商务合作
动脉网APP
可切换为仅中文
AbstractThe One Health approach, recognizing the interconnectedness of human, animal, and environmental health, has gained significance amid emerging zoonotic diseases and antibiotic resistance concerns. This paper aims to demonstrate the utility of a collaborative tool, the SIEGA, for monitoring infectious diseases across domains, fostering a comprehensive understanding of disease dynamics and risk factors, highlighting the pivotal role of One Health surveillance systems.
摘要在新出现的人畜共患疾病和抗生素耐药性问题中,认识到人类,动物和环境健康相互关联的“一个健康”方法具有重要意义。本文旨在展示协作工具SIEGA的实用性,用于跨领域监测传染病,促进对疾病动态和风险因素的全面了解,突出一个健康监测系统的关键作用。
Raw whole-genome sequencing is processed through different species-specific open software that additionally reports the presence of genes associated to anti-microbial resistances and virulence. The SIEGA application is a Laboratory Information Management System, that allows customizing reports, detect transmission chains, and promptly alert on alarming genetic similarities.
。SIEGA应用程序是一个实验室信息管理系统,它允许定制报告,检测传播链,并及时提醒惊人的遗传相似性。
The SIEGA initiative has successfully accumulated a comprehensive collection of more than 1900 bacterial genomes, including Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Yersinia enterocolitica and Legionella pneumophila, showcasing its potential in monitoring pathogen transmission, resistance patterns, and virulence factors.
SIEGA倡议已成功收集了1900多种细菌基因组,包括肠道沙门氏菌、单核细胞增生李斯特菌、空肠弯曲菌、大肠杆菌、小肠结肠炎耶尔森菌和嗜肺军团菌,展示了其在监测病原体传播、耐药模式和毒力因子方面的潜力。
SIEGA enables customizable reports and prompt detection of transmission chains, highlighting its contribution to enhancing vigilance and response capabilities. Here we show the potential of genomics in One Health surveillance when supported by an appropriate bioinformatic tool. By facilitating precise disease control strategies and antimicrobial resistance management, SIEGA enhances global health security and reduces the burden of infectious diseases.
SIEGA能够定制报告并迅速检测传输链,突出了其对提高警惕性和响应能力的贡献。在这里,我们展示了在适当的生物信息学工具的支持下,基因组学在一次健康监测中的潜力。通过促进精确的疾病控制策略和抗菌药物耐药性管理,SIEGA增强了全球健康安全并减轻了传染病的负担。
The integration of health data from humans, animals, and the environment, coupled with advanced genomics, underscores the .
来自人类、动物和环境的健康数据与先进的基因组学相结合,突显了这一点。
IntroductionThe One Health approach emphasizes the interconnectedness of human, animal, and environmental health, and has gained relevance in recent years due to the emergence of zoonotic diseases and increasing antibiotic resistance1. The importance of One Health in epidemiological surveillance lies in its capacity to monitor and control infectious diseases across different domains, enabling a comprehensive understanding of disease dynamics and risk factors2.
引言“一个健康”的方法强调了人类,动物和环境健康的相互联系,近年来由于人畜共患疾病的出现和抗生素耐药性的增加而变得越来越重要1。One Health在流行病学监测中的重要性在于它能够监测和控制不同领域的传染病,从而能够全面了解疾病动态和风险因素2。
By integrating human, animal, and environmental health data, One Health surveillance systems facilitate early detection and response to health threats, thereby enhancing global health security and reducing the burden of disease3. Furthermore, this integrated approach fosters multidisciplinary collaborations among stakeholders to develop and implement coordinated strategies aimed at disease prevention and control4.
通过整合人类,动物和环境健康数据,One健康监测系统有助于早期发现和应对健康威胁,从而增强全球健康安全并减轻疾病负担3。此外,这种综合方法促进了利益相关者之间的多学科合作,以制定和实施旨在预防和控制疾病的协调战略4。
Recently, the conventional process of serotyping through serology has been undergoing a gradual transformation, with molecular typing methods such as multi-locus sequence-based typing (MLST)5 increasingly complementing or replacing traditional methods. However, these techniques do not possess the necessary discriminatory power to differentiate between closely related strains6, which limits its application in many epidemiological studies.
最近,通过血清学进行血清分型的常规过程正在逐渐转变,分子分型方法如多位点序列分型(MLST)5越来越多地补充或替代传统方法。然而,这些技术不具备必要的歧视能力来区分密切相关的菌株6,这限制了其在许多流行病学研究中的应用。
In recent years, High-throughput sequencing (HTS) technologies have revolutionized the field, enabling rapid and cost-effective analyses of complete genomes7. Whole-genome sequences (WGS) offer an unparalleled level of discrimination among genetically related isolates, allowing for the exploration of compelling questions such as accurate phylogenetic and phylogenomic analyses8, as well as the examination of serotype- or subtype-determining genes9.
近年来,高通量测序(HTS)技术彻底改变了该领域,能够对完整基因组进行快速且经济高效的分析7。全基因组序列(WGS)在遗传相关分离株之间提供了无与伦比的区分水平,可以探索令人信服的问题,例如准确的系统发育和系统基因组分析8,以及检测血清型或亚型决定基因9。
Thus, the use of sequen.
因此,使用sequen。
Table 1 SIEGA features and description.Full size tableThe entire SIEGA data management system has been designed to free users of the need to have in-house expertise in genomic data management and resources to store such data. Simultaneously, the system offers a centralized database of all genomes sampled, allowing optimal exploitation of the results and the correct implementation of one health surveillance.
表1 SIEGA特征和描述。全尺寸表整个SIEGA数据管理系统的设计目的是让用户无需在基因组数据管理方面拥有内部专业知识和存储此类数据的资源。同时,该系统提供了所有采样基因组的集中数据库,可以对结果进行最佳利用,并正确实施一次健康监测。
It provides a convenient user permission structure to allows data sharing and collaborative work (if desired), detailed quality control for the standard pipelines used for data processing and accurate data traceability. Beyond facilitating collaborative work, user permission also helps with data privacy in samples of human origin.
它提供了一个方便的用户权限结构,允许数据共享和协作工作(如果需要),对用于数据处理的标准管道进行详细的质量控制,并实现准确的数据可追溯性。除了促进协作工作之外,用户权限还有助于保护人类来源样本中的数据隐私。
In any case, metadata does not include any field with personal identification and, ultimately, it is user responsibility not including any information that would reveal the origin of the sample. In general, data is treated in an open data philosophy where possible, according to FAIR principles (findable, accessible, interoperable and reusable)28.Detailed reports on each sample, that include MLST, cgMLST, serotyping outcomes, antimicrobial resistance and virulence genes, plasmids and a phylogenetic tree with the most related samples are provided.
无论如何,元数据不包括任何带有个人标识的字段,最终,用户有责任不包括任何可能揭示样本来源的信息。一般来说,根据公平原则(可查找,可访问,可互操作和可重复使用),在可能的情况下,数据以开放数据哲学进行处理28。提供了每个样本的详细报告,包括MLST,cgMLST,血清分型结果,抗微生物药敏性和毒力基因,质粒和具有最相关样本的系统发育树。
Additionally, customized phylogenetic analysis can be carried out in an easy and intuitive way. Finally, one of the most interesting features is the automatic alert system. SIEGA can be configured to automatically send a warning when a new sample is introduced that meets some criteria defined by the user, based on genetic distance, serotype, presence of antimicrobial or virulence genes, etc.
此外,可以以简单直观的方式进行定制的系统发育分析。最后,最有趣的功能之一是自动警报系统。SIEGA可以配置为在引入符合用户定义的某些标准的新样本时,根据遗传距离,血清型,抗菌或毒力基因的存在等,自动发出警告。
(see Table 1 and Supplementary results for details).Advantages of SIEGAThe overarching goal of the SIEGA init.
(详见表1和补充结果)。SIEGA的优势SIEGA init的总体目标。
Salmonella entericaThe SIEGA encompasses a dataset comprising 670 whole genome sequences of Salmonella enterica, which were sequenced from June 2020 to July 2023 using samples collected between 2013 and 2023. Within this dataset, 42.54% (285) of the samples were sourced from clinical origins, 34.63% from the food-related sector, and 21.34% from livestock sources.
肠炎沙门氏菌SIEGA包含一个包含670个肠炎沙门氏菌全基因组序列的数据集,这些序列是从2020年6月至2023年7月使用2013年至2023年间收集的样本进行测序的。在这个数据集中,42.54%(285)的样本来自临床来源,34.63%来自食品相关部门,21.34%来自牲畜来源。
A total of 448 distinct Sequence Types (STs) were identified and categorized into clonal complexes (CCs). The prevailing ST, ST 309694 (corresponding to clonal complex ST-71), was encountered on 26 occasions. Additionally, 83 strains exhibited concurrence with more than one ST. 6 STs (ST-67337, ST-138467, ST-197094, ST-207307, ST-247937, and ST-320298) were found cross-wide clinical, food-related, and livestock-origin samples.
共鉴定出448种不同的序列类型(ST),并将其分类为克隆复合物(CC)。在26次中遇到了流行的ST,ST 309694(对应于克隆复合物ST-71)。此外,83株菌株与一种以上的ST.6 ST(ST-67337,ST-138467,ST-197094,ST-207307,ST-247937和ST-320298)表现出一致性,被发现跨临床,食品相关和家畜来源的样本。
Similarly, 18 STs were identified in both clinical and food samples, and 7 STs were identified in clinical and livestock-origin samples..
同样,在临床和食品样本中均鉴定出18种ST,在临床和家畜来源样本中鉴定出7种ST。。
Listeria monocytogenesThe SIEGA includes a dataset comprising 678 whole genome sequences of Listeria monocytogenes, which were sequenced from June 2019 to July 2023. Within this dataset, 69.61% (472) of the samples were sourced from clinical origins, including all the samples from Andalusia sequenced by the Neisseria, Listeria and Bordetella Unit of the National Centre for Microbiology in Spain while investigating the Listeriosis outbreak caused by contaminated stuffed pork in Spain in 201929, and 30.38% (206) from food origin.
单核细胞增生李斯特菌SIEGA包括一个数据集,其中包含678个单核细胞增生李斯特菌全基因组序列,这些序列于2019年6月至2023年7月测序。在这个数据集中,69.61%(472)的样本来自临床来源,包括来自安达卢西亚的所有样本,这些样本是由西班牙国家微生物中心的奈瑟菌,李斯特菌和博德特氏菌单位测序的,同时调查了201929年由西班牙受污染的填充猪肉引起的李斯特菌病爆发,以及来自食品来源的30.38%(206)。
A total of 248 distinct STs were identified and categorized into CCs. The prevailing ST, ST 29,514 (corresponding to clonal complex ST-388), was encountered on 210 occasions.Campylobacter sppThe SIEGA contains 276 whole genome sequences of Campylobacter, received between December 2020 and June 2023, corresponding to both C.
总共确定了248个不同的ST,并将其分类为CCs。。弯曲杆菌SIEGA包含276个弯曲杆菌的全基因组序列,在2020年12月至2023年6月期间收到,对应于C。
jejuni and C. coli. Most of the sequences have been obtained from human clinical strains from two reference hospitals in Cádiz and Seville. There are some STs, grouped into CCs, which have been detected with greater frequency in clinical samples. From ST-16294 (corresponding to the clonal complex ST-206) 12 sequences have been obtained, with the interest of being detected from 2020 to 2023 and in a scattered way, with 8 isolates in Cádiz and 4 in Seville.
空肠和大肠杆菌。大多数序列是从卡迪兹和塞维利亚两家参考医院的人类临床菌株中获得的。有一些ST分为CC,在临床样本中检测到的频率更高。从ST-16294(对应于克隆复合物ST-206)获得了12个序列,有兴趣从2020年到2023年以分散的方式检测到,在Cádiz有8个分离株,在塞维利亚有4个分离株。
Their identical virulome and resistome profiles have been recovered from these sequences, using the tools described, particularly ABRicate30 on VFDB31 and CARD32, databases. Another frequent STs have been ST-12550 (ST-573CC) and ST-18855 (ST-52CC)..
使用所描述的工具,特别是VFDB31和CARD32数据库上的ABRicate30,已经从这些序列中恢复了它们相同的病毒组和抗性谱。另一个常见的ST是ST-12550(ST-573CC)和ST-18855(ST-52CC)。。
Escherichia coliThe SIEGA includes 121 whole genome sequences of Escherichia coli, 44 of them downloaded from the EnteroBase website33 for reference and 77 of them collected between November 2021 and May 2023. To date, most of the sequences (72) have been obtained from food samples taken at retail level on behalf of the monitoring programme of anti-microbial resistance (AMR) according to the provisions of the Commission Implementing Decision (EU) 2020/172934 implemented in Andalusia.
大肠杆菌SIEGA包括121个大肠杆菌的全基因组序列,其中44个从EnteroBase网站33下载以供参考,其中77个在2021年11月至2023年5月期间收集。。
The human clinical strains come from two reference hospitals in Cádiz and Seville. There are STs, grouped into CCs, which have been detected with greater frequency in food samples. The prevailing ST, ST 169652 (corresponding to clonal complex ST-10) was encountered in 6 occasion all from food samples.
人类临床菌株来自卡迪兹和塞维利亚的两家参考医院。有一些ST被归类为CC,在食品样本中被检测到的频率更高。普遍存在的ST,ST 169652(对应于克隆复合物ST-10)在6次都是从食物样本中遇到的。
Additionally, other 4 strains grouped in ST142026 (CC 155) and 3 strains exhibited concurrence with ST 191979 (CC 162) or 60064 (CC 93). To the date, no shared CCs have been detected in the food and human clinical origin samples..
此外,ST142026(CC 155)中的其他4株菌株和3株菌株与ST 191979(CC 162)或60064(CC 93)一致。迄今为止,在食品和人类临床来源的样品中未检测到共有的CCs。。
Yersinia enterocoliticaThe SIEGA encompasses 23 whole genome sequences of Yersinia enterocolitica, received in the year 2022, sampled between February and November. To date 21 (91.3%) of the sequences have been obtained from clinical samples from one of the reference hospitals, the Hospital Virgen del Rocio in Seville, and 2 were obtained from food samples.
小肠结肠炎耶尔森菌SIEGA包含2022年收到的23个小肠结肠炎耶尔森菌全基因组序列,在2月至11月之间采样。迄今为止,有21个(91.3%)序列是从塞维利亚Virgen del Rocio医院的一家参考医院的临床样本中获得的,有2个是从食品样本中获得的。
There are some STs, grouped into CCs, which have been detected with greater frequency in these clinical samples. The prevailing ST, ST-1574 (corresponding to clonal complex ST-135), was encountered on 4 occasions. Additionally, 3 strains exhibited concurrence with ST-52 and 2 strains grouped into ST-1716 (corresponding also to clonal complex ST-135).
有一些ST分为CC,在这些临床样本中检测到的频率更高。4次遇到了流行的ST ST-1574(对应于克隆复合物ST-135)。此外,3株菌株与ST-52一致,2株分为ST-1716(也对应于克隆复合物ST-135)。
Figure 3 depicts the genetic relationships between all the Yersinia enterocolitica samples.Figure 3Y. enterocolitica GrapeTree representation, generated within the SIEGA application. Node labels represent ST (in some cases an ambiguous ST assignation occurred and more than one number is displayed) and node color correspond to the sampling month (a warm gradient has been used to better display the time scale).
图3描绘了所有小肠结肠炎耶尔森菌样品之间的遗传关系。图3Y。小肠结肠炎GrapeTree表示,在SIEGA应用程序中生成。节点标签表示ST(在某些情况下,发生了不明确的ST分配并且显示了多个数字),节点颜色对应于采样月份(使用了温暖的渐变来更好地显示时间尺度)。
Numbers in the branches correspond to the allelic distances among nodes. The GrapeTree representation provides an intuitive visualization of the temporal scale of sampling and the genetic similarities among the samples. Using different labels from the metadata and the results tables, it is possible to obtain visual representations of many aspects of the epidemiology of the selected samples.Full size image.
分支中的数字对应于节点之间的等位基因距离。GrapeTree表示提供了采样时间尺度和样本之间遗传相似性的直观可视化。使用元数据和结果表中的不同标签,可以获得所选样本流行病学许多方面的视觉表示。全尺寸图像。
Legionella pneumophilaLegionella data stored in SIEGA, includes the comparative analyses of 58 Legionella pneumophila isolates during 2021–2023. Of these, 12 isolates corresponded to clinical isolates and 46 to environmental isolates. Clonal relation between the Isolates was determined by cgMLST. This scheme classified the isolates into 18 ST (sequence type).
嗜肺军团菌(Legionella pneumophilaLegionella)存储在SIEGA的数据包括2021-2023年间58株嗜肺军团菌分离株的比较分析。其中,12个分离株对应于临床分离株,46个对应于环境分离株。通过cgMLST确定分离株之间的克隆关系。该方案将分离株分为18 ST(序列型)。
The most abundant being ST 293 (20 isolates, 34.5%) and 180F (11 isolates, 18.9%). Four ST (293, 427, 489 and 180F) were present in both clinical and environmental isolates. In addition, we identified 3 STs (95, 98, and 524F) in clinical isolates that are not associated with environmental origin, suggesting that they derived from unrecognized sources.Analysis of antimicrobial resistanceIn the EU, the new legislation related to the harmonized monitoring and reporting of AMR from 202135 authorized whole genome sequencing as an alternative method to supplementary phenotypic testing of Salmonella and E.
最丰富的是ST 293(20个分离株,34.5%)和180F(11个分离株,18.9%)。临床和环境分离株中均存在四种ST(293427489和180F)。此外,我们在临床分离株中鉴定出3种与环境来源无关的ST(95,98和524F),表明它们来自无法识别的来源。。
coli in certain conditions. The SIEGA allows the monitoring of the presence of resistance genes in the different microorganisms facilitating the tracking of the dissemination or emergence of AMR throughout the food chain under a One Health approach. For example, the presence of AMR genes in the population of Salmonella included in the SIEGA can be analyzed, categorized by antimicrobial classes (Fig. 4).
大肠杆菌在某些条件下。SIEGA允许监测不同微生物中抗性基因的存在,有助于在单一健康方法下追踪AMR在整个食物链中的传播或出现。例如,可以分析SIEGA中沙门氏菌群体中AMR基因的存在,按抗菌类别分类(图4)。
This analysis reveals that 52.7% (347) exhibit resistance genes to only 1 group of antimicrobials, while 15% (99) carry resistance genes to two distinct classes of antimicrobials. In contrast, 32.2% (212) demonstrate resistance genes to 3 or more classes of antimicrobials. In a similar manner, this could be carried out with the other microorganisms hosted in the database, or further analysis could be conducted by delving.
该分析显示,52.7%(347)仅对1组抗菌剂表现出抗性基因,而15%(99)携带对两种不同类别抗菌剂的抗性基因。相比之下,32.2%(212)表现出对3类或更多类抗菌药物的抗性基因。以类似的方式,这可以用数据库中托管的其他微生物进行,或者可以通过深入研究进行进一步分析。
Data availability
数据可用性
The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request. Data are located in controlled access data storage at SIEGA application.
由于敏感性的原因,支持本研究结果的数据无法公开获得,并且可以根据合理的要求从通讯作者那里获得。数据位于SIEGA应用程序的受控访问数据存储中。
AbbreviationsAMR:
缩写AMR:
Anti-microbial resistance
抗微生物抗性
CC:
抄送:
Clonal complexes
克隆复合体
cgMLST:
cgMLST:
Core genome multi-locus sequence typing
核心基因组多位点序列分型
CSV:
CSV:
Comma-separated values
逗号分隔值
ECDC:
ECDC:
European Centre for Disease Prevention and Control
欧洲疾病预防和控制中心
EFSA:
EFSA:
European Food Safety Authority
欧洲食品安全局
LIMS:
LIMS:
Laboratory Information Management System
实验室信息管理系统
MLST:
MLST:
Multi-locus sequence-based typing
基于多位点序列的分型
RASFF:
拉夫:
Rapid alert system for food and feed
食品和饲料快速预警系统
SIEGA:
锡加:
Sistema Integrado de Epidemiologia Genomica de Andalucia
安达卢西亚基因组流行病学综合系统
SNP:
单核苷酸多态性:
Single nucleotide polymorphism
单核苷酸多态性
ST:
ST公司:
Sequence types
序列类型
SVEA:
斯维阿:
Sistema de Vigilancia Epidemiológica de Andalucía
安达卢西亚流行病学监测系统
WGS:
WGS:
Whole genome sequencing
全基因组测序
ReferencesMackenzie, J. S. & Jeggo, M. The one health approach—Why is it so important?. Trop. Med. Infect. Dis. 4, 88 (2019).Article
参考文献Mackenzie,J.S。&Jeggo,M。单一健康方法为什么如此重要?。托普。医学感染。Dis。4,88(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rüegg, S. R. et al. A blueprint to evaluate One Health. Front. Public Health 5, 20 (2017).Article
Rüegg,S.R.等人。评估一种健康的蓝图。正面。公共卫生5,20(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Machalaba, C. C. et al. Global avian influenza surveillance in wild birds: A strategy to capture viral diversity. Emerg. Infect. Dis. 21, 14145 (2015).Article
Machalaba,C.C.等人,《野生鸟类的全球禽流感监测:捕获病毒多样性的策略》。紧急感染。Dis。2114145(2015)。文章
Google Scholar
谷歌学者
Queenan, K. et al. Roadmap to a One Health agenda 2030. CABI Rev. https://doi.org/10.1079/PAVSNNR201712014 (2017).Article
Queenan,K.等人,《2030年单一健康议程路线图》。CABI版本。https://doi.org/10.1079/PAVSNNR201712014(2017年)。文章
Google Scholar
谷歌学者
Mather, A. et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341, 1514–1517 (2013).Article
Mather,A.等人。多重耐药鼠伤寒沙门氏菌DT104在不同宿主中的区别流行。科学3411514-1517(2013)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Scaltriti, E. et al. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis. J. Clin. Microbiol. 53, 1227–1238 (2015).Article
Scaltriti,E。等人。基于差异单核苷酸多态性的曼哈顿沙门氏菌血清型爆发分析揭示了标准脉冲场凝胶电泳遗漏的流行病学细节。J、 临床。微生物。531227-1238(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pattabhiramaiah, M. & Mallikarjunaiah, S. Sequencing Technologies in Microbial Food Safety and Quality 393–424 (CRC Press, 2021).Yachison, C. A. et al. The validation and implications of using whole genome sequencing as a replacement for traditional serotyping for a national Salmonella reference laboratory.
Pattabhiramaiah,M。和Mallikarjunaiah,S。微生物食品安全和质量测序技术393-424(CRC出版社,2021)。Yachison,C.A。等人。使用全基因组测序替代国家沙门氏菌参考实验室的传统血清分型的验证和意义。
Front. Microbiol. 8, 1044 (2017).Article .
正面。微生物。81044(2017)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Banerji, S., Simon, S., Tille, A., Fruth, A. & Flieger, A. Genome-based Salmonella serotyping as the new gold standard. Sci. Rep. 10, 1–10 (2020).
Banerji,S.,Simon,S.,Tille,A.,Fruth,A。&Flieger,A。基于基因组的沙门氏菌血清分型作为新的金标准。科学。代表10,1-10(2020)。
Google Scholar
谷歌学者
EFSA Panel on Biological Hazards. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 17, e05898 (2019).
EFSA生物危害小组。全基因组测序和宏基因组学用于疫情调查,食源性微生物的来源归因和风险评估。EFSA J.17,e05898(2019)。
Google Scholar
谷歌学者
Tewolde, R. et al. MOST: A modified MLST typing tool based on short read sequencing. PeerJ 4, e2308 (2016).Article
Tewolde,R。等人,MOST:基于短读测序的改进的MLST分型工具。PeerJ 4,e2308(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, S. et al. SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 85, e01746-e1719 (2019).Article
Zhang,S.等人。SeqSero2:使用全基因组测序数据快速改进沙门氏菌血清型测定。应用。环境。微生物。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yoshida, C. E. et al. The Salmonella in silico typing resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 11, e0147101 (2016).Article
。PLoS ONE 11,e0147101(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Z. et al. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State. BMC Microbiol. 17, 134. https://doi.org/10.1186/s12866-017-1043-1 (2017).Article
。BMC微生物。17134页。https://doi.org/10.1186/s12866-017-1043-1(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rounds, J. et al. Prospective Salmonella Enteritidis surveillance and outbreak detection using whole genome sequencing, Minnesota 2015–2017. Epidemiol. Infect. 148, e254 (2020).Article
Rounds,J.等人,《使用全基因组测序进行肠炎沙门氏菌前瞻性监测和疫情检测》,明尼苏达州2015-2017年。流行病。感染。148,e254(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pendleton, S., Hanning, I., Biswas, D. & Ricke, S. C. Evaluation of whole-genome sequencing as a genotyping tool for Campylobacter jejuni in comparison with pulsed-field gel electrophoresis and flaA typing1 1Presented as part of the Next-Generation Sequencing Tools: Applications for Poultry Production and Food Safety Symposium at the Poultry Science Association’s annual meeting in Athens, Georgia, July 10, 2012.
Pendleton,S.,Hanning,I.,Biswas,D。&Ricke,S.C。与脉冲场凝胶电泳和flaA typing1相比,全基因组测序作为空肠弯曲菌基因分型工具的评估作为下一代测序工具的一部分:家禽生产和食品安全研讨会的应用,2012年7月10日在佐治亚州雅典举行的家禽科学协会年会上。
Poultry Sci. 92, 573–580. https://doi.org/10.3382/ps.2012-02695 (2013).Article .
Poultry Sci. 92, 573–580. https://doi.org/10.3382/ps.2012-02695 (2013).Article .
CAS
中科院
Google Scholar
谷歌学者
Catoiu, E. A., Phaneuf, P., Monk, J. & Palsson, B. O. Whole-genome sequences from wild-type and laboratory-evolved strains define the alleleome and establish its hallmarks. Proc. Natl. Acad. Sci. USA 120, e2218835120. https://doi.org/10.1073/pnas.2218835120 (2023).Article
Catoiu,E.A.,Phaneuf,P.,Monk,J。&Palsson,B.O。来自野生型和实验室进化菌株的全基因组序列定义了等位基因并建立了其标志。程序。纳特尔。阿卡德。科学。美国120,e2218835120。https://doi.org/10.1073/pnas.2218835120(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Petzold, M., Prior, K., Moran-Gilad, J., Harmsen, D. & Lück, C. Epidemiological information is key when interpreting whole genome sequence data - lessons learned from a large Legionella pneumophila outbreak in Warstein, Germany, 2013. Euro Surveill. https://doi.org/10.2807/1560-7917.Es.2017.22.45.17-00137 (2017).Article .
Petzold,M.,Prior,K.,Moran Gilad,J.,Harmsen,D。&Lück,C。在解释全基因组序列数据时,流行病学信息是关键-从2013年德国沃斯坦大规模嗜肺军团菌爆发中吸取的教训。欧元监管。https://doi.org/10.2807/1560-7917.Es.2017.22.45.17-00137(2017年)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
ECDC. ECDC Strategic Framework for the Integration of Molecular and Genomic Typing into European Surveillance and Multi-country Outbreak Investigations. https://www.ecdc.europa.eu/sites/default/files/documents/framework-for-genomic-surveillance.pdf (2019).WHO. Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance.
ECDC。ECDC将分子和基因组分型纳入欧洲监测和多国疫情调查的战略框架。https://www.ecdc.europa.eu/sites/default/files/documents/framework-for-genomic-surveillance.pdf(2019年)。谁。全基因组测序用于监测抗菌药物耐药性。
https://apps.who.int/iris/bitstream/handle/10665/334354/9789240011007-eng.pdf (2020).Mancilla-Becerra, L. M., Lías-Macías, T., Ramírez-Jiménez, C. L. & León, J. B. Multidrug-resistant bacterial foodborne pathogens: Impact on human health and economy. Pathog. Bact. 2019, 1–18 (2019)..
https://apps.who.int/iris/bitstream/handle/10665/334354/9789240011007-eng.pdf(2020年)。Mancilla Becerra,L.M.,Lías Macías,T.,Ramírez Jiménez,C.L。和León,J.B。多重耐药细菌食源性病原体:对人类健康和经济的影响。Pathog公司。细菌。2019年1月18日(2019年)。。
Google Scholar
谷歌学者
Commitment to the Andalusian Public Foundation of Progress and Health to Carry out the Maintenance, Updating and Improvement of SIEGA. https://www.juntadeandalucia.es/haciendayadministracionpublica/apl/pdc_sirec_documentacion/rest/descargar/documento/73341 (2022).Andalucía, J. D. Instrucción 130/2019 sobre Tratamiento y Secuenciación de Aislados de Agentes Biológicos en Andalucía.
致力于安达卢西亚进步与健康公共基金会进行割草的维护、更新和改进。https://www.juntadeandalucia.es/haciendayadministracionpublica/apl/pdc_sirec_documentacion/rest/descargar/documento/73341(2022年)。安达卢西亚,J.D.关于安达卢西亚生物制剂分离株治疗和测序的第130/2019号指令。
https://juntadeandalucia.es/export/drupaljda/Instrucci%C3%B3n.130-2019%20Secuenciaci%C3%B3n%20y%20Aislamientos%20rev1.pdf (2019).Chattaway, M. A. et al. The transformation of reference microbiology methods and surveillance for Salmonella with the use of whole genome sequencing in England and Wales. Front.
https://juntadeandalucia.es/export/drupaljda/Instrucci%C3%B3n.130-2019%20securenciaci%C3%B3n%20y%20Aislamientos%20rev1.pdf(2019)。Chattaway,M.A.等人。英格兰和威尔士使用全基因组测序对参考微生物学方法的转变和沙门氏菌的监测。正面。
Public Health 7, 317 (2019).Article .
公共卫生7317(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
SIEGA (Integrated System for Genomic Epidemiology in Andalusia). http://clinbioinfosspa.es/projects/siega/ (2020).Hadfield, J. et al. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).Article
SIEGA(安达卢西亚基因组流行病学综合系统)。http://clinbioinfosspa.es/projects/siega/(2020年)。Hadfield,J。等。Nextstrain:病原体进化的实时跟踪。生物信息学344121-4123(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Authority, E. F. S. et al. Guidelines for Reporting Whole Genome Sequencing‐Based Typing Data Through the EFSA One Health WGS System. Report No. 2397–8325 (Wiley Online Library, 2022).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci.
权威人士E.F.S.等人,《通过EFSA One Health WGS系统报告基于全基因组测序的分型数据的指南》。第2397–8325号报告(威利在线图书馆,2022年)。Wilkinson,M.D.等人,《科学数据管理和管理的公平指导原则》。科学。
Data 3, 160018 (2016).Article .
数据31160018(2016)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fernández-Martínez, N. F. et al. Listeriosis outbreak caused by contaminated stuffed pork, Andalusia, Spain, July to October 2019. Eurosurveillance 27, 2200279 (2022).Article
Fernández Martínez,N.F.等人,2019年7月至10月,西班牙安达卢西亚,由受污染的填充猪肉引起的李斯特菌病爆发。欧洲监测272200279(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seemann, T. Abricate. https://github.com/tseemann/abricate (2020).Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692. https://doi.org/10.1093/nar/gky1080 (2018).Article
Seemann,T。Abrate。https://github.com/tseemann/abricate(2020年)。Liu,B.,Zheng,D.,Jin,Q.,Chen,L。&Yang,J。VFDB 2019:具有交互式web界面的比较病原学平台。核酸研究47,D687–D692。https://doi.org/10.1093/nar/gky1080(2018年)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alcock, B. P. et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525. https://doi.org/10.1093/nar/gkz935 (2019).Article
Alcock,B.P.等人,《CARD 2020:使用综合抗生素耐药性数据库进行抗生素耐药性监测》。核酸研究48,D517–D525。https://doi.org/10.1093/nar/gkz935(2019年)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Z. et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30, 138–152 (2020).Article
Zhou,Z.等人,《EnteroBase用户指南》,包括沙门氏菌传播,鼠疫耶尔森菌系统发育和大肠杆菌核心基因组多样性的案例研究。基因组研究30138-152(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU. https://eur-lex.europa.eu/eli/dec_impl/2020/1729/oj (2020).Authoity, E. F.
2020年11月17日关于监测和报告人畜共患和共生细菌的抗菌素耐药性的委员会执行决定(EU)2020/1729,并废除执行决定2013/652/EU。https://eur-lex.europa.eu/eli/dec_impl/2020/1729/oj(2020年)。权威,E.F。
S. & Prevention Control, E. C. F. D. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 21, e07867 (2023)..
S、 和预防控制,E.C.F.D。欧盟2020/2021年人畜共患病和指示细菌对抗菌药物耐药性的总结报告。EFSA J.21,e07867(2023年)。。
Google Scholar
谷歌学者
Agurk fra Spania er mistenkt smittekilde i utbrudd av salmonella. https://www.fhi.no/nyheter/2022/agurk-fra-spania-er-mistenkt-smittekilde-i-utbrudd-av-salmonella/ (2022).NOTIFICATION 2020.5961. Foodborne outbreak suspected to be caused by Salmonella enterica ser. Kedougou in courgettes from NL and ES.
来自西班牙的Agurk被怀疑是沙门氏菌爆发的传染源。https://www.fhi.no/nyheter/2022/agurk-fra-spania-er-mistenkt-smittekilde-i-utbrudd-av-salmonella/(2022).通知2020.5961。疑似由沙门氏菌引起的食源性疫情。荷兰和ES的西葫芦中的Kedougou。
https://webgate.ec.europa.eu/rasff-window/screen/notification/457471 (2020).Prevention, E. C. F. D. & Control, E. F. S. A. Multi-country outbreak of Salmonella Senftenberg ST14 infections, possibly linked to cherry-like tomatoes. EFSA Support. Publ. 20, 8211 (2023)..
https://webgate.ec.europa.eu/rasff-window/screen/notification/457471(2020年)。预防,E.C.F.D.和控制,E.F.S.A.多国爆发的沙门氏菌Senftenberg ST14感染,可能与樱桃状番茄有关。EFSA支持。公共。208211(2023年)。。
Google Scholar
谷歌学者
Gerner-Smidt, P. et al. Whole genome sequencing: Bridging one-health surveillance of foodborne diseases. Front. Public Health 7, 172 (2019).Article
Gerner-Smidt,P。等。全基因组测序:桥接食源性疾病的健康监测。正面。公共卫生7172(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nadon, C. et al. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Eurosurveillance 22, 30544 (2017).Article
Nadon,C.等人,《PulseNet International:全球食源性疾病监测全基因组测序(WGS)实施愿景》。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018).Article
Gardy,J.L。和Loman,N.J。建立一个基因组学信息,实时,全球病原体监测系统。Genet自然Rev。19,9-20(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gwinn, M., MacCannell, D. & Armstrong, G. L. Next-generation sequencing of infectious pathogens. JAMA 321, 893–894 (2019).Article
Gwinn,M.,MacCannell,D。和Armstrong,G.L。感染性病原体的下一代测序。JAMA 321893-894(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
EFSA, J. European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report 15, e04872 (2017).Redondo, N., Carroll, A. & McNamara, E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland.
EFSA,J。欧洲疾病预防和控制中心(ECDC);欧洲食品安全局(EFSA);欧洲药品管理局(EMA)。联合机构间抗菌药物消费和耐药性分析(JIACRA)报告15,e04872(2017)。Redondo,N.,Carroll,A。&McNamara,E。使用全基因组测序对引起人类临床感染的弯曲杆菌进行分子表征:爱尔兰的毒力,抗菌素耐药性和系统发育。
PLoS ONE 14, e0219088 (2019).Article .
PLoS ONE 14,e0219088(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bravo, V. et al. Genomic analysis of the diversity, antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLoS Negl. Trop. Dis. 15, e0009207 (2021).Article
Bravo,V.等人。来自智利的临床空肠弯曲菌和大肠杆菌菌株的多样性,抗菌耐药性和毒力潜力的基因组分析。公共科学图书馆。托普。Dis。15,e0009207(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joseph, L. A. et al. Evaluation of core genome and whole genome multilocus sequence typing schemes for Campylobacter jejuni and Campylobacter coli outbreak detection in the USA. Microb. Genom. 9, 1012 (2023).CAS
Joseph,L.A.等人。评估美国空肠弯曲菌和大肠杆菌爆发检测的核心基因组和全基因组多位点序列分型方案。微生物。基因组。91012(2023)。中科院
Google Scholar
谷歌学者
Brehony, C., Lanigan, D., Carroll, A. & McNamara, E. Establishment of sentinel surveillance of human clinical campylobacteriosis in Ireland. Zoonoses Public Health 68, 121–130 (2021).Article
Brehony,C.,Lanigan,D.,Carroll,A。&McNamara,E。建立爱尔兰人类临床弯曲菌病的哨兵监测。人畜共患病公共卫生68121-130(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pathogenwatch. https://pathogen.watch/ (2018).Neves, A. et al. The Swiss Pathogen Surveillance Platform–towards a nation-wide One Health data exchange platform for bacterial, viral and fungal genomics and associated metadata. Microb. Genom. 9, 001001 (2023).
病原体观察。https://pathogen.watch/(2018年)。瑞士病原体监测平台——为细菌、病毒和真菌基因组学及相关元数据建立全国范围的统一健康数据交换平台。微生物。基因组。9001001(2023)。
Google Scholar
谷歌学者
Microreact. https://microreact.org/ (2024).Lo, S. W. & Jamrozy, D. Genomics and epidemiological surveillance. Nat. Rev. Microbiol. 18, 478–478. https://doi.org/10.1038/s41579-020-0421-0 (2020).Article
微反应。https://microreact.org/(2024年)。Lo,S.W。&Jamrozy,D。基因组学和流行病学监测。自然修订版微生物学。。https://doi.org/10.1038/s41579-020-0421-0(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ferdinand, A. S. et al. An implementation science approach to evaluating pathogen whole genome sequencing in public health. Genome Med. 13, 121. https://doi.org/10.1186/s13073-021-00934-7 (2021).Article
Ferdinand,A.S.等人,《公共卫生中评估病原体全基因组测序的实施科学方法》。基因组医学13121。https://doi.org/10.1186/s13073-021-00934-7(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article
Chen,S.,Zhou,Y.,Chen,Y。&Gu,J。fastp:一种超快速的一体化FASTQ预处理器。生物信息学34,i884–i890(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).Article
Wood,D.E.,Lu,J。&Langmead,B。用Kraken 2改进了宏基因组分析。基因组生物学。20257页。https://doi.org/10.1186/s13059-019-1891-0(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).Article
Lu,J.,Breitwieser,F.P.,Thielen,P。&Salzberg,S.L。Bracken:估计宏基因组学数据中的物种丰度。PeerJ计算机。科学。3,e104(2017)。文章
Google Scholar
谷歌学者
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294. https://doi.org/10.1093/bioinformatics/btv566 (2015).Article
Okonechnikov,K.,Conesa,A。&GarcíA-Alcalde,F。Qualimap 2:高通量测序数据的高级多样品质量控制。生物信息学32292-294。https://doi.org/10.1093/bioinformatics/btv566(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform. 70, e102 (2020).Article
Prjibelski,A.、Antipov,D.、Meleshko,D.、Lapidus,A.和Korobeynikov,A.使用SPAdes从头汇编程序。Curr。原型。生物信息学。70,e102(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 (2013).Article
Gurevich,A.,Saveliev,V.,Vyahhi,N。&Tesler,G。QUAST:基因组组装的质量评估工具。生物信息学291072-1075。https://doi.org/10.1093/bioinformatics/btt086。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feijao, P. et al. MentaLiST: A fast MLST caller for large MLST schemes. Microb. Genom. 4, 146 (2018).
Feijao,P.等人,《精神论者:大型MLST方案的快速MLST呼叫者》。微生物。基因组。4146(2018)。
Google Scholar
谷歌学者
Silva, M. et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb. Genom. 4, 166 (2018).
席尔瓦,M。等人,《丘巴卡:逐个基因模式创建和菌株鉴定的完整套件》。微生物。基因组。4166(2018)。
Google Scholar
谷歌学者
Mamede, R., Vila-Cerqueira, P., Silva, M., Carriço, J. A. & Ramirez, M. Chewie Nomenclature Server (chewie-NS): A deployable nomenclature server for easy sharing of core and whole genome MLST schemas. Nucleic Acids Res. 49, D660–D666. https://doi.org/10.1093/nar/gkaa889 (2020).Article .
Mamede,R.,Vila Cerqueira,P.,Silva,M.,Carriço,J.A.&Ramirez,M.Chewie命名服务器(Chewie NS):一种可部署的命名服务器,可轻松共享核心和全基因组MLST模式。核酸研究49,D660–D666。https://doi.org/10.1093/nar/gkaa889(2020年)。文章。
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mirko, R. EFSA cgMLST Gene Lists for Escherichia coli and Salmonella enterica chewieNS Schema. https://zenodo.org/record/6655441 (2022).Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).Article
Mirko,R。EFSA cgMLST基因列表用于大肠杆菌和肠道沙门氏菌Cheviens模式。https://zenodo.org/record/6655441(2022年)。Camacho,C。等。BLAST+:体系结构和应用。BMC生物信息。10421页。https://doi.org/10.1186/1471-2105-10-421(2009年)。文章
CAS
中科院
Google Scholar
谷歌学者
Moura, A. et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nature Microbiol. 2, 1–10 (2016).Article
Moura,A.等人。基于全基因组的单核细胞增生李斯特菌种群生物学和流行病学监测。自然微生物。2,1-10(2016)。文章
Google Scholar
谷歌学者
Jolley, K. A., Bray, J. E. & Maiden, M. C. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124 (2018).Article
Jolley,K.A.,Bray,J.E。和Maiden,M.C。开放获取细菌种群基因组学:BIGSdb软件,PubMLST.org网站及其应用。Wellcome Open Res.3124(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C. & Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 42, 3819–3822 (2004).Article
。J、 临床。微生物。423819-3822(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kwong, J., Zhang, J. & Seemann, T. LisSero. In Silico Serogroup Typing Prediction for Listeria Monocytogenes. https://github.com/MDU-PHL/LisSero (2021).Zhang, S. et al. SeqSero2: Rapid and improved serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 85, e01746-01719.
Kwong,J.,Zhang,J。和Seemann,T。LisSero。单核细胞增生李斯特菌的计算机血清群分型预测。https://github.com/MDU-PHL/LisSero(2021年)。Zhang,S。等。SeqSero2:使用全基因组测序数据快速改进血清型测定。应用。环境。微生物。85,e01746-01719。
https://doi.org/10.1128/AEM.01746-19 (2019).Article .
https://doi.org/10.1128/AEM.01746-19 (2019).Article .
Google Scholar
谷歌学者
Joensen, K. G., Tetzschner, A. M. M., Iguchi, A., Aarestrup, F. M. & Scheutz, F. Rapid and easy In Silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 53, 2410–2426. https://doi.org/10.1128/jcm.00008-15 (2015).Article
Joensen,K.G.,Tetzschner,A.M.M.,Iguchi,A.,Aarestrup,F.M。&Scheutz,F。通过使用全基因组测序数据快速简便地对大肠杆菌分离株进行计算机血清分型。J、 临床。微生物。532410-2426。https://doi.org/10.1128/jcm.00008-15(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500. https://doi.org/10.1093/jac/dkaa345 (2020).Article
Bortolaia,V。等人,ResFinder 4.0,用于从基因型预测表型。J、 抗菌剂。。753491–3500。https://doi.org/10.1093/jac/dkaa345(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lakin, S. M. et al. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 45, D574–D580. https://doi.org/10.1093/nar/gkw1009 (2016).Article
Lakin,S.M.等人,《MEGARes:用于高通量测序的抗菌药物耐药性数据库》。核酸研究45,D574–D580。https://doi.org/10.1093/nar/gkw1009(2016年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).Article
Gupta,S.K.等人,ARG-ANNOT,一种新的生物信息学工具,用于发现细菌基因组中的抗生素抗性基因。抗菌剂。化学试剂。58212-220(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).Article
Joensen,K.G.等人。实时全基因组测序,用于常规分型,监测和暴发检测致毒大肠杆菌。J、 临床。微生物。521501-1510(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carattoli, A. & Hasman, H. PlasmidFinder and in silico pMLST: Identification and typing of plasmid replicons in whole-genome sequencing (WGS). Horizontal Gene Transfer: Methods and Protocols 285–294 (2020).Ondov, B. D. et al. Mash Screen: High-throughput sequence containment estimation for genome discovery.
Carattoli,A。&Hasman,H。PlasmidFinder和in silico pMLST:全基因组测序(WGS)中质粒复制子的鉴定和分型。水平基因转移:方法和协议285-294(2020)。Ondov,B.D.等人,《Mash筛选:用于基因组发现的高通量序列包含估计》。
Genome Biol. 20, 232. https://doi.org/10.1186/s13059-019-1841-x (2019).Article .
Genome Biol. 20, 232. https://doi.org/10.1186/s13059-019-1841-x (2019).Article .
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 47, D195–D202. https://doi.org/10.1093/nar/gky1050 (2018).Article
Galata,V.,Fehlmann,T.,Backes,C。&Keller,A。PLSDB:完整细菌质粒的资源。核酸研究47,D195–D202。https://doi.org/10.1093/nar/gky1050(2018年)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 1–15 (2014).Article
Treangen,T.J.,Ondov,B.D.,Koren,S。和Phillippy,A.M。用于快速核心基因组比对和数千种种内微生物基因组可视化的收获套件。基因组生物学。15,1-15(2014)。文章
Google Scholar
谷歌学者
Zhou, Z. et al. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404 (2018).Article
。基因组研究281395-1404(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sanderson, T. Taxonium, a web-based tool for exploring large phylogenetic trees. eLife 11, e82392. https://doi.org/10.7554/eLife.82392 (2022).Article
Sanderson,T.Taxonium,一种基于网络的工具,用于探索大型系统发育树。埃利夫11,e82392。https://doi.org/10.7554/eLife.82392(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638. https://doi.org/10.1093/molbev/msw046 (2016).Article
Huerta-Cepas,J.,Serra,F。&Bork,P。ETE 3:系统基因组数据的重建,分析和可视化。分子生物学。进化。331635-1638年。https://doi.org/10.1093/molbev/msw046(2016年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the Instituto de Salud Carlos III (ISCIII), co-funded with European Regional Development Funds (ERDF) (Grant IMP/00019), it has also been funded by Consejería de Salud y Consumo, Junta de Andalucía (Grants COVID-0012-2020, PIP-0087-2021), and by grant ELIXIR-CONVERGE—Connect and align ELIXIR Nodes to deliver sustainable FAIR lifescience data management services (AMD-871075-16), funded by EU – H2020.
下载参考文献致谢这项工作得到了萨卢德·卡洛斯三世研究所(ISCIII)的支持,该研究所与欧洲区域发展基金(ERDF)共同资助(Grant IMP/00019),它也得到了Consejería de Salud y Consumo,Junta de Andalucía(Grants COVID-0012-2020,PIP-0087-2021)的资助,以及Grant ELIXIR CONVERGE和align ELIXIR Nodes的资助,以提供可持续的公平生命科学数据管理服务(AMD-871075-16),由欧盟H2020资助。
CSCS was funded by a Juan de la Cierva Grant (FJC2021-046546-I) from Ministerio de Ciencia e Innovación.Author informationAuthors and AffiliationsAndalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, SpainCarlos S. Casimiro-Soriguer, Javier Pérez-Florido, Enrique A.
CSC由Ciencia e Innovación部长的Juan de la Cierva Grant(FJC2021-046546-I)资助。作者信息作者和附属机构安达卢西亚计算医学平台,安达卢西亚公共基金会进步与健康FPS,塞维利亚,斯帕因卡洛斯S.Casimiro Soriguer,哈维尔·佩雷斯·弗洛里多,恩里克A。
Robles, María Lara, Andrea Aguado & Joaquin DopazoInstitute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, SpainCarlos S. Casimiro-Soriguer, Javier Pérez-Florido, José A. Lepe & Joaquin DopazoServicio de Microbiología. Hospital Universitario Puerta del Mar, 11009, Cádiz, SpainManuel A.
罗伯斯、玛丽亚·拉拉、安德里亚·阿瓜多和华金·多帕佐塞维利亚生物医学研究所、伊比斯、维珍德尔罗西奥大学医院/CSIC/塞维利亚大学,41013年,塞维利亚,西班牙。卡西米罗-索里格、哈维尔·佩雷斯-弗洛里多、何塞A。莱佩和华金·多帕佐微生物学服务。西班牙加的斯Puerta del Mar大学医院,11009年。
Rodríguez IglesiasServicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, SpainJosé A. LepeCentro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, SpainJosé A.
Rodríguez Iglesiasservicio de微生物学,Virgen del Rocio大学医院传染病、微生物学和预防医学诊所,41013年,塞维利亚,西班牙。传染病网络生物医学研究中心,ISCIII,马德里,西班牙。
Lepe & Federico GarcíaServicio de Microbiología. Hospital Universitario San Cecilio, 18016, Granada, SpainFederico GarcíaInstituto de Investigación Biosanitaria, Ibs.GRANADA, 18012, Granada, SpainFederico GarcíaGenomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville Univers.
Lepe和Federico Garcia微生物学服务。圣塞西利奥大学医院,18016年,格拉纳达,Spainfederico Garcia生物卫生研究所,IBS。格拉纳达,18012年,格拉纳达,Spainfederico-Garciagenomic部门,安达卢西亚分子生物学和再生医学中心,塞维利亚大学。
PubMed Google ScholarJavier Pérez-FloridoView author publicationsYou can also search for this author in
PubMed Google ScholarJavier Pérez FloridoView作者出版物您也可以在
PubMed Google ScholarEnrique A. RoblesView author publicationsYou can also search for this author in
PubMed Google ScholarEnrique A.RoblesView作者出版物您也可以在
PubMed Google ScholarMaría LaraView author publicationsYou can also search for this author in
PubMed Google ScholarMaría LaraView作者出版物您也可以在
PubMed Google ScholarAndrea AguadoView author publicationsYou can also search for this author in
PubMed Google ScholarAndrea AguadoView作者出版物您也可以在
PubMed Google ScholarManuel A. Rodríguez IglesiasView author publicationsYou can also search for this author in
PubMed Google ScholarManuel A.Rodríguez IglesiasView作者出版物您也可以在
PubMed Google ScholarJosé A. LepeView author publicationsYou can also search for this author in
PubMed Google ScholarJoséA.LepeView作者出版物您也可以在
PubMed Google ScholarFederico GarcíaView author publicationsYou can also search for this author in
PubMed Google ScholarMónica Pérez-AlegreView author publicationsYou can also search for this author in
PubMed Google Scholarmanónica Pérez AlegreView作者出版物您也可以在
PubMed Google ScholarEloísa AndújarView author publicationsYou can also search for this author in
PubMed Google ScholarEloísa和újarView作者出版物您也可以在
PubMed Google ScholarVictoria E. JiménezView author publicationsYou can also search for this author in
PubMed Google ScholarVictoria E.JiménezView作者出版物您也可以在
PubMed Google ScholarLola P. CaminoView author publicationsYou can also search for this author in
PubMed Google ScholarLola P.CaminoView作者出版物您也可以在
PubMed Google ScholarNicola LorusoView author publicationsYou can also search for this author in
PubMed Google ScholarNicola LorusoView作者出版物您也可以在
PubMed Google ScholarUlises AmeyugoView author publicationsYou can also search for this author in
PubMed Google ScholarUlises AmeyugoView作者出版物您也可以在
PubMed Google ScholarIsabel María VazquezView author publicationsYou can also search for this author in
PubMed Google ScholarIsabel María VazquezView作者出版物您也可以在
PubMed Google ScholarCarlota M. LozanoView author publicationsYou can also search for this author in
PubMed Google ScholarCarlota M.LozanoView作者出版物您也可以在
PubMed Google ScholarJ. Alberto ChavesView author publicationsYou can also search for this author in
PubMed Google ScholarJ。Alberto ChavesView作者出版物您也可以在
PubMed Google ScholarJoaquin DopazoView author publicationsYou can also search for this author in
PubMed Google ScholarJoaquin DopazoView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization, JD. and J.A.C.; methodology, C.S.C.S., J.P.F., M.L., A.A., M.P.A., E.A., V.E.J. and L.P.C.; software, E.A.R.; formal analysis, C.S.C.S. and J.P.F.; investigation, M.A.R.I., J.A.L., F.G., N.L., U.A., I.M.V.; data curation, C.S.C.S., J.P.F., M.L., A.A.; writing—original draft preparation, J.D., J.A.C., C.S.C.S., J.P.F.; writing—review and editing, J.D., J.A.C., C.S.C.S., J.P.F., J.A.L., M.A.R.I., C.M.L.; supervision, J.D., J.A.C.; funding acquisition, J.D., J.A.L., F.G., C.S.C.S.
PubMed谷歌学术贡献概念化,JD。和J.A.C。;方法论,C.S.C.S.,J.P.F.,M.L.,A.A.,M.P.A.,E.A.,V.E.J.和L.P.C。;软件,E.A.R。;形式分析,C.S.C.S.和J.P.F。;调查,M.A.R.I.,J.A.L.,F.G.,N.L.,U.A.,I.M.V。;数据管理,C.S.C.S.,J.P.F.,M.L.,A.A。;撰写原始草案准备,J.D.,J.A.C.,C.S.C.S.,J.P.F。;写作评论和编辑,J.D.,J.A.C.,C.S.C.S.,J.P.F.,J.A.L.,M.A.R.I.,C.M.L。;监督,J.D.,J.A.C。;资金收购,J.D.,J.A.L.,F.G.,C.S.C.S。
All authors reviewed the manuscript.Corresponding authorCorrespondence to.
所有作者都审阅了手稿。对应作者对应。
Joaquin Dopazo.Ethics declarations
华金·多帕佐。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleCasimiro-Soriguer, C.S., Pérez-Florido, J., Robles, E.A. et al. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic.
转载和许可本文引用本文Casimiro Soriguer,C.S.,Pérez Florido,J.,Robles,E.A。等人。安达卢西亚(SIEGA)的综合基因组监测系统提供了与诊所相关的单一健康区域资源。
Sci Rep 14, 19200 (2024). https://doi.org/10.1038/s41598-024-70107-0Download citationReceived: 30 January 2024Accepted: 13 August 2024Published: 19 August 2024DOI: https://doi.org/10.1038/s41598-024-70107-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 141920(2024)。https://doi.org/10.1038/s41598-024-70107-0Download引文接收日期:2024年1月30日接受日期:2024年8月13日发布日期:2024年8月19日OI:https://doi.org/10.1038/s41598-024-70107-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsOne healthSurveillanceWhole genome sequencingResistancesAMREpidemiology
关键词健康监测全基因组测序耐药性血液学
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。