商务合作
动脉网APP
可切换为仅中文
AbstractThe translocon at the outer chloroplast membrane (TOC) is the gateway for chloroplast protein import and so is vital for photosynthetic establishment and plant growth. Chloroplast-associated protein degradation (CHLORAD) is a ubiquitin-dependent proteolytic system that regulates TOC. In CHLORAD, cytosolic Cdc48 provides motive force for the retrotranslocation of ubiquitinated TOC proteins to the cytosol but how Cdc48 is recruited is unknown.
摘要叶绿体外膜(TOC)的易位子是叶绿体蛋白质输入的门户,因此对光合建立和植物生长至关重要。叶绿体相关蛋白降解(CHLORAD)是一种泛素依赖性蛋白水解系统,可调节TOC。在CHLORAD中,胞质Cdc48为泛素化TOC蛋白向胞质溶胶的逆转录提供了动力,但Cdc48是如何募集的尚不清楚。
Here, we identify plant UBX-domain protein PUX10 as a component of the CHLORAD machinery. We show that PUX10 is an integral chloroplast outer membrane protein that projects UBX and ubiquitin-associated domains into the cytosol. It interacts with Cdc48 via its UBX domain, bringing it to the chloroplast surface, and with ubiquitinated TOC proteins via its ubiquitin-associated domain.
在这里,我们将植物UBX结构域蛋白PUX10鉴定为CHLORAD机制的组成部分。我们显示PUX10是一种完整的叶绿体外膜蛋白,可将UBX和泛素相关结构域投射到细胞质中。它通过其UBX结构域与Cdc48相互作用,将其带到叶绿体表面,并通过其泛素相关结构域与泛素化的TOC蛋白相互作用。
Genetic analyses in Arabidopsis revealed a requirement for PUX10 during CHLORAD-mediated regulation of TOC function and plant development. Thus, PUX10 coordinates ubiquitination and retrotranslocation activities of CHLORAD to enable efficient TOC turnover..
拟南芥的遗传分析表明,在氯代介导的TOC功能和植物发育调节过程中,需要PUX10。因此,PUX10协调CHLORAD的泛素化和反转录活性,以实现有效的TOC周转。。
MainMost chloroplast proteins (>90%) are synthesized in the cytosol and imported into chloroplasts post-translationally. The chloroplast protein import machinery consists of two translocons, a translocon located in the outer chloroplast membrane (TOC) and a translocon in the inner chloroplast membrane (TIC).
大多数叶绿体蛋白(>90%)在细胞质中合成,并在翻译后导入叶绿体。叶绿体蛋白质导入机制由两个易位子组成,一个位于叶绿体外膜(TOC)中的易位子和一个位于叶绿体内膜(TIC)中的易位子。
Core components of the TOC are the β-barrel protein, TOC75, and the GTPases TOC159 and TOC33—all named in accordance with their molecular masses in kilodaltons. TOC75 forms a membrane channel for protein conductance, whereas TOC159 and TOC33 function as receptors by binding the transit peptides of precursor proteins via their cytosolic GTPase domains1,2,3,4,5,6,7,8.Chloroplast protein import is dynamically regulated by chloroplast-associated protein degradation (CHLORAD), a ubiquitin-dependent proteolytic system that targets the TOC apparatus9,10.
TOC的核心成分是β桶蛋白TOC75以及GTPases TOC159和TOC33,它们都是根据千道尔顿的分子量命名的。TOC75形成蛋白质电导的膜通道,而TOC159和TOC33通过其胞质GTPase结构域1,2,3,4,5,6,7,8结合前体蛋白的转运肽而起受体的作用。叶绿体蛋白进口受叶绿体相关蛋白降解(CHLORAD)的动态调节,CHLORAD是一种靶向TOC装置的泛素依赖性蛋白水解系统9,10。
By reconfiguring the TOC machinery, CHLORAD action facilitates changes in the organelle’s proteome, functions and morphology. Such CHLORAD-mediated TOC regulation enables the biogenesis and operation of chloroplasts (and of other members of the plastid family of organelles) to be responsive to developmental and environmental cues, including stress11,12,13.The first characterized CHLORAD component was the ubiquitin E3 ligase suppressor of ppi locus 1 (SP1).
通过重新配置TOC机制,CHLORAD作用促进了细胞器蛋白质组,功能和形态的变化。。
The SP1 protein is located in the chloroplast outer envelope membrane (OEM) and has a cytosol-facing RING domain and two transmembrane (TM) spans flanking an intermembrane space (IMS) domain that binds to TOC protein targets9. Analysis of sp1-mutant and SP1-overexpressor Arabidopsis plants showed that SP1 expression levels correlate inversely with the abundance of TOC proteins, resulting in the suppression or enhancement of the pale-green ppi1 (TOC33 knockout)14 mutant p.
SP1蛋白位于叶绿体外膜(OEM)中,具有面向胞质溶胶的RING结构域,两个跨膜(TM)跨越侧翼的膜间空间(IMS)结构域,该结构域与TOC蛋白靶标结合9。对sp1突变体和sp1过表达拟南芥植物的分析表明,sp1表达水平与TOC蛋白的丰度呈负相关,导致浅绿色ppi1(TOC33敲除)14突变体p的抑制或增强。
Data availability
数据可用性
All data generated or analysed during this study are included in this published article or its Supplementary Information. Gene sequences for the following proteins from A. thaliana were used experimentally in this study: PUX1 (At3g27310), PUX2 (At2g01650), PUX3 (At4g22150), PUX4 (At4g04210), PUX5 (At4g15410), PUX6 (At3g21660), PUX7 (At1g14570), PUX8 (At4g11740), PUX9 (At4g00752), PUX10 (At4g10790), PUX11 (At2g43210), PUX12 (At3g23605), PUX13 (At4g23040), SP1 (At1g63900), SP2 (At3g44160), CDC48A (At3g09840), TOC159 (At4g02510), TOC33 (At1g02280), TOC120 (At3g16620), TOC132 (At2g16640), TOC34 (At5g05000), TOC75 (At3g46740), TIC110 (At1g06950), TIC40 (At5g16620), CDKA1 (At3g48750), SFR2 (At3g06510) and ubiquitin (At4g05320).
本研究期间生成或分析的所有数据均包含在本文或其补充信息中。本研究通过实验使用了拟南芥中以下蛋白质的基因序列:PUX1(At3g27310),PUX2(At2g01650),PUX3(At4g22150),PUX4(At4g04210),PUX5(At4g15410),PUX6(At3g21660),PUX7(At1g14570),PUX8(At4g11740),PUX9(At4g00752),PUX10(At4g10790),PUX11(At2g43210),PUX12(At3g23605),PUX13(At4g23040),SP1(At1g63900),SP2(AT4G43210)At3g44160),CDC48A(At3g09840),TOC159(At4g02510),TOC33(At1g02280),TOC120(At3g16620),TOC132(At2g16640),TOC34(At5g05000),TOC75(At3g46740),TIC110(At1g06950),TIC40(At5g16620),CDKA1(At3g48750),SFR2(At3g06510)和泛素(At4g05320)。
Amino acid sequences of the UBX domains of the following proteins from different species were used in this study: Oryza sativa Os10g37630 (AAP54662), Zea mays GRMZM2G159538 (AQL10361), Marchantia polymorpha Mapoly0001s0291 (PTQ50274), Chlamydomonas reinhardtii Cre03.g200100 (A0A2K3DZI1), Saccharomyces cerevisiae Ubx2 (Q04228) and Homo sapiens UBXD8/FAF2 (Q96CS3).
本研究使用了来自不同物种的以下蛋白质的UBX结构域的氨基酸序列:水稻Os10g37630(AAP54662),玉米GRMZM2G159538(AQL10361),Marchantia polymorpha Mapoly0001s0291(PTQ50274),莱茵衣藻Cre03.g200100(A0A2K3DZI1),酿酒酵母Ubx2(Q04228)和智人UBXD8/FAF2(Q96CS3)。
Sequences were obtained from the TAIR (https:// www.arabidopsis.org/), Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html), Ensembl Plants (https://plants.ensembl.org/index.html), Uniprot (https://www.uniprot.org/) or National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) databases.
序列来自TAIR(https://www.arabidopsis.org/),Phytozome(https://phytozome.jgi.doe.gov/pz/portal.html),Ensembl植物(https://plants.ensembl.org/index.html),Uniprot(https://www.uniprot.org/)或国家生物技术信息中心(https://www.ncbi.nlm.nih.gov/)数据库。
Source data are provided with this paper..
本文提供了源数据。。
ReferencesJarvis, P. & Lopez-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14, 787–802 (2013).Article
参考文献Jarvis,P。&Lopez-Juez,E。叶绿体和其他质体的生物发生和体内平衡。Nat。Rev。Mol。Cell Biol。14787-802(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kessler, F. & Schnell, D. Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr. Opin. Cell Biol. 21, 494–500 (2009).Article
Kessler,F。&Schnell,D。叶绿体生物发生:蛋白质输入装置的多样性和调节。货币。奥平。细胞生物学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H. M. & Chiu, C. C. Protein transport into chloroplasts. Annu. Rev. Plant Biol. 61, 157–180 (2010).Article
Li,H.M。&Chiu,C.C。蛋白质转运到叶绿体中。年。植物生物学修订版。61157-180(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shi, L. X. & Theg, S. M. The chloroplast protein import system: from algae to trees. Biochim. Biophys. Acta 1833, 314–331 (2013).Article
Shi,L.X。&Theg,S.M。叶绿体蛋白质输入系统:从藻类到树木。生物化学。生物物理。Acta 1833314–331(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Paila, Y. D., Richardson, L. G. L. & Schnell, D. J. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J. Mol. Biol. 427, 1038–1060 (2015).Article
Paila,Y.D.,Richardson,L.G.L.&Schnell,D.J。对叶绿体蛋白质输入机制及其与蛋白质质量控制,细胞器生物发生和发育整合的新见解。J、 分子生物学。4271038–1060(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sjuts, I., Soll, J. & Bolter, B. Import of soluble proteins into chloroplasts and potential regulatory mechanisms. Front. Plant Sci. 8, 168 (2017).Article
Sjuts,I.,Soll,J。&Bolter,B。将可溶性蛋白质导入叶绿体和潜在的调节机制。正面。植物科学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nakai, M. New perspectives on chloroplast protein import. Plant Cell Physiol. 59, 1111–1119 (2018).Article
Nakai,M。叶绿体蛋白质进口的新观点。植物细胞生理学。591111-1119(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, Y. & Jarvis, R. P. Chloroplast proteostasis: import, sorting, ubiquitination, and proteolysis. Annu. Rev. Plant Biol. 74, 259–283 (2023).Article
。年。植物生物学修订版。74259-283(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ling, Q. H., Huang, W. H., Baldwin, A. & Jarvis, P. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338, 655–659 (2012).Article
Ling,Q.H.,Huang,W.H.,Baldwin,A。&Jarvis,P。叶绿体的生物发生受泛素-蛋白酶体系统的直接作用调节。科学338655-659(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ling, Q. H. et al. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science 363, 836–848 (2019).Article
Ling,Q。H。等人。植物中泛素依赖性叶绿体相关蛋白降解。。文章
Google Scholar
谷歌学者
Ling, Q. H. & Jarvis, P. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol. 25, 2527–2534 (2015).Article
Ling,Q.H。&Jarvis,P。泛素E3连接酶SP1对叶绿体蛋白质输入的调节对于植物的抗逆性很重要。货币。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ling, Q. H. et al. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nat. Plants 7, 655–666 (2021).Article
Ling,Q。H。等人。叶绿体相关蛋白降解途径控制番茄的染色体发育和果实成熟。《自然植物》7655–666(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mohd Ali, S. et al. Multiple ubiquitin E3 ligase genes antagonistically regulate chloroplast-associated protein degradation. Curr. Biol. 33, 1138–1146 (2023).Article
Mohd Ali,S。等。多种泛素E3连接酶基因拮抗调节叶绿体相关蛋白降解。货币。生物学331138-1146(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jarvis, P. et al. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282, 100–103 (1998).Article
Jarvis,P。等人。质体一般蛋白质输入装置缺陷的拟南芥突变体。科学282100-103(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Begue, H., Jeandroz, S., Blanchard, C., Wendehenne, D. & Rosnoblet, C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim. Biophys. Acta 1861, 3053–3060 (2017).Article
Begue,H.,Jeandroz,S.,Blanchard,C.,Wendehenne,D。&Rosnoblet,C。植物中伴侣蛋白p97/CDC48的结构和功能。生物化学。生物物理。Acta 18613053–3060(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Baek, G. H. et al. Cdc48: a Swiss army knife of cell biology. J. Amino Acids 2013, 183421 (2013).Article
Baek,G.H.等人,《Cdc48:瑞士细胞生物学军刀》。J、 氨基酸2013183421(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ye, Y. H., Meyer, H. H. & Rapoport, T. A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).Article
Ye,Y.H.,Meyer,H.H。&Rapoport,T.A。p97-Ufd1-Npl4复合物在从ER向细胞质逆转录中的功能:非泛素化多肽片段和多聚泛素链的双重识别。J、 细胞生物学。162,71-84(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Allen, M. D., Buchberger, A. & Bycroft, M. The PUB domain functions as a p97 binding module in human peptide N-glycanase. J. Biol. Chem. 281, 25502–25508 (2006).Article
Allen,M.D.,Buchberger,A。&Bycroft,M。PUB结构域在人肽N-聚糖酶中起p97结合模块的作用。J、 生物。化学。28125502-25508(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hanzelmann, P. & Schindelin, H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci. 4, 21 (2017).Article
Hanzelmann,P。&Schindelin,H。辅因子相互作用和翻译后修饰在调节AAA+ATPase p97中的相互作用。正面。摩尔生物科学。4,21(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. L. et al. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep. 39, 110664 (2022).Article
Li,J.L。等人。CDC48复合物介导植物叶绿体内蛋白质的泛素依赖性降解。Cell Rep.39110664(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schuberth, C. & Buchberger, A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell. Mol. Life Sci. 65, 2360–2371 (2008).Article
Schuberth,C。&Buchberger,A。UBX结构域蛋白:AAA ATPase Cdc48/p97的主要调节剂。细胞。分子生命科学。652360-2371(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McNeill, H., Knebel, A., Arthur, J. S. C., Cuenda, A. & Cohen, P. A novel UBA and UBX domain protein that binds polyubiquitin and VCP and is a substrate for SAPKs. Biochem. J. 384, 391–400 (2004).Article
McNeill,H.,Knebel,A.,Arthur,J.S.C.,Cuenda,A。&Cohen,P。一种新型UBA和UBX结构域蛋白,结合多聚泛素和VCP,是SAPK的底物。生物化学。J、 384391-400(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schuberth, C., Richly, H., Rumpf, S. & Buchberger, A. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep. 5, 818–824 (2004).Article
Schuberth,C.,Richly,H.,Rumpf,S。&Buchberger,A。Shp1和Ubx2是Cdc48的衔接子,参与泛素依赖性蛋白质降解。EMBO Rep.5818–824(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, E. J., Yim, S. H., Kim, E., Kim, N. S. & Lee, K. J. Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway. Mol. Cell. Biol. 25, 2511–2524 (2005).Article
Song,E.J.,Yim,S.H.,Kim,E.,Kim,N.S。&Lee,K.J。人类Fas相关因子1与泛素化蛋白和含缬氨酸蛋白相互作用,参与泛素-蛋白酶体途径。摩尔电池。生物学2525111-2524(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. R., Vancea, A. I., Hameed, U. F. S. & Arold, S. T. Versatile control of the CDC48 segregase by the plant UBX-containing (PUX) proteins. Comput. Struct. Biotechnol. J. 19, 3125–3132 (2021).Article
Zhang,J.R.,Vancea,A.I.,Hameed,U.F.S。&Arold,S.T。通过含有植物UBX的(PUX)蛋白对CDC48分离酶的多功能控制。计算机。结构。生物技术。J、 193125–3132(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gallois, J. L. et al. Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana. Gene 526, 299–308 (2013).Article
Gallois,J.L.等人。拟南芥中含有植物泛素调节X(UBX)结构域的蛋白质AtPUX7的功能表征。基因526299-308(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, A. B. et al. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat. Commun. 11, 3284 (2020).Article
Huang,A.B.等人。邻近标记蛋白质组学揭示了植物内核膜蛋白降解的关键调节因子。国家公社。113284(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marshall, R. S. Hua, Z., Mali, S., McLoughlin, F. & Vierstra, R. D. ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors. Cell 177, 766–781.e24 (2019).Article
Marshall,R。S。Hua,Z.,Mali,S.,McLoughlin,F。&Vierstra,R。D。ATG8结合UIM蛋白定义了一类新的自噬衔接子和受体。细胞177766-781.e24(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Park, S., Rancour, D. M. & Bednarek, S. Y. Protein domain-domain interactions and requirements for the negative regulation of Arabidopsis CDC48/p97 by the plant ubiquitin regulatory X (UBX) domain-containing protein, PUX1. J. Biol. Chem. 282, 5217–5224 (2007).Article
Park,S.,Rancour,D.M。&Bednarek,S.Y。蛋白质结构域-结构域相互作用和植物泛素调节X(UBX)结构域蛋白PUX1对拟南芥CDC48/p97负调控的要求。J、 生物。化学。2825217-5224(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rancour, D. M., Park, S., Knight, S. D. & Bednarek, S. Y. Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. J. Biol. Chem. 279, 54264–54274 (2004).Article
Rancour,D.M.,Park,S.,Knight,S.D。和Bednarek,S.Y。植物UBX结构域蛋白1 PUX1调节拟南芥CDC48的寡聚结构和活性。J、 生物。化学。27954264–54274(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deruyffelaere, C. et al. PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis. Plant Cell 30, 2116–2136 (2018).Article
Deruyffelaere,C。等人PUX10是一种CDC48A衔接蛋白,可调节拟南芥种子脂滴中泛素化油质的提取。植物细胞302116-2136(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kretzschmar, F. K. et al. PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins. Plant Cell 30, 2137–2160 (2018).Article
Kretzschmar,F.K。等人PUX10是一种脂滴定位的支架蛋白,与细胞分裂周期48相互作用,并参与脂滴蛋白的降解。植物细胞302137-2160(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 7, 993–998 (2005).Article
Neuber,O.,Jarosch,E.,Volkwein,C.,Walter,J。&Sommer,T。Ubx2将Cdc48复合物与ER相关蛋白降解联系起来。自然细胞生物学。7993-998(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cline, K., Wernerwashburne, M., Andrews, J. & Keegstra, K. Thermolysin is a suitable protease for probing the surface of intact pea chloroplasts. Plant Physiol. 75, 675–678 (1984).Article
Cline,K.,Wernerwashburne,M.,Andrews,J。&Keegstra,K。嗜热菌溶血素是用于探测完整豌豆叶绿体表面的合适蛋白酶。植物生理学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chou, M. L. et al. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J. 22, 2970–2980 (2003).Article
Chou,M.L.等人,Tic40,叶绿体蛋白易位子中的膜锚定伴侣同系物。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sveshnikova, N., Grimm, R., Soll, J. & Schleiff, E. Topology studies of the chloroplast protein import channel Toc75. Biol. Chem. 381, 687–693 (2000).Article
。生物化学。381687-693(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Citovsky, V. et al. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362, 1120–1131 (2006).Article
Citovsky,V。等人。通过植物中的双分子荧光互补对相互作用蛋白进行亚细胞定位。J、 分子生物学。3621120-1131(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).Homma, F., Huang, J. & van der Hoorn, R. A. L. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat. Commun.
Evans,R。等人。使用AlphaFold多聚体预测蛋白质复合物。bioRxiv预印本https://doi.org/10.1101/2021.10.04.463034(2022年)。Homma,F.,Huang,J。&van der Hoorn,R.A.L。AlphaFold Multimer预测植物-病原体界面的跨王国相互作用。国家公社。
14, 6040 (2023).Article .
146040(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buchberger, A., Howard, M. J., Proctor, M. & Bycroft, M. The UBX domain: a widespread ubiquitin-like module. J. Mol. Biol. 307, 17–24 (2001).Article
Buchberger,A.,Howard,M.J.,Proctor,M。&Bycroft,M。UBX域:一种广泛的泛素样模块。J、 分子生物学。307,17-24(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dreveny, I. et al. Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J. 23, 1030–1039 (2004).Article
Dreveny,I。等人。AAA ATPase p97/VCP与其衔接蛋白p47之间相互作用的结构基础。EMBO J.231030–1039(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kovacheva, S. et al. In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J. 41, 412–428 (2005).Article
Kovacheva,S.等人。体内研究Tic110,Tic40和Hsp93在叶绿体蛋白质输入过程中的作用。植物J.41412–428(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7, 999–1006 (2005).Article
Schuberth,C。&Buchberger,A。膜结合的Ubx2将Cdc48募集到泛素连接酶及其底物上,以确保有效的ER相关蛋白降解。自然细胞生物学。7999-1006(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Suzuki, M. et al. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol. Biol. Cell 23, 800–810 (2012).Article
Suzuki,M。等人,Derlin-1和UBXD8在脂滴处参与脂质化ApoB-100的脱位和降解。分子生物学。细胞23800-810(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, C. W. & Lee, S. C. The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J. Cell Sci. 125, 2930–2939 (2012).CAS
Wang,C.W。&Lee,S.C。含有泛素样(UBX)结构域的蛋白质Ubx2/Ubxd8调节脂滴稳态。J、 细胞科学。1252930-2939(2012)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martensson, C. U. et al. Mitochondrial protein translocation-associated degradation. Nature 569, 679–683 (2019).Article
Martenson,C.U.等人。线粒体蛋白易位相关降解。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, J., Cao, Y., Yang, J. & Jiang, H. UBXD8 mediates mitochondria-associated degradation to restrain apoptosis and mitophagy. EMBO Rep. 23, e54859 (2022).Article
Zheng,J.,Cao,Y.,Yang,J。&Jiang,H。UBXD8介导线粒体相关降解以抑制细胞凋亡和线粒体自噬。EMBO代表23,e54859(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y. D. & Li, J. M. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front. Plant Sci. 5, 162 (2014).Article
。正面。植物科学。5162(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).Article
Alonso,J.M.等人。拟南芥的全基因组插入诱变。科学301653-657(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kasmati, A. R., Topel, M., Patel, R., Murtaza, G. & Jarvis, P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. Plant J. 66, 877–889 (2011).Article
Kasmati,A.R.,Topel,M.,Patel,R.,Murtaza,G。&Jarvis,P。拟南芥叶绿体中Tic20同源物的分子和遗传分析。植物J.66877–889(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Logan, D. C. & Leaver, C. J. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51, 865–871 (2000).Article
Logan,D.C。&Leaver,C.J。线粒体靶向的GFP突出了活植物细胞内线粒体形状,大小和运动的异质性。J、 附录51865-871(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Teh, O. K. & Moore, I. An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448, 493–496 (2007).Article
Teh,O.K。&Moore,I。一种ARF-GEF,作用于高尔基体,并在极化植物细胞中选择性内吞。自然448493-496(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, H. Q., Kunst, L., Hawes, C. & Moore, I. A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J. 37, 398–414 (2004).Article
。植物J.37398–414(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aronsson, H. & Jarvis, P. A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett. 529, 215–220 (2002).Article
Aronsson,H。&Jarvis,P。一种分离进口拟南芥叶绿体的简单方法。FEBS Lett公司。529215-220(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ling, Q. H., Huang, W. H. & Jarvis, P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 107, 209–214 (2011).Article
Ling,Q.H.,Huang,W.H。和Jarvis,P。使用SPAD-502仪测量拟南芥叶片叶绿素浓度。光同步。第107209-214号决议(2011年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
Porra,R.J.,Thompson,W.A。&Kriedemann,P.E。测定用四种不同溶剂提取的叶绿素A和b的准确消光系数和联立方程:通过原子吸收光谱法验证叶绿素标准品的浓度。
Biochim. Biophys. Acta 975, 384–394 (1989).Article .
生物化学。生物物理。Acta 975384–394(1989)。文章。
CAS
中科院
Google Scholar
谷歌学者
Constan, D., Patel, R., Keegstra, K. & Jarvis, P. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J. 38, 93–106 (2004).Article
Constan,D.,Patel,R.,Keegstra,K。&Jarvis,P。质体蛋白导入装置的外膜成分在拟南芥中起着至关重要的作用。植物J.38,93–106(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, W. H., Ling, Q. H., Bedard, J., Lilley, K. & Jarvis, P. In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. Plant Physiol. 157, 147–159 (2011).Article
Huang,W.H.,Ling,Q.H.,Bedard,J.,Lilley,K。&Jarvis,P。体内分析必需的Omp85相关蛋白在叶绿体外膜中的作用。植物生理学。157147-159(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schelbert, S. et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767–785 (2009).Article
Pheophytin脱镁叶绿酸水解酶(脱镁叶绿酸酶)参与拟南芥叶片衰老过程中的叶绿素分解。植物细胞21767-785(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10, 103–105 (2005).Article
Karimi,M.,De Meyer,B。&Hilson,P。植物细胞中的模块化克隆。趋势植物科学。10103-105(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tzfira, T. et al. pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503–516 (2005).Article
Tzfira,T。等人。pSAT载体:用于自体荧光蛋白标记和植物中多个基因表达的模块化系列质粒。植物分子生物学。57503-516(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Watson, S. J. et al. Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis. eLife 10, e60960 (2021).Article
Watson,S.J.等人。通过拟南芥的遗传和分子研究揭示了叶绿体蛋白质输入与SUMO系统之间的串扰。eLife 10,e60960(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, F. H. et al. Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).Article
Wu,F.H.等人。胶带拟南芥三明治-一种更简单的拟南芥原生质体分离方法。植物方法5,16(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, X. R., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).Article
Zhang,X.R.,Henriques,R.,Lin,S.S.,Niu,Q.W。&Chua,N.H。使用花浸法农杆菌介导的拟南芥转化。自然协议。1641-646(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article
Schneider,C.A.,Rasband,W.S。和Eliceiri,K.W。NIH Image to ImageJ:25年的图像分析。自然方法9671-675(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kirchhelle, C. et al. The specification of geometric edges by a plant Rab GTPase is an essential cell-patterning principle during organogenesis in Arabidopsis. Dev. Cell 36, 386–400 (2016).Article
Kirchelle,C。等人。植物Rab GTPase对几何边缘的规定是拟南芥器官发生过程中必不可少的细胞模式原理。Dev.Cell 36386-400(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Littlejohn, G. R., Gouveia, J. D., Edner, C., Smirnoff, N. & Love, J. Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol. 186, 1018–1025 (2010).Article
Littlejohn,G.R.,Gouveia,J.D.,Edner,C.,Smirnoff,N。&Love,J。全氟降钙素增强了拟南芥叶肉的体内共聚焦显微镜分辨率。新植物醇。1861018-1025(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ling, Q. H. & Jarvis, P. Analysis of protein import into chloroplasts isolated from stressed plants. J. Vis. Exp. https://doi.org/10.3791/54717 (2016).Chu, C. C. & Li, H. M. Determining the location of an Arabidopsis chloroplast protein using in vitro import followed by fractionation and alkaline extraction.
Ling,Q.H。&Jarvis,P。分析从受胁迫植物中分离的叶绿体中蛋白质的输入。J、 可见。实验。https://doi.org/10.3791/54717(2016年)。Chu,C.C.&Li,H.M。使用体外导入,然后分馏和碱提取来确定拟南芥叶绿体蛋白的位置。
Methods Mol. Biol. 774, 339–350 (2011).Article .
方法分子生物学。774339-350(2011)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Froehlich, J. Studying Arabidopsis envelope protein localization and topology using thermolysin and trypsin proteases. Methods Mol. Biol. 774, 351–367 (2011).Article
Froehlich,J。使用嗜热菌蛋白酶和胰蛋白酶研究拟南芥包膜蛋白的定位和拓扑结构。方法分子生物学。774351-367(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kovacheva, S., Bedard, J., Wardle, A., Patel, R. & Jarvis, P. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J. 50, 364–379 (2007).Article
Kovacheva,S.,Bedard,J.,Wardle,A.,Patel,R。&Jarvis,P。进一步体内研究分子伴侣Hsp93在质体蛋白输入中的作用。植物J.50364-379(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bauer, J. et al. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403, 203–207 (2000).Article
Bauer,J。等人。质体的主要蛋白质输入受体对于叶绿体的生物发生至关重要。自然403203-207(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aronsson, H., Combe, J. & Jarvis, P. Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS Lett. 544, 79–85 (2003).Article
Aronsson,H.,Combe,J。&Jarvis,P。叶绿体蛋白输入受体atToc33的异常核苷酸结合特性。FEBS Lett公司。544,79-85(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aronsson, H. et al. Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency. Plant J. 63, 297–311 (2010).Article
Aronsson,H。等人。叶绿体前蛋白导入受体atToc33的核苷酸结合和二聚化在体内不是必需的,但确实可以提高导入效率。植物J.63297–311(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Inaba, T. et al. Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17, 1482–1496 (2005).Article
Inaba,T。等人。拟南芥Tic110对于质体蛋白质导入机制的组装和功能至关重要。植物细胞171482-1496(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).Article
Goodstein,D.M.等人,《植物群落:绿色植物基因组学的比较平台》。核酸研究40,D1178–D1186(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bateman, A. et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).Article
。核酸研究51,D523–D531(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article
Pettersen,E.F.等人,《UCSF ChimeraX:研究人员、教育者和开发人员的结构可视化》。蛋白质科学。30,70-82(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Q. Ling for helping to initiate the study and for many discussions during the course of the work. We thank E. Johnson and C. Melia for TEM conducted in the Sir William Dunn School of Pathology EM Facility, Z. Lewis for initiating the subcellular localization screening of PUX proteins, N.
下载参考文献致谢我们感谢Q.Ling帮助启动了这项研究,并在工作过程中进行了许多讨论。我们感谢E.Johnson和C.Melia在William Dunn病理学院EM设施Z.Lewis进行的TEM启动了PUX蛋白的亚细胞定位筛选。
Buayam for technical support with LD staining and confocal imaging, N. G. Irani and I. Moore for the organelle marker lines, F. Homma for assistance with the structural analysis, and P. Bota and J. Bateman for technical assistance. This work was supported by grants from UK Research and Innovation–Biotechnology and Biological Sciences Research Council (UKRI-BBSRC; grant numbers BB/K018442/1, BB/N006372/1, BB/R016984/1, BB/R009333/1, BB/V007300/1, BB/W015021/1 and BB/X000192/1) to R.P.J.
Buayam为LD染色和共聚焦成像提供技术支持,N.G.Irani和I.Moore为细胞器标记系,F.Homma为结构分析提供帮助,P.Bota和J.Bateman为技术援助。这项工作得到了英国研究与创新-生物技术和生物科学研究委员会(UKRI-BBSRC;资助号BB/K018442/1,BB/N006372/1,BB/R016984/1,BB/R009333/1,BB/V007300/1,BB/W015021/1和BB/X000192/1)对R.P.J的资助。
and by a PhD studentship from the Oxford Interdisciplinary Bioscience Doctoral Training Partnership (UKRI-BBSRC grant number BB/M011224/1) to N.L. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.Author informationAuthors and AffiliationsSection of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UKNa Li & R.
并且由牛津跨学科生物科学博士培训合作伙伴关系(UKRI-BBSRC资助号BB/M011224/1)向N.L.的博士研究生。为了开放获取的目的,作者已经向任何作者接受的稿件(AAM)版本申请了CC公共版权许可证。作者信息作者和附属机构牛津大学生物系分子植物生物学系,UKNa Li&R。
Paul JarvisAuthorsNa LiView author publicationsYou can also search for this author in.
PaulJarvisAuthorsnaLiview作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarR. Paul JarvisView author publicationsYou can also search for this author in
PubMed Google ScholarR。Paul JarvisView作者出版物您也可以在
PubMed Google ScholarContributionsN.L. designed and conducted the experiments, analysed the data and wrote the article. R.P.J. conceived of the study, supervised the work, analysed the data and wrote the article.Corresponding authorCorrespondence to
PubMed谷歌学术贡献。五十、 设计并进行了实验,分析了数据并撰写了文章。R、 P.J.构思了这项研究,监督了这项工作,分析了数据并撰写了这篇文章。对应作者对应
R. Paul Jarvis.Ethics declarations
R、 保罗·贾维斯。道德宣言
Competing interests
相互竞争的利益
The application of CHLORAD as a technology for crop improvement is covered by a patent application (number WO2019/171091 A). The authors declare no other competing interests.
专利申请(编号WO2019/171091A)涵盖了氯拉德作为作物改良技术的应用。作者声明没有其他利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.
Nature Plants感谢匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Subcellular localization analysis of Arabidopsis PUX proteins by confocal microscopy.Protoplasts transiently expressing YFP-tagged PUX proteins under the constitutive 35S promoter were analysed by confocal microscopy.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1通过共聚焦显微镜对拟南芥PUX蛋白进行亚细胞定位分析。通过共聚焦显微镜分析在组成型35S启动子下瞬时表达YFP标记的PUX蛋白的原生质体。
Representative protoplasts are presented. Exposure times and gain settings were identical. Scale bar = 20 µm. Note that PUX14, PUX15 and PUX16 were designated as pseudogenes in a previous report, based on the presence of frameshift and nonsense mutations, and so were excluded from this analysis26.Extended Data Fig.
介绍了代表性的原生质体。曝光时间和增益设置是相同的。比例尺=20微米。请注意,基于移码突变和无义突变的存在,PUX14,PUX15和PUX16在先前的报告中被指定为假基因,因此被排除在本分析之外26。
2 Localization of PUX10 in chloroplasts in transgenic plants.Constructs encoding PUX10-YFP driven by the native PUX10 promoter (pPUX10) or by the constitutive 35S promoter (p35S) were used for stable plant transformation. Rosette leaves taken from 28-day-old T1 transgenic plants were visualized by confocal microscopy.
2 PUX10在转基因植物叶绿体中的定位。由天然PUX10启动子(pPUX10)或组成型35S启动子(p35S)驱动的编码PUX10-YFP的构建体用于稳定的植物转化。通过共聚焦显微镜观察来自28天大的T1转基因植物的莲座叶。
Representative images are presented. Similar localization of the YFP signals was observed in 5 to 10 independent T1 transgenic plants. Exposure times and gain settings were identical. Scale bars = 20 µm.Extended Data Fig. 3 Molecular and phenotypic characterization of two pux10 T-DNA insertion mutants.a, Schematic representation of the Arabidopsis PUX10 genomic locus (At4g10790), annotated with the positions of the pux10 T-DNA insertion mutations.
呈现了代表性的图像。在5至10个独立的T1转基因植物中观察到类似的YFP信号定位。曝光时间和增益设置是相同的。比例尺=20μm。扩展数据图3两个pux10 T-DNA插入突变体的分子和表型表征。a,拟南芥pux10基因组基因座(At4g10790)的示意图,用pux10 T-DNA插入突变的位置注释。
The positions of PCR primers used in b are also indicated, with arrows. Black boxes show exons, interconnecting white boxes show introns, and grey boxes show untranslated regions. Abbreviations: LB, left border sequences of the SAIL and Wisconsin T-DNA insertions; ATG, translation initiation codon; St.
。黑框显示外显子,相互连接的白框显示内含子,灰框显示非翻译区。缩写:LB,SAIL和威斯康星州T-DNA插入的左边界序列;ATG,翻译起始密码子;圣。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleLi, N., Jarvis, R.P. Recruitment of Cdc48 to chloroplasts by a UBX-domain protein in chloroplast-associated protein degradation.
转载和许可本文引用本文Li,N.,Jarvis,R.P。在叶绿体相关蛋白降解中,UBX结构域蛋白将Cdc48募集到叶绿体中。
Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01769-xDownload citationReceived: 09 August 2023Accepted: 20 July 2024Published: 19 August 2024DOI: https://doi.org/10.1038/s41477-024-01769-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然植物》(2024)。https://doi.org/10.1038/s41477-024-01769-xDownload引文接收日期:2023年8月9日接收日期:2024年7月20日发布日期:2024年8月19日OI:https://doi.org/10.1038/s41477-024-01769-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供