。&Pear,W.S。转录因子和细胞因子对嗜酸性粒细胞谱系承诺的调节。货币。奥平。血液学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, S., Lee, B., Lee, J. W. & Lee, S. K. Retinoid signaling and Neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62, 641–654 (2009).Article

Lee,S.,Lee,B.,Lee,J.W。&Lee,S.K。类视黄醇信号传导和Neurogenin2功能通过染色质修饰剂CBP耦合以指定脊髓运动神经元。神经元62641-654(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jarman, A. P., Grell, E. H., Ackerman, L., Jan, L. Y. & Jan, Y. N. atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400 (1994).Article

Jarman,A.P.,Grell,E.H.,Ackerman,L.,Jan,L.Y。&Jan,Y.N。atonal是果蝇光感受器的前神经基因。自然369398-400(1994)。文章

ADS

PubMed

PubMed

Google Scholar

谷歌学者

Tio, M. & Moses, K. The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development 124, 343–351 (1997).Article

Tio,M。&Moses,K。果蝇TGF-α同源物Spitz在发育中的视网膜中的光感受器募集中起作用。发展124343-351(1997)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).Article

Freeman,M。反复使用EGF受体会触发果蝇眼中所有细胞类型的分化。细胞87651-660(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

O’Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994).Article

O'Neill,E.M.,Rebay,I.,Tjian,R。&Rubin,G.M。果蝇眼睛发育所需的两种Ets相关转录因子的活性受Ras/MAPK途径的调节。细胞78137-147(1994)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shwartz, A., Yogev, S., Schejter, E. D. & Shilo, B. Z. Sequential activation of ETS proteins provides a sustained transcriptional response to EGFR signaling. Development 140, 2746–2754 (2013).Article

Shwartz,A.,Yogev,S.,Schejter,E.D。和Shilo,B.Z。ETS蛋白的顺序激活提供了对EGFR信号传导的持续转录反应。发展1402746-2754(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wu, C., Boisclair Lachance, J. F., Ludwig, M. Z. & Rebay, I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet. 16, e1009216 (2020).Article

Wu,C.,Boisclair-Lachance,J.F.,Ludwig,M.Z。&Rebay,I。定点转录效应网络中上下文相关的分叉有助于视网膜细胞命运获得的特异性和稳健性。PLoS Genet。16,e1009216(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moses, K. & Rubin, G. M. glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev. 5, 583–593 (1991).Article

Moses,K.&Rubin,G.M.glass编码一种位点特异性DNA结合蛋白,该蛋白在发育中的果蝇眼中响应位置信号而受到调节。基因发展5583-593(1991)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Moses, K., Ellis, M. C. & Rubin, G. M. The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340, 531–536 (1989).Article

Moses,K.,Ellis,M.C。和Rubin,G.M。glass基因编码果蝇感光细胞所需的锌指蛋白。自然340531-536(1989)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Bernardo-Garcia, F. J., Fritsch, C. & Sprecher, S. G. The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila. Development 143, 1413–1423 (2016).PubMed

Bernardo Garcia,F.J.,Fritsch,C。&Sprecher,S.G。转录因子玻璃将果蝇的视野规格与感光细胞分化联系起来。发展1431413-1423(2016)。PubMed出版社

Google Scholar

谷歌学者

Liang, X., Mahato, S., Hemmerich, C. & Zelhof, A. C. Two temporal functions of Glass: ommatidium patterning and photoreceptor differentiation. Dev. Biol. 414, 4–20 (2016).Article

Liang,X.,Mahato,S.,Hemmerich,C。&Zelhof,A.C。玻璃的两个时间功能:小眼图案化和感光细胞分化。开发生物。414,4-20(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morrison, C. A., Chen, H., Cook, T., Brown, S. & Treisman, J. E. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye. PLoS Genet 14, e1007173 (2018).Article

Morrison,C.A.,Chen,H.,Cook,T.,Brown,S。&Treisman,J.E。Glass促进果蝇眼中神经元和非神经元细胞类型的分化。PLoS Genet 14,e1007173(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flores, G. V. et al. Combinatorial signaling in the specification of unique cell fates. Cell 103, 75–85 (2000).Article

。细胞103,75-85(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xu, C., Kauffmann, R. C., Zhang, J., Kladny, S. & Carthew, R. W. Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell 103, 87–97 (2000).Article

Xu,C.,Kauffmann,R.C.,Zhang,J.,Kladny,S。&Carthew,R.W。重叠激活剂和阻遏物界定了果蝇眼中受体酪氨酸激酶信号的转录反应。细胞103,87-97(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hayashi, T., Xu, C. & Carthew, R. W. Cell-type-specific transcription of prospero is controlled by combinatorial signaling in the Drosophila eye. Development 135, 2787–2796 (2008).Article

Hayashi,T.,Xu,C。&Carthew,R.W。prospero的细胞类型特异性转录受果蝇眼中的组合信号控制。发展1352787-2796(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hovland, A. S., Rothstein, M. & Simoes-Costa, M. Network architecture and regulatory logic in neural crest development. Wiley Interdiscip. Rev. Syst. Biol. Med. 12, e1468 (2020).Article

Hovland,A.S.,Rothstein,M。和Simoes-Costa,M。神经嵴发育中的网络结构和调节逻辑。Wiley Interdiscip公司。版本系统。生物医学12,e1468(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).Article

Janssens,J.等人,《解码苍蝇大脑中的基因调控》。自然601630-636(2022)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Marshall, O. J., Southall, T. D., Cheetham, S. W. & Brand, A. H. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nat. Protoc. 11, 1586–1598 (2016).Article

Marshall,O.J.,Southall,T.D.,Cheetham,S.W。和Brand,A.H。蛋白质-DNA相互作用的细胞类型特异性分析,无需使用靶向DamID和下一代测序进行细胞分离。自然协议。111586-1598(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bollepogu Raja, K. K. et al. A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat. Commun. 14, 7205 (2023).Article

Bollepogu Raja,K.K.等人。果蝇幼虫眼的单细胞基因组图谱揭示了不同的感光细胞发育时间表。国家公社。147205(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frankfort, B. J., Nolo, R., Zhang, Z., Bellen, H. & Mardon, G. Senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye. Neuron 32, 403–414 (2001).Article

Frankfort,B.J.,Nolo,R.,Zhang,Z.,Bellen,H。&Mardon,G。在发育中的果蝇眼中,R8感光细胞分化需要对粗糙的无意义抑制。神经元32403-414(2001)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kimmel, B. E., Heberlein, U. & Rubin, G. M. The homeo domain protein Rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev. 4, 712–727 (1990).Article

Kimmel,B.E.,Heberlein,U。和Rubin,G.M。同源结构域蛋白Rough在发育中的果蝇眼中的一部分细胞中表达,可以指定感光细胞亚型。基因发展4712-727(1990)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Higashijima, S. et al. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev. 6, 50–60 (1992).Article

Higashijima,S.等人。两个感光细胞R1和R6以及正常眼睛发育所需的初级色素细胞需要果蝇的双条同源框基因。基因发展6,50-60(1992)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Karim, F. D. & Rubin, G. M. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125, 1–9 (1998).Article

Karim,F.D。&Rubin,G.M。活化的Ras1的异位表达诱导果蝇想象组织中的增生性生长和增加的细胞死亡。发展125,1-9(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Robinow, S. & White, K. The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev. Biol. 126, 294–303 (1988).Article

Robinow,S。&White,K。果蝇的基因座elav在所有发育阶段的神经元中都有表达。开发生物。126294-303(1988)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26, 357–370 (2000).Article

Hummel,T.,Krukkert,K.,Roos,J.,Davis,G。&Klambt,C。果蝇Futsch/22C10是树突和轴突发育所需的MAP1B样蛋白。神经元26357-370(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Clark-Lewis, I., Sanghera, J. S. & Pelech, S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J. Biol. Chem. 266, 15180–15184 (1991).Article

。J、 生物。化学。26615180–15184(1991)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Daga, A., Karlovich, C. A., Dumstrei, K. & Banerjee, U. Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 10, 1194–1205 (1996).Article

Daga,A.,Karlovich,C.A.,Dumstrei,K。&Banerjee,U。通过与AML1共享同源结构域的菱形对果蝇眼中的细胞进行构图。基因发展101194-1205(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yan, H., Canon, J. & Banerjee, U. A transcriptional chain linking eye specification to terminal determination of cone cells in the Drosophila eye. Dev. Biol. 263, 323–329 (2003).Article

Yan,H.,Canon,J。&Banerjee,U。将眼睛规格与果蝇眼睛中锥体细胞的末端测定联系起来的转录链。开发生物。263323-329(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Behan, K. J. et al. Yan regulates lozenge during Drosophila eye development. Dev. Genes Evol. 212, 267–276 (2002).Article

Behan,K.J.等人Yan在果蝇眼睛发育过程中调节锭剂。开发基因进化。212267-276(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Roch, F., Jimenez, G. & Casanova, J. EGFR signalling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development 129, 993–1002 (2002).Article

Roch,F.,Jimenez,G。&Casanova,J。EGFR信号传导抑制果蝇翼静脉规格期间Capicua依赖性抑制。发展129993-1002(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Roark, M. et al. scratch, a pan-neural gene encoding a zinc finger protein related to Snail, promotes neuronal development. Genes Dev. 9, 2384–2398 (1995).Article

Roark,M。等人。scratch是一种编码与蜗牛相关的锌指蛋白的泛神经基因,可促进神经元发育。Genes Dev.92384–2398(1995)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yu, L., Zhou, Q. & Pignoni, F. ato-GAL4 fly lines for gene function analysis: eya is required in late progenitors for eye morphogenesis. Genesis 53, 347–355 (2015).Article

Yu,L.,Zhou,Q。&Pignoni,F。用于基因功能分析的ato-GAL4飞行系:eya在晚期祖细胞中是眼睛形态发生所必需的。《创世纪》53347-355(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naval-Sanchez, M. et al. Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions. Genome Res. 23, 74–88 (2013).Article

Naval Sanchez,M。等人。比较基序发现与比较转录组学相结合产生准确的靶向组和增强子预测。基因组研究23,74-88(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kumar, J. P. et al. Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125, 3875–3885 (1998).Article

Kumar,J.P.等人剖析了果蝇EGF受体在眼睛发育和MAP激酶激活中的作用。发展1253875-3885(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Golembo, M., Schweitzer, R., Freeman, M. & Shilo, B. Z. argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122, 223–230 (1996).Article

果蝇EGF受体途径诱导argos转录,形成抑制性反馈环。发展122223-230(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bailey, T. L. STREME: accurate and versatile sequence motif discovery. Bioinformatics 37, 2834–2840 (2021).Article

Bailey,T.L.STREME:准确且多功能的序列基序发现。生物信息学372834-2840(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, L. J. et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 39, D111–D117 (2011).Article

Zhu,L.J.等人。FlyFactorSurvey:使用细菌单杂交系统确定的果蝇转录因子结合特异性数据库。核酸研究39,D111–D117(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jolma, A. et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384–388 (2015).Article

Jolma,A。等人。转录因子对的DNA依赖性形成改变了它们的结合特异性。自然527384-388(2015)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Bravo Gonzalez-Blas, C. et al. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol. Syst. Biol. 16, e9438 (2020).Article

Bravo Gonzalez-Blas,C.等人。通过单细胞转录组学和表观基因组学的空间整合鉴定基因组增强子。分子系统。生物学16,e9438(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, S. G., Hannenhalli, S. & Choi, S. S. Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals. BMC Genom. 15, 526 (2014).Article

Park,S.G.,Hannenhalli,S。&Choi,S.S。第一内含子的保守性与基因内外显子的数量和调控表观遗传信号的存在呈正相关。BMC基因组。15526(2014)。文章

Google Scholar

谷歌学者

Kaminker, J. S., Canon, J., Salecker, I. & Banerjee, U. Control of photoreceptor axon target choice by transcriptional repression of runt. Nat. Neurosci. 5, 746–750 (2002).Article

Kaminker,J.S.,Canon,J.,Salecker,I。&Banerjee,U。通过转录抑制矮子来控制光感受器轴突靶标的选择。自然神经科学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zelhof, A. C., Koundakjian, E., Scully, A. L., Hardy, R. W. & Pounds, L. Mutation of the photoreceptor-specific homeodomain gene Pph13 results in defects in phototransduction and rhabdomere morphogenesis. Development 130, 4383–4392 (2003).Article

Zelhof,A.C.,Koundakjian,E.,Scully,A.L.,Hardy,R.W。&Pounds,L。光感受器特异性同源结构域基因Pph13的突变导致光转导和横纹肌形态发生缺陷。发展1304383-4392(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S. et al. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. Cell 187, 692–711.e626 (2024).Article

Kim,S.等人。DNA引导的转录因子协同作用塑造面部和肢体间充质。细胞187692-711.e626(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Farley, E. K., Olson, K. M., Zhang, W., Rokhsar, D. S. & Levine, M. S. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl Acad. Sci. USA 113, 6508–6513 (2016).Article

Farley,E.K.,Olson,K.M.,Zhang,W.,Rokhsar,D.S。&Levine,M.S。Syntax补偿了较差的结合位点,以编码发育增强子的组织特异性。程序。。科学。美国1136508-6513(2016)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, P. et al. GATA4 regulates developing endocardium through interaction with ETS1. Circ. Res. 131, e152–e168 (2022).Article

Zhou,P。等人。GATA4通过与ETS1的相互作用调节发育中的心内膜。保监会。第131号决议,e152–e168(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).Article

Ibarra,I.L.等人。转录因子协同作用及其对蛋白质-表型相互作用的影响的机理见解。国家公社。11124(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rao, S., Ahmad, K. & Ramachandran, S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol. Cell 81, 1651–1665 (2021).Article

Rao,S.,Ahmad,K。&Ramachandran,S。远处转录因子之间的协同结合是活性增强子的标志。分子细胞811651-1665(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Reiter, F., Wienerroither, S. & Stark, A. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev. 43, 73–81 (2017).Article

Reiter,F.,Wienerroither,S。&Stark,A。转录因子和辅因子的组合功能。货币。奥平。基因。第43页,第73-81页(2017年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jarman, A. P., Brand, M., Jan, L. Y. & Jan, Y. N. The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development 119, 19–29 (1993).Article

Jarman,A.P.,Brand,M.,Jan,L.Y。&Jan,Y.N。果蝇神经前体中螺旋-环-螺旋基因asense的调节和功能。发展119,19-29(1993)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thor, S., Andersson, S. G., Tomlinson, A. & Thomas, J. B. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80 (1999).Article

Thor,S.,Andersson,S.G.,Tomlinson,A。&Thomas,J.B。运动神经元通路选择的LIM同源域组合代码。。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Mlodzik, M., Hiromi, Y., Weber, U., Goodman, C. S. & Rubin, G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60, 211–224 (1990).Article

Mlodzik,M.,Hiromi,Y.,Weber,U.,Goodman,C.S。和Rubin,G.M。果蝇seven-up基因是类固醇受体基因超家族的成员,控制着感光细胞的命运。细胞60211-224(1990)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Southall, T. D. & Brand, A. H. Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J. 28, 3799–3807 (2009).Article

Southall,T.D。和Brand,A.H。神经干细胞转录网络突出了神经系统发育所必需的基因。EMBO J.283799–3807(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolfram, V. et al. The transcription factors Islet and Lim3 combinatorially regulate ion channel gene expression. J. Neurosci. 34, 2538–2543 (2014).Article

Wolfram,V。等人。转录因子Islet和Lim3组合调节离子通道基因表达。J、 神经科学。342538-2543(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wildonger, J., Sosinsky, A., Honig, B. & Mann, R. S. Lozenge directly activates argos and klumpfuss to regulate programmed cell death. Genes Dev. 19, 1034–1039 (2005).Article

Wildonger,J.,Sosinsky,A.,Honig,B。&Mann,R.S。Lozenge直接激活argos和klumpfuss以调节程序性细胞死亡。Genes Dev.191034-1039(2005)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramat, A. et al. Escargot and Scratch regulate neural commitment by antagonizing Notch activity in Drosophila sensory organs. Development 143, 3024–3034 (2016).Article

Ramat,A。等人。Escargot和Scratch通过拮抗果蝇感觉器官中的Notch活性来调节神经承诺。发展1433024-3034(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sieglitz, F. et al. Antagonistic feedback loops involving Rau and Sprouty in the Drosophila eye control neuronal and glial differentiation. Sci. Signal. 6, ra96 (2013).Article

Sieglitz,F。等人。果蝇眼睛控制神经元和神经胶质分化中涉及Rau和Sprouty的拮抗反馈回路。科学。信号。6,ra96(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sun, Y., Jan, L. Y. & Jan, Y. N. Ectopic scute induces Drosophila ommatidia development without R8 founder photoreceptors. Proc. Natl Acad. Sci. USA 97, 6815–6819 (2000).Article

Sun,Y.,Jan,L.Y。&Jan,Y.N。异位scute在没有R8创始人光感受器的情况下诱导果蝇小眼发育。程序。。科学。美国976815-6819(2000)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kumar, D., Ray, A. & Ray, B. K. Transcriptional synergy mediated by SAF-1 and AP-1: critical role of N-terminal polyalanine and two zinc finger domains of SAF-1. J. Biol. Chem. 284, 1853–1862 (2009).Article

Kumar,D.,Ray,A。&Ray,B.K。由SAF-1和AP-1介导的转录协同作用:N端聚丙氨酸和SAF-1的两个锌指结构域的关键作用。J、 生物。化学。2841853-1862(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Makrides, N., Wang, Q., Tao, C., Schwartz, S. & Zhang, X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol. 12, 210265 (2022).Article

Makrides,N.,Wang,Q.,Tao,C.,Schwartz,S。&Zhang,X。Jack of all Trade,master of each:成纤维细胞生长因子信号在眼睛发育中的多样性。打开Biol。12210265(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Willardsen, M., Hutcheson, D. A., Moore, K. B. & Vetter, M. L. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech. Dev. 131, 57–67 (2014).Article

Willardsen,M.,Hutcheson,D.A.,Moore,K.B。&Vetter,M.L。ETS转录因子Etv1介导FGF信号传导,以在非洲爪蟾视网膜发育过程中启动神经基因表达。机械。第131页,第57-67页(2014年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Klaes, A., Menne, T., Stollewerk, A., Scholz, H. & Klambt, C. The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell 78, 149–160 (1994).Article

Klaes,A.,Menne,T.,Stollewerk,A.,Scholz,H。&Klambt,C。果蝇基因编码的Ets转录因子指向胚胎中枢神经系统中的直接神经胶质细胞分化。细胞78149-160(1994)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Port, F. & Bullock, S. L. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat. Methods 13, 852–854 (2016).Article

Port,F。&Bullock,S.L。用tRNA侧翼的sgRNA增强果蝇中的CRISPR应用。自然方法13852-854(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).Article

Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article

Cao,J。等人。哺乳动物器官发生的单细胞转录景观。自然566496-502(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, H. et al. The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the Drosophila eye. Development 149, dev200217 (2022).Article

Wang,H。等人。Blimp-1转录因子在非神经元细胞中起作用,调节果蝇眼睛的终末分化。发展149,dev200217(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).Article

Zhang,Y.等人。ChIP-Seq(MACS)的基于模型的分析。基因组生物学。9,R137(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).Article

Yu,G.,Wang,L.G。&He,Q.Y。ChIPseeker:用于芯片峰注释,比较和可视化的R/生物导体封装。生物信息学312382-2383(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc. Github https://doi.org/10.5281/zenodo.12770071 (2024).Download referencesAcknowledgementsWe thank Ethan Bier, Andrea Brand, Iswar Hariharan, Christian Klämbt, the Bloomington Drosophila Stock Center, the Developmental Studies Hybridoma Bank, and the Vienna Drosophila Resource Center for fly stocks and reagents.

Wang,H。等人。玻璃和尖头的协同激活促进果蝇眼盘中的神经元身份。Githubhttps://doi.org/10.5281/zenodo.12770071(2024年)。下载参考文献致谢我们感谢Ethan Bier,Andrea Brand,Iswar Hariharan,Christian Klämbt,布卢明顿果蝇库存中心,发育研究杂交瘤银行和维也纳果蝇资源中心的果蝇库存和试剂。

The information available on FlyBase was invaluable for this study. We thank Gael Westby, Peter Meyn, and Adriana Heguy in NYU Langone’s Genome Technology Center (RRID: SCR_017929) for coordinating DamID-Seq and RNA-Seq experimental planning, sample submission, processing, and sequencing. We are grateful to Alex Donovan, Anna Malkowska, Paola Angulo Salgado, Markus Schober, Hyung Don Ryoo, Jain Wu, and Maria Bustillo for advice on experimental planning and data processing.

FlyBase上提供的信息对这项研究非常宝贵。我们感谢纽约大学兰贡分校基因组技术中心(RRID:SCR\U 017929)的盖尔·韦斯比(Gael Westby),彼得·梅恩(Peter Meyn)和阿德里亚娜·赫盖(Adriana Heguy)协调DamID-Seq和RNA-Seq实验计划,样品提交,处理和测序。我们感谢Alex Donovan,Anna Malkowska,Paola Angulo Salgado,Markus Schober,Hyung Don Ryoo,Jain Wu和Maria Bustillo就实验计划和数据处理提供的建议。

We thank Sophia He, Ariel Hairston, Dhaval Gandhi, and Genie Jang for technical assistance, and Yan Deng for confocal microscope training and maintenance. The manuscript was improved by the critical comments of Maria Bustillo and Neha Ghosh. This work was supported by NIH grants R21EY024826 and R21EY031442 to J.E.T., a grant from the Retina Research Foundation to G.M., and Swiss National Science Foundation grant 310030_219348 to S.G.S.Author informationAuthor notesCarolyn A.

我们感谢Sophia He,Ariel Hairston,Dhaval Gandhi和Genie Jang的技术援助,以及Yan Deng的共聚焦显微镜培训和维护。Maria Bustillo和Neha Ghosh的批评性评论改进了手稿。这项工作得到了NIH对J.E.T.的R21EY024826和R21EY031442资助,视网膜研究基金会对G.M.的资助,以及瑞士国家科学基金会对S.G.S.作者信息作者notesCarolyn a.的310030\U 219348资助。

MorrisonPresent address: 10x Genomics, Pleasanton, CA, 94588, USAAntonia TerrizzanoPresent address: Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, 75005, FrancePhoenix ChenPresent address: Department of Biology, Boston University, Boston, MA, USAAuthors and AffiliationsDepartment of Cell Biology, NYU Grossman Sc.

莫里森目前的地址:10x Genomics,普莱森顿,加利福尼亚州,94588,USAAntonia TERRIZZANO目前的地址:中心体生物学和遗传不稳定性团队,PSL研究大学居里研究所,CNRS,UMR144,12 rue Lhomond,Paris,75005,FrancePhoenix Chen目前的地址:美国马萨诸塞州波士顿市波士顿大学生物学系作者和附属机构纽约大学格罗斯曼分校细胞生物学系。

PubMed Google ScholarKomal Kumar Bollepogu RajaView author publicationsYou can also search for this author in

PubMed Google ScholarKomal Kumar Bollepogu RajaView作者出版物您也可以在

PubMed Google ScholarKelvin YeungView author publicationsYou can also search for this author in

PubMed Google ScholarKelvin YeungView作者出版物您也可以在

PubMed Google ScholarCarolyn A. MorrisonView author publicationsYou can also search for this author in

PubMed Google ScholarCarolyn A.MorrisonView作者出版物您也可以在

PubMed Google ScholarAntonia TerrizzanoView author publicationsYou can also search for this author in

PubMed Google ScholarAntonia TerrizzanoView作者出版物您也可以在

PubMed Google ScholarAlireza Khodadadi-JamayranView author publicationsYou can also search for this author in

PubMed Google ScholarAlireza Khodadadi JamayranView作者出版物您也可以在

PubMed Google ScholarPhoenix ChenView author publicationsYou can also search for this author in

PubMed Google ScholarPhoenix ChenView作者出版物您也可以在

PubMed Google ScholarAshley JordanView author publicationsYou can also search for this author in

PubMed Google ScholarAshley JordanView作者出版物您也可以在

PubMed Google ScholarCornelia FritschView author publicationsYou can also search for this author in

PubMed Google ScholarCornelia FritschView作者出版物您也可以在

PubMed Google ScholarSimon G. SprecherView author publicationsYou can also search for this author in

PubMed Google ScholarSimon G.SprecherView作者出版物您也可以在

PubMed Google ScholarGraeme MardonView author publicationsYou can also search for this author in

PubMed Google ScholarGraeme MardonView作者出版物您也可以在

PubMed Google ScholarJessica E. TreismanView author publicationsYou can also search for this author in

PubMed谷歌学者Jessica E.TreismanView作者出版物您也可以在

PubMed Google ScholarContributionsInvestigation: H.W., K.K.B.R., K.Y., C.A.M., A.T., P.C., A.J., C.F., J.E.T.; Data analysis: H.W., K.K.B.R., A.K.-J.; Supervision and funding acquisition: S.G.S., G.M., J.E.T.; Writing: original draft: H.W.; Writing: review and editing: K.K.B.R., K.Y., C.A.M., A.T., C.F., S.G.S., J.E.T.; Project management: J.E.T.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献调查:H.W.,K.K.B.R.,K.Y.,C.A.M.,A.T.,P.C.,A.J.,C.F.,J.E.T。;数据分析:H.W.,K.K.B.R.,A.K.-J。;监督和资金获取:S.G.S.,G.M.,J.E.T。;。;写作:评论和编辑:K.K.B.R.,K.Y.,C.A.M.,A.T.,C.F.,S.G.S.,J.E.T。;项目管理:J.E.T.通讯作者。

Jessica E. Treisman.Ethics declarations

杰西卡·E·特雷斯曼。道德宣言

Competing interests

相互竞争的利益

C.A.M. is a shareholder of 10X Genomics. G.M. is the co-owner of Genetivision Corporation. The other authors declare no competing interests.

C、 A.M.是10X Genomics的股东。G、 M.是Genetivision Corporation的共同所有者。其他作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleWang, H., Bollepogu Raja, K.K., Yeung, K. et al. Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc.

Nat Commun 15, 7091 (2024). https://doi.org/10.1038/s41467-024-51429-zDownload citationReceived: 12 February 2024Accepted: 06 August 2024Published: 17 August 2024DOI: https://doi.org/10.1038/s41467-024-51429-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》157091(2024)。https://doi.org/10.1038/s41467-024-51429-zDownload引文收到日期:2024年2月12日接受日期:2024年8月6日发布日期:2024年8月17日OI:https://doi.org/10.1038/s41467-024-51429-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。