EN
登录

将多组学与人群特征和糖尿病亚型联系起来的分子人类路线图

A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes

Nature 等信源发布 2024-08-19 01:32

可切换为仅中文


AbstractIn-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab).

摘要深入的多组学表型分析为复杂的生理过程及其病理学提供了分子见解。在这里,我们报告了将18种不同的深度分子表型(组学-)技术应用于391名多种族糖尿病卡塔尔糖尿病代谢组学研究(QMDiab)参与者的尿液,血液和唾液样本。

Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations.

使用6304个具有1221345个遗传变异的定量分子性状,470837个DNA CpG位点的甲基化以及57000个转录本的基因表达,我们确定(1)平台内部分相关性,(2)平台间最佳相关性,以及(3)基因组,表观基因组,转录组和全基因组关联。

Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays “The Molecular Human”. We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data.

结合生物流体中>34000个具有统计学意义的性状-性状链接的分子网络,我们的研究描绘了“分子人类”。我们描述了每个组学在表型(年龄,性别,BMI和糖尿病状态),平台互补性以及多组学数据的固有相关结构中解释的差异。

Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to “The Molecular Human” (http://comics.metabolomix.com), providing interactive data exploration and hypotheses generation possibilities..

此外,我们构建了糖尿病亚型的多分子网络。最后,我们为“分子人类”生成了一个开放访问的web界面(http://comics.metabolomix.com),提供交互式数据探索和假设生成的可能性。。

IntroductionThe quote “Learn how to see. Realize that everything connects to everything else” by Leonardo Da Vinci becomes substantive in the context of high-throughput deep molecular phenotyping technologies that enable the measurement of hundreds or even thousands of quantitative readouts of the genome, transcriptome, proteome, metabolome, and glycome as well as related intermediate omics layers, such as the epigenome, and microRNA-ome1.

引言莱昂纳多·达芬奇(LeonardoDavinci)的名言“学会看。认识到一切都与其他一切联系在一起”在高通量深度分子表型技术的背景下变得具有实质性意义,该技术能够测量数百甚至数千个基因组,转录组,蛋白质组,代谢组和糖组以及相关的中间组学层(如表观基因组和microRNA-ome1)的定量读数。

Integrated into a single study, these readouts simultaneously can provide complementary insights into the molecular interactions that define the physiological and pathophysiological processes in the human body.Indeed, molecular processes have been monitored in human biofluids through the integration of various omics approaches, including genomics, methylation, transcriptomics, proteomics, and metabolomics2,3,4,5,6,7,8,9,10,11.

将这些读数整合到一项研究中,可以同时提供对定义人体生理和病理生理过程的分子相互作用的补充见解。事实上,通过整合各种组学方法,包括基因组学,甲基化,转录组学,蛋白质组学和代谢组学,已经在人类生物流体中监测了分子过程2,3,4,5,6,7,8,9,10,11。

However, studies that deploy a broader range of omics techniques tend to have a smaller sample size, typically involving 1–36 individuals. For instance, these studies investigate dynamic changes in diverse molecular components in response to factors such as viral infection10, spaceflight8, as well as extensive exercise9.

然而,部署更广泛的组学技术的研究往往样本量较小,通常涉及1-36个人。例如,这些研究调查了不同分子成分对病毒感染10,太空飞行8以及广泛锻炼9等因素的动态变化。

In contrast, larger cohort studies (≥100 individuals) tend to focus on a more limited spectrum of omics measurements2,3,4,6. For example, the impact of lifestyle changes was monitored at the molecular level in processes related to obesity, diabetes, liver function, or cardiovascular disease using genomics, proteomics, and metabolomics3.

相比之下,较大的队列研究(≥100个人)倾向于关注更有限的组学测量范围2,3,4,6。例如,使用基因组学,蛋白质组学和代谢组学,在与肥胖,糖尿病,肝功能或心血管疾病相关的过程中,在分子水平上监测生活方式改变的影响3。

Similarly, proteomics and metabolomics were deployed to determine molecular signatures associated with schizophrenia2, while metabolomics and lipidomics were used for studying HIV infection6. The limited array of omics approaches was also used in a very large pop.

同样,蛋白质组学和代谢组学被用来确定与精神分裂症相关的分子特征,而代谢组学和脂质组学被用于研究HIV感染6。有限的组学方法也被用于非常大的流行音乐中。

RNA extraction

RNA提取

The miRNAs were isolated from 200 µL EDTA-plasma sample using the miRNeasy serum/plasma kit (Qiagen) following the manufacturer’s instructions. Briefly, the samples were lyzed using QIAzol Lysis Reagent and spiked with 3.5 μl miRNeasy Serum/Plasma Spike-In Control included in the kit. The chloroform was added, samples were mixed and the centrifuged.

按照制造商的说明,使用miRNeasy血清/血浆试剂盒(Qiagen)从200μlEDTA血浆样品中分离miRNA。简而言之,使用QIAzol裂解试剂裂解样品,并加入试剂盒中包含的3.5μlmiRNeasy血清/血浆加标对照。加入氯仿,混合样品并离心。

The obtained after centrifugation upper aqueous phase was transferred into the fresh tube, mixed with 1.5 volume of 100% ethanol, and transferred into an RNeasy MinElute spin column in a 2 ml collection tube, provided in the kit. The samples were centrifuged, the flow-throw was removed, and RWT buffer provided with the kit was added onto the RNeasy MinElute spin column.

将离心后获得的上层水相转移到新鲜管中,与1.5体积的100%乙醇混合,并转移到试剂盒中提供的2ml收集管中的RNeasy MinElute旋转柱中。将样品离心,除去流程,并将试剂盒提供的RWT缓冲液添加到RNeasy MinElute旋转柱上。

The samples were centrifuged, the flow-throw was discarded, RPE buffer, provided with the kit, was added onto the RNeasy MinElute spin column. The samples were centrifuged and flow-throw was removed. The 80% ethanol prepared in RNaze-free water was placed onto the MinElute spin column, the samples were centrifuged until the spin column membrane dried.

将样品离心,弃去流量,将试剂盒提供的RPE缓冲液添加到RNeasy MinElute旋转柱上。将样品离心并除去流动。将在不含RNaze的水中制备的80%乙醇置于MinElute旋转柱上,离心样品直至旋转柱膜干燥。

The MinElute spin column was placed in fresh collection tube and the total RNA including miRNA was eluted with 14 μl RNase-free water..

将MinElute旋转柱置于新鲜的收集管中,用14μl不含RNase的水洗脱包括miRNA在内的总RNA。。

miRNA profiling

miRNA分析

Prior the profiling, the isolated RNA samples were reverse transcribed to cDNA using the Exiqon Universal cDNA Synthesis Kit II (Exiqon Inc., MA, USA) according with the manufacturer instruction. Briefly, 2 μL of total RNA (5 ng/μL) were used for cDNA synthesis. All processes were conducted in 384 well plate format.

在分析之前,根据制造商的说明,使用Exiqon Universal cDNA Synthesis Kit II(Exiqon Inc.,MA,USA)将分离的RNA样品逆转录为cDNA。简而言之,将2μL总RNA(5ng/μL)用于cDNA合成。所有过程均以384孔板形式进行。

The quality and integrity of the synthesized cDNA was assessed using the miRNA QC PCR Panel (V4.M; Exiqon Inc.). Obtained cDNA was 50-fold diluted and mixed with 2x Exilent SYBR Green master mix (Exiqon Inc.), and ROX reference dye (4 μl/2 ml) (Thermo Fisher Scientific, MA, USA). The samples were loaded onto human serum/plasma focus miRNA PCR panels, and quantitative real-time PCR was performed using the QuantStudio 12 K Flex real-time PCR System (Applied Biosystems, CA, USA).

使用miRNA QC PCR面板(V4.M;Exiqon Inc.)评估合成的cDNA的质量和完整性。将获得的cDNA稀释50倍,并与2x流放SYBR Green master mix(Exiqon Inc.)和ROX参考染料(4μl/2ml)(Thermo Fisher Scientific,MA,USA)混合。将样品加载到人血清/血浆聚焦miRNA PCR板上,并使用QuantStudio 12K Flex实时PCR系统(Applied Biosystems,CA,USA)进行定量实时PCR。

The PCR data were processed using Exiqon GenEx qPCR analysis software (version 6). The inter-plate calibration was performed using the mean value of UniSp3 interplate calibrator. The samples with a high degree of hemolysis were identified after monitoring of calculated ΔCt between hsa-miR-23a-3p and hsa-miR-451a.

使用Exiqon GenEx qPCR分析软件(版本6)处理PCR数据。使用UniSp3 interplate校准器的平均值进行板间校准。在监测hsa-miR-23a-3p和hsa-miR-451a之间计算的ΔCt后,鉴定出高度溶血的样品。

The samples with ΔCt > 7 were removed from the analysis. Only microRNA assays with Ct ≤ 35, expressed in at least 60% of the samples were counted and the remaining samples were removed from the analysis. The global average of all expressed microRNAs with Ct < 35 was used to normalize individual assays.

从分析中除去ΔCt>7的样品。仅计数在至少60%的样品中表达的Ct≤35的microRNA测定,并从分析中除去剩余的样品。使用Ct<35的所有表达的microRNA的全球平均值来标准化单个测定。

Total of 169 miRNAs were profiled in 339 subjects..

在339名受试者中共分析了169个miRNA。。

Proteomics measurements using SOMAscan technologyThe EDTA-plasma samples were used for proteomics analysis based on SOMAscan assay (version 1.1) technology, which was conducted at the WCM-Q Proteomics Core15. The method employed protein-capture by Slow Offrate Modified Aptamers (SOMAmer)117. Briefly, undepleated EDTA-plasma was diluted and the following assay steps were performed: (1) Binding: analytes and SOMAmers, carrying a biotin moiety via a photocleavable linker were equilibrated; (2) Catch I: analyte/SOMAmer complexes were immobilized on streptavidin‐support, followed by washing steps to remove proteins not stably interacting with SOMAmers; (3) Cleave: release of analyte/SOMAmer complexes from streptavidin beads through exposure to long‐wave ultraviolet light resulting in linker cleavage; (4) Catch II: biotinylation of proteins in analyte/SOMAmer complexes and subsequent repeated immobilization on streptavidin support followed by washing steps to select against non‐specific analyte/SOMAmer complexes; (5) Elution: denaturation of analyte/SOMAmer complexes and SOMAmer release; (6) Quantification: hybridization to custom arrays of SOMAmer‐complementary oligonucleotides.

使用SOMAscan技术进行蛋白质组学测量EDTA血浆样品用于基于SOMAscan测定(版本1.1)技术的蛋白质组学分析,该技术在WCM-Q蛋白质组学核心15上进行。该方法采用慢速修饰适体(SOMAmer)117捕获蛋白质。简而言之,稀释未折叠的EDTA血浆并进行以下测定步骤:(1)结合:平衡通过光可裂解接头携带生物素部分的分析物和SOMAmers;(2) 捕获物I:将分析物/SOMAmer复合物固定在链霉亲和素载体上,然后进行洗涤步骤以去除与SOMAmers不稳定相互作用的蛋白质;(3) 裂解:通过暴露于长波紫外线导致接头裂解,从链霉亲和素珠中释放分析物/SOMAmer复合物;(4) 第二阶段:分析物/SOMAmer复合物中蛋白质的生物素化,随后在链霉亲和素载体上重复固定,然后进行洗涤步骤以选择非特异性分析物/SOMAmer复合物;(5) 洗脱:分析物/SOMAmer复合物的变性和SOMAmer释放;(6) 定量:与SOMAmer互补寡核苷酸的定制阵列杂交。

The primary data were submitted to Somalogic for normalization of raw intensities, across-batch calibration and steps of quality control. In total 1129 molecules were quantified in 356 samples.Proteomics measurements using Olink technologyHeparin-plasma samples were used for the proteomics measurements based on the Olink® technology (Olink Proteomics AB, Uppsala, Sweden) at the WCM-Q Proteomics Core.

主要数据已提交给Somalogic,以标准化原始强度,跨批次校准和质量控制步骤。在356个样品中总共定量了1129个分子。使用Olink技术进行蛋白质组学测量肝素血浆样品用于基于WCM-Q蛋白质组学核心的Olink®技术(Olink Proteomics AB,Uppsala,Sweden)的蛋白质组学测量。

The technology is based on a proximity extension assay (PEA)118, and enables for simultaneous analysis of 92 analytes in 1 µL of sample. We used two different Olink® panels, namely Cardiometabolic and Me.

该技术基于邻近延伸测定(PEA)118,能够同时分析1µL样品中的92种分析物。我们使用了两种不同的Olink®面板,即Cardiometabolic和Me。

Data availability

数据可用性

The source of data generated by each platform is provided on Figshare (https://doi.org/10.6084/m9.figshare.25975627.v2). The data can be downloaded as an excel file. Additionally, we are also providing data in.rda format for which we prepared R script that downloads the rda. data. The genetic data and methylation data access is not deposited because the informed consent given by the study participants does not cover posting of participant genotype and methylation data in public databases.

Figshare上提供了每个平台生成的数据源(https://doi.org/10.6084/m9.figshare.25975627.v2)。数据可以作为excel文件下载。此外,我们还提供了.rda格式的数据,为此我们准备了下载rda的R脚本。数据。遗传数据和甲基化数据访问未保存,因为研究参与者给出的知情同意书不包括在公共数据库中发布参与者基因型和甲基化数据。

Researcher affiliated with a research institution may request access to genetic data on an individual basis from the corresponding author (Karsten Suhre and Anna Halama, Weill Cornell Medicine—Qatar, Doha, Qatar). Access is subject to approval by the institutional research board of Weill Cornell Medicine—Qatar.

隶属于研究机构的研究人员可能会要求通讯作者(卡塔尔多哈威尔康奈尔医学公司的Karsten Suhre和Anna Halama)个人访问遗传数据。访问需要卡塔尔威尔康奈尔医学院机构研究委员会的批准。

The data sets deployed in this study were previously utilized as follows: Genomics data depicted as DNA14,15,16,20,137,138; Methylation data depicted as MET14,16; Transcriptomics data depicted as RNA139; Proteomics data measured on SOMA platform depicted as SOMA14,15,16,20,53,137,140; Glycomics data reflecting on total plasma N-glycosylation depicted as PGP14,53; Glycomics data reflecting on plasma IgG levels depicted as IgG14,138; Lipoproteomics data depicted as BRAIN14; The broad lipidomics data depicted as LD130; The targeted lipidomics data depicted as BM14,130; The untargeted metabolomics measured on HD4 platform depicted as HDF19,75,141; PM12,13,14,16,17,18,141,142; SM12,13,14,16,17,18,142; UM12,13,14,16,17,18,142; and CM16.

本研究中部署的数据集以前使用如下:基因组学数据描述为DNA14,15,16,20137138;甲基化数据描述为MET14,16;转录组学数据描述为RNA139;在SOMA平台上测量的蛋白质组学数据描述为SOMA14,15,16,20,53137140;反映总血浆N-糖基化的糖组学数据描述为PGP14,53;反映血浆IgG水平的糖组学数据描述为IgG14138;脂质蛋白质组学数据描述为大脑14;广泛的脂质组学数据描述为LD130;目标脂质组学数据描述为BM14130;;PM12,13,14,16,17,18141142;SM12,13,14,16,17,18142;UM12,13,14,16,17,18142;和CM16。

Transcriptomics data covering microRNA depicted as miRNA, proteomics data measured on OLINK platform depicted as OLINK, and Glycomics data reflecting on plasma IgA levels depicted as IgA were not published before..

转录组学数据涵盖了被描述为miRNA的microRNA,在被描述为OLINK的OLINK平台上测量的蛋白质组学数据,以及反映被描述为IgA的血浆IgA水平的糖组学数据。。

Code availability

代码可用性

We are also providing access to the source code used to generate COmics Server. The source code and a docker image could be accessed via GitHub at https://github.com/karstensuhre/comics and referenced using https://doi.org/10.5281/zenodo.11487725.

我们还提供对用于生成漫画服务器的源代码的访问。源代码和docker图像可以通过GitHub访问https://github.com/karstensuhre/comics并使用引用https://doi.org/10.5281/zenodo.11487725.

ReferencesBorges, L., Kubin, M. & Kuhlman, T. LIR9, an immunoglobulin-superfamily-activating receptor, is expressed as a transmembrane and as a secreted molecule. Blood 101, 1484–1486 (2003).Article

参考文献Borges,L.,Kubin,M。&Kuhlman,T。LIR9是一种免疫球蛋白超家族激活受体,表达为跨膜和分泌分子。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Campeau, A. et al. Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol. Psychiatry 27, 1217–1225 (2022).Article

Campeau,A。等人。人血浆的多组学揭示了精神分裂症中炎症失调和加速衰老的分子特征。摩尔精神病学271217-1225(2022)。文章

MathSciNet

MathSciNet

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Marabita, F. et al. Multiomics and digital monitoring during lifestyle changes reveal independent dimensions of human biology and health. Cell Syst. 13, 241–255.e247 (2022).Article

生活方式改变期间的多组学和数字监测揭示了人类生物学和健康的独立层面。细胞系统。13241–255.e247(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sailani, M. R. et al. Deep longitudinal multiomics profiling reveals two biological seasonal patterns in California. Nat. Commun. 11, 4933 (2020).Benson, M. D. et al. Protein-metabolite association studies identify novel proteomic determinants of metabolite levels in human plasma. Cell Metab.

Sailani,M.R.等人,《深度纵向多组学分析》揭示了加利福尼亚州的两种生物季节模式。国家公社。114933(2020)。蛋白质-代谢物关联研究确定了人血浆中代谢物水平的新型蛋白质组学决定因素。细胞代谢。

35, 1646–1660.e1643 (2023).Article .

351646–1660.e1643(2023)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mikaeloff, F. et al. Network-based multi-omics integration reveals metabolic at-risk profile within treated HIV-infection. Elife 12, e82785 (2023).Shi, L. et al. Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer’s disease.

Mikaeloff,F。等人。基于网络的多组学整合揭示了治疗后HIV感染中的代谢风险概况。Elife 12,e82785(2023)。Shi,L.等人。人血浆和脑脊液的多组学分析揭示了ATN衍生的网络,并强调了阿尔茨海默病的因果关系。

Alzheimers Dement 19, 3350–3364 (2023).Article .

阿尔茨海默氏症193350-3364(2023)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130 e1116 (2020).Article

GarrettBakelman,F.E.等人,《美国宇航局双胞胎研究:一年人类太空飞行的多维分析》。科学364,eaau8650(2019)。Contrepois,K。等人,《急性运动的分子编排》。细胞1811112-1130 e1116(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).Article

Chen,R。等人。个人组学分析揭示了动态的分子和医学表型。细胞1481293-1307(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tebani, A. et al. Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat. Commun. 11, 4487 (2020).Article

Tebani,A。等人。在纵向健康状况分析队列中整合分子谱。国家公社。114487(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mook-Kanamori, D. O. et al. 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J. Clin. Endocrinol. Metab. 99, E479–E483 (2014).Article

Mook Kanamori,D.O.等人唾液中的1,5-脱水葡萄糖醇是短期血糖控制的无创标志物。J、 临床。内分泌。代谢。99,E479–E483(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yousri, N. A. et al. A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control. Diabetologia 58, 1855–1867 (2015).Article

Yousri,N.A.等人。在血糖控制的不同时间尺度上,唾液,血液和尿液中与2型糖尿病相关的代谢紊乱的系统视图。糖尿病581855-1867(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zaghlool, S. B. et al. Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation. Hum. Mol. Genet. 27, 1066–1121 (2018).Article

Zaghlool,S.B.等人。深层分子表型将复杂疾病和生理损伤与CpG甲基化联系起来。嗯,摩尔·吉内特。271066-1121(2018)。文章

Google Scholar

谷歌学者

Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8, 14357 (2017).Zaghlool, S. B. et al. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat. Commun. 11, 15 (2020).Do, K.

Suhre,K.等人。通过人血浆蛋白质组将遗传风险与疾病终点联系起来。国家公社。814357(2017)。Zaghlool,S.B.等人。表观遗传学与蛋白质组学在表观基因组范围内与循环血浆蛋白质性状的关联研究中相遇。国家公社。11、15(2020年)。Do,K。

T. et al. Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva. J. Proteome Res 14, 1183–1194 (2015).Article .

T、 等。基于网络的方法,用于分析人体血液,尿液和唾液中的流体内和流体间代谢物关联。J、 蛋白质组研究141183-1194(2015)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Do, K. T., Rasp, D. J. N. P., Kastenmüller, G., Suhre, K. & Krumsiek, J. MoDentify: phenotype-driven module identification in metabolomics networks at different resolutions. Bioinformatics 35, 532–534 (2019).Article

Do,K.T.,Rasp,D.J.N.P.,Kastenmüller,G.,Suhre,K.&Krumsiek,J.MoDentify:代谢组学网络中不同分辨率的表型驱动模块识别。生物信息学35532-534(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gomari, D. P. et al. Variational autoencoders learn transferrable representations of metabolomics data. Commun. Biol. 5, 645 (2022).Article

Gomari,D.P.等人。变分自动编码器学习代谢组学数据的可转移表示。Commun公司。生物学5645(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gudmundsdottir, V. et al. Circulating protein signatures and causal candidates for type 2 diabetes. Diabetes 69, 1843–1853 (2020).Article

Gudmundsdottir,V。等人。2型糖尿病的循环蛋白特征和因果候选者。糖尿病691843-1853(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharapov, S. Z. et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum. Mol. Genet. 28, 2062–2077 (2019).CAS

Sharapov,S.Z.等人使用全基因组关联研究定义人血浆N-糖组的遗传控制。嗯,摩尔·吉内特。282062-2077(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krumsiek, J., Suhre, K., Illig, T., Adamski, J. & Theis, F. J. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst. Biol. 5, 21 (2011).Article

Krumsiek,J.,Suhre,K.,Illig,T.,Adamski,J。&Theis,F.J。高斯图形建模从高通量代谢组学数据重建途径反应。BMC系统。生物学5,21(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Overbeek, R., Fonstein, M., D’Souza, M., Push, G. D. & Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl Acad. Sci. USA 96, 2896–2901 (1999).Article

Overbeek,R.,Fonstein,M.,D'Souza,M.,Push,G.D。&Maltsev,N。使用基因簇来推断功能偶联。程序。国家科学院。科学。美国962896-2901(1999)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22–28 (2001).Article

Tatusov,R.L.等人,《COG数据库:来自完整基因组的蛋白质系统发育分类的新发展》。核酸研究29,22-28(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Suhre, K. & Zaghlool, S. Connecting the epigenome, metabolome and proteome for a deeper understanding of disease. J. Intern Med 290, 527–548 (2021).Article

Suhre,K。&Zaghlool,S。将表观基因组,代谢组学和蛋白质组学联系起来,以更深入地了解疾病。J、 。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet 20, 467–484 (2019).Article

Tam,V。等人。全基因组关联研究的益处和局限性。《自然评论》Genet 20467-484(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet 51, 592–599 (2019).Article

Wainberg,M.等人。转录组关联研究的机遇和挑战。《国家遗传学》51592-599(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wagner, G. P. The biological homology concept. Annu. Rev. Ecol. Syst. 20, 51–69 (1989).Article

Wagner,G.P。生物同源性概念。年。修订版Ecol。系统。20,51-69(1989)。文章

Google Scholar

谷歌学者

Brown, T. A. The Human Genome, (Oxford: Wiley-Liss, 2002).Elemento, O., Gascuel, O. & Lefranc, M.-P. Reconstructing the duplication history of tandemly repeated genes. Mol. Biol. Evol. 19, 278–288 (2002).Article

Brown,T.A.《人类基因组》(牛津:WileyLiss,2002)。Elemento,O.,Gascuel,O。&Lefranc,M.-P。重建串联重复基因的重复历史。分子生物学。进化。19278-288(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fitch, W. M. Homologya personal view on some of the problems. Trends Genet 16, 227–231 (2000).Article

惠誉,W.M。Homologya对一些问题的个人观点。趋势Genet 16227-231(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gabaldón, T. & Koonin, E. V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366 (2013).Article

Gabaldón,T。&Koonin,E.V。基因正畸学的功能和进化意义。Genet自然Rev。14360-366(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krumsiek, J. et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics 11, 1815–1833 (2015).Article

Krumsiek,J。等人。人血清代谢组中的性别特异性途径差异。代谢组学111815-1833(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miike, K. et al. Proteome profiling reveals gender differences in the composition of human serum. Proteomics 10, 2678–2691 (2010).Article

Miike,K。等人。蛋白质组分析揭示了人血清组成的性别差异。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Singmann, P. et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin 8, 43 (2015).Article

Singmann,P。等人。男性和女性之间DNA甲基化的全基因组常染色体差异的表征。表观遗传学染色质8,43(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kristic, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).Article

Kristic,J。等人。聚糖是时间和生物学年龄的新型生物标志物。J、 。生物科学。医学科学。69779-789(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).Article

Bocklandt,S。等人。年龄的表观遗传预测因子。PLoS ONE 6,e14821(2011)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hertel, J. et al. Measuring biological age via metabonomics: the metabolic age score. J. Proteome Res. 15, 400–410 (2016).Article

Hertel,J.等人。通过代谢组学测量生物年龄:代谢年龄评分。J、 蛋白质组学研究15400-410(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).Article

Lehallier,B。等人。人血浆蛋白质组谱在整个生命周期中的波动变化。《自然医学》251843-1850(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).Article

Peters,M.J.等人,《人类外周血中年龄的转录景观》。国家公社。68570(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robinson, O. et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 19, e13149 (2020).Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 (2018).Pena, M. J., Mischak, H. & Heerspink, H. J. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease.

Robinson,O.等人。英国队列中加速代谢组学和表观遗传衰老的决定因素。衰老细胞19,e13149(2020)。Tanaka,T.等人。健康人血浆蛋白质组学年龄特征。衰老细胞17,e12799(2018)。Pena,M.J.,Mischak,H。&Heerspink,H.J。蛋白质组学用于预测糖尿病肾病的疾病进展和对治疗的反应。

Diabetologia 59, 1819–1831 (2016).Article .

糖尿病学591819-1831(2016)。第条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schrader, S. et al. Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diab. Care 45, 1621–1630 (2022).Article

Schrader,S。等人。2型糖尿病的新亚组显示出与未来糖尿病并发症相关的不同表观遗传模式。迪亚布。Care 451621–1630(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang-Sattler, R. et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012).Article

Wang Sattler,R.等人。通过代谢组学鉴定的糖尿病前期新型生物标志物。分子系统。生物学杂志8615(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lelo, A., Kjellen, G., Birkett, D. J. & Miners, J. O. Paraxanthine metabolism in humans: determination of metabolic partial clearances and effects of allopurinol and cimetidine. J. Pharm. Exp. Ther. 248, 315–319 (1989).CAS

Lelo,A.,Kjellen,G.,Birkett,D.J。&Miners,J.O。人类对黄嘌呤的代谢:代谢部分清除率的测定以及别嘌呤醇和西咪替丁的作用。J、 药物实验。248315-319(1989)。中科院

Google Scholar

谷歌学者

Rybak, M. E., Sternberg, M. R., Pao, C. I., Ahluwalia, N. & Pfeiffer, C. M. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. J. Nutr. 145, 766–774 (2015).Article

Rybak,M.E.,Sternberg,M.R.,Pao,C.I.,Ahluwalia,N。和Pfeiffer,C.M。咖啡因和选择性咖啡因代谢物的尿排泄在美国人群中很常见,并且与咖啡因摄入有关。J、 营养。145766-774(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jeffcoate, S. L. Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet. Med. 21, 657–665 (2004).Rahbar, S., Blumenfeld, O. & Ranney, H. M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem. Biophys. Res. Commun. 36, 838–843 (1969).Article .

Jeffcoate,S.L。糖尿病控制和并发症:糖化血红蛋白的作用,糖尿病25年。医学杂志21657-665(2004)。Rahbar,S.,Blumenfeld,O。&Ranney,H.M。对糖尿病患者异常血红蛋白的研究。生物化学。生物物理。公共资源。36838-843(1969)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lever, M. et al. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: An observational study. Cardiovasc. Diabetol. 11, 34 (2012).Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease.

Lever,M.等人。糖尿病患者血浆和尿液甜菜碱的变异性及其与蛋氨酸负荷试验反应的关系:一项观察性研究。心血管。糖尿病。11,34(2012)。Mardinoglu,A。等人。血浆甘露糖水平与2型糖尿病和心血管疾病有关。

Cell Metab. 26, 281–283 (2017).Contreras, P., Generini, G., Michelsen, H., Pumarino, H. & Campino, C. Hyperprolactinemia and galactorrhea: Spontaneous versus iatrogenic hypothyroidism. J. Clin. Endocrinol. Metab. 53, 1036–1039 (1981).Article .

细胞代谢。26281-283(2017)。Contreras,P.,Generini,G.,Michelsen,H.,Pumarino,H。&Campino,C。高催乳素血症和溢乳:自发性与医源性甲状腺功能减退症。J、 临床。内分泌。代谢。531036-1039(1981)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suhre, K. et al. Fine-mapping of the human blood plasma N-glycome onto its proteome. Metabolites 9, 122 (2019).Gilly, A. et al. Whole-genome sequencing analysis of the cardiometabolic proteome. Nat. Commun. 11, 6336 (2020).Huan, T. et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease.

Suhre,K。等人。人血浆N-糖组到其蛋白质组的精细定位。代谢物9122(2019)。Gilly,A。等人。心脏代谢蛋白质组的全基因组测序分析。国家公社。116336(2020)。Huan,T。等人。全血中DNA甲基化QTL的全基因组鉴定突出了心血管疾病的途径。

Nat. Commun. 10, 4267 (2019).Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).Suhre, K., McCarthy, M.I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies.

国家公社。104267(2019)。Kettunen,J.等人。循环代谢物的全基因组研究确定了62个基因座,并揭示了LPA的新型全身作用。国家公社。711122(2016)。Suhre,K.,McCarthy,M.I。&Schwenk,J.M。遗传学与蛋白质组学相结合:基于人群的大规模研究的前景。

Nat. Rev. Genet. 22, 19–37 (2021).Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–62 (2011).Article .

Genet自然Rev。22,19-37(2021)。Suhre,K.等人。生物医学和药物研究中的人类代谢个性。《自然》477,54-62(2011)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet 47, 1091–1098 (2015).Article

Gamazon,E.R.等人。一种基于基因的关联方法,用于使用参考转录组数据绘制性状。《国家遗传学》471091-1098(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet 48, 245–252 (2016).Article

Gusev,A。等人。大规模转录组关联研究的综合方法。《自然遗传学》48245-252(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, W. D. et al. Sialylation of CD55 by ST3GAL1 facilitates immune evasion in cancer. Cancer Immunol. Res. 9, 113–122 (2021).Article

Lin,W.D.等人。ST3GAL1对CD55的唾液酸化促进了癌症的免疫逃避。。第9113-122号决议(2021年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, X. et al. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis. 9, 1102 (2018).Steffen, U. et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles.

Wu,X。等人。唾液酸转移酶ST3GAL1促进细胞迁移,侵袭和TGF-β1诱导的EMT,并赋予卵巢癌紫杉醇耐药性。。91102(2018)。Steffen,U。等人。IgA亚类具有与不同糖基化谱相关的不同效应子功能。

Nat. Commun. 11, 120 (2020).Article .

Nat.普通。11120(2020)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huan, T. et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun. 6, 6601 (2015).Wagschal, A. et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 21, 1290–1297 (2015).Article

Huan,T。等人。microRNA表达数量性状基因座的全基因组鉴定。国家公社。66601(2015)。Wagschal,A。等人。调节胆固醇和甘油三酯稳态的microRNA的全基因组鉴定。《自然医学》211290-1297(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).Article

Bonder,M.J。等人。疾病变体改变转录因子水平及其结合位点的甲基化。纳特·吉内特。49131-138(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Granjon, A. et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58, 2555–2564 (2009).Article .

Granjon,A。等人。响应胰岛素的microRNA标记揭示了其在人骨骼肌中胰岛素的转录作用以及固醇调节元件结合蛋白-1c/肌细胞增强因子2C途径的作用中的意义。。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Volkmar, M. et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31, 1405–1426 (2012).Article

DNA甲基化分析鉴定了2型糖尿病患者胰岛的表观遗传失调。EMBO J.311405–1426(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettersen, I. K. N. et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 49, 97–110 (2019).Article

Pettersen,I.K.N.等人上调的PDK4表达是脂肪酸氧化增加的敏感标志。线粒体49,97-110(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).Cho, J. H. & Gregersen, P. K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).Article

Karlsson,M。等人。人体组织的单细胞型转录组学图谱。科学。广告7,eabh2169(2021)。Cho,J.H。&Gregersen,P.K。基因组学和人类自身免疫性疾病的多因素性质。N、 英语。J、 医学3651612-1623(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pearson, E. R. et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362, 1275–1281 (2003).Article

Pearson,E.R.等人。高血糖的遗传原因和对糖尿病治疗的反应。柳叶刀3621275-1281(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, S., Zhu, W., Thompson, P. & Hannun, Y. A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9, 3490 (2018).Article

Wu,S.,Zhu,W.,Thompson,P。&Hannun,Y.A。评估内在和非内在癌症危险因素。国家公社。93490(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diab. Endocrinol. 6, 361–369 (2018).Article

Ahlqvist,E.等人。成人发病糖尿病的新亚组及其与结果的关联:六个变量的数据驱动聚类分析。柳叶刀糖尿病。内分泌。6361-369(2018)。文章

Google Scholar

谷歌学者

Zaghlool, S. B. et al. Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat. Commun. 13, 7121 (2022).Article

Zaghlool,S.B.等人。阿拉伯人群中2型糖尿病亚型的代谢和蛋白质组学特征。国家公社。137121(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pohjolainen, V. et al. Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation. Hum. Pathol. 39, 1695–1701 (2008).Article

Pohjolainen,V。等人。非胶原骨基质蛋白作为钙化性主动脉瓣疾病调节的一部分。哼。感伤。391695-1701(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ress, C. et al. Circulating Wnt inhibitory factor 1 levels are associated with development of cardiovascular disease. Atherosclerosis 273, 1–7 (2018).Article

Ress,C。等人。循环Wnt抑制因子1水平与心血管疾病的发展有关。动脉粥样硬化273,1-7(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sun, Y. et al. Inhibition of fap promotes cardiac repair by stabilizing BNP. Circ. Res. 132, 586–600 (2023).Article

Sun,Y。等人。抑制fap通过稳定BNP促进心脏修复。Circ。第132586-600号决议(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Adeva-Andany, M. et al. Insulin resistance and glycine metabolism in humans. Amino Acids 50, 11–27 (2018).Article

。氨基酸50,11-27(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rekhter, M. D. Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc. Res. 41, 376–384 (1999).Article

。心血管。第41376-384号决议(1999年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rhee, E. P. et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 18, 130–143 (2013).Article

Rhee,E.P.等人。基于社区的队列中人类代谢组的全基因组关联研究。细胞代谢。18130-143(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article

Shannon,P。等。Cytoscape:用于生物分子相互作用网络集成模型的软件环境。基因组研究132498-2504(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liso, A., Capitanio, N., Gerli, R. & Conese, M. From fever to immunity: a new role for IGFBP-6? J. Cell Mol. Med. 22, 4588–4596 (2018).Article

Liso,A.,Capitanio,N.,Gerli,R。&Conese,M。从发烧到免疫:IGFBP-6的新角色?J、 Cell Mol.Med.224588-4596(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Velenosi, T. J. et al. Untargeted metabolomics reveals N, N, N-trimethyl-L-alanyl-L-proline betaine (TMAP) as a novel biomarker of kidney function. Sci. Rep. 9, 6831 (2019).Article

Velenosi,T.J.等人,《非靶向代谢组学》揭示了N,N,N-三甲基-L-丙氨酰-L-脯氨酸甜菜碱(TMAP)是肾功能的新型生物标志物。科学。代表96831(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Powell, D. R. et al. Insulin-like growth factor-binding protein-6 levels are elevated in serum of children with chronic renal failure: a report of the Southwest Pediatric Nephrology Study Group. J. Clin. Endocrinol. Metab. 82, 2978–2984 (1997).CAS

Powell,D.R.等人。慢性肾衰竭儿童血清中胰岛素样生长因子结合蛋白-6水平升高:西南儿科肾脏病研究小组的报告。J、 临床。内分泌。代谢。822978-2984(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).Article

Alicic,R.Z.,Rooney,M.T。和Tuttle,K.R。糖尿病肾病:挑战,进展和可能性。临床。J、 美国社会肾脏病学会。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rieckmann, J. C. et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 18, 583–593 (2017).Article

Rieckmann,J.C.等人。定量蛋白质组学揭示的人类免疫细胞的社交网络结构。自然免疫。18583-593(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mitchell, A. et al. LILRA5 is expressed by synovial tissue macrophages in rheumatoid arthritis, selectively induces pro-inflammatory cytokines and IL-10 and is regulated by TNF-alpha, IL-10 and IFN-gamma. Eur. J. Immunol. 38, 3459–3473 (2008).Article

Mitchell,A。等人。LILRA5在类风湿性关节炎中由滑膜组织巨噬细胞表达,选择性诱导促炎细胞因子和IL-10,并受TNF-α,IL-10和IFN-γ的调节。欧洲免疫学杂志。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oh, J. et al. Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat. Commun. 11, 4798 (2020).Article

Oh,J。等人。miR-106b-5p的巨噬细胞分泌导致肾素依赖性高血压。国家公社。114798(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hirayasu, K. & Arase, H. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J. Hum. Genet 60, 703–708 (2015).Article

Hirayasu,K。&Arase,H。白细胞免疫球蛋白样受体的功能和遗传多样性及其对疾病关联的意义。J、 嗯,《基因》60703-708(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Verschueren, E. et al. The immunoglobulin superfamily receptome defines cancer-relevant networks associated with clinical outcome. Cell 182, 329–344 e319 (2020).Article

免疫球蛋白超家族受体组定义了与临床结果相关的癌症相关网络。细胞182329-344 e319(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kissel, T., Toes, R. E. M., Huizinga, T. W. J. & Wuhrer, M. Glycobiology of rheumatic diseases. Nat. Rev. Rheumatol. 19, 28–43 (2023).Article

Kissel,T.,Toes,R.E.M.,Huizinga,T.W.J.&Wuhrer,M。风湿性疾病的糖生物学。风湿病杂志。19,28-43(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, X. et al. Lactate metabolism in human health and disease. Signal Transduct. Target Ther. 7, 305 (2022).Article

Li,X。等。人体健康和疾病中的乳酸代谢。信号传输管。目标Ther。7305(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mariappan, M. M., Feliers, D., Mummidi, S., Choudhury, G. G. & Kasinath, B. S. High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Diabetes 56, 476–485 (2007).Article

Mariappan,M.M.,Feliers,D.,Mummidi,S.,Choudhury,G.G。&Kasinath,B.S。高葡萄糖,高胰岛素及其组合通过调节肾上皮细胞中的mRNA翻译快速诱导层粘连蛋白-beta1合成。糖尿病56476-485(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bomba, L. et al. Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. Am. J. Hum. Genet 109, 1038–1054 (2022).Article

Bomba,L。等人。全外显子组测序鉴定了与人血浆代谢物相关的罕见遗传变异。《美国期刊·哼·Genet》1091038-1054(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kelly, R. S. et al. Metabolomic differences in lung function metrics: evidence from two cohorts. Thorax 77, 919–928 (2022).Article

Kelly,R.S.等人。肺功能指标的代谢组学差异:来自两个队列的证据。胸部77919-928(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, Q. et al. Plasma metabolomics provides new insights into the relationship between metabolites and outcomes and left ventricular remodeling of coronary artery disease. Cell Biosci. 12, 173 (2022).Article

朱,Q。等。血浆代谢组学为冠状动脉疾病的代谢物和结局与左心室重塑之间的关系提供了新的见解。细胞生物科学。12173(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Fatima Cobre, A. et al. Diagnosis and prognosis of COVID-19 employing analysis of patients’ plasma and serum via LC-MS and machine learning. Comput Biol. Med. 146, 105659 (2022).Article

de Fatima-Cobre,A.等人。通过LC-MS和机器学习分析患者的血浆和血清,诊断和预后新型冠状病毒肺炎。计算机生物学。医学146105659(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).Article

Szklarczyk,D。等人。2017年的STRING数据库:质量控制的蛋白质-蛋白质缔合网络,可广泛访问。核酸研究45,D362–D368(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040–D1046 (2013).Article

Rusinova,I。等人。干扰素v2.0:注释干扰素调节基因的更新数据库。核酸研究41,D1040–D1046(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, C. R. et al. Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum. 52, 1319–1324 (2005).Article

预防性腺病毒介导的人激肽抑制素基因疗法通过抑制血管生成和炎症来抑制大鼠关节炎。大黄性关节炎。521319-1324(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Raffield, L. M. et al. Comparison of proteomic assessment methods in multiple cohort studies. Proteomics 20, e1900278 (2020).Article

Raffield,L.M.等人。多队列研究中蛋白质组学评估方法的比较。蛋白质组学20,e1900278(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Richardson, C. R. et al. Management of Type 2 Diabetes Mellitus (Michigan Medicine University of Michigan, 2021).Dai, C. et al. A proteomics sample metadata representation for multiomics integration and big data analysis. Nat. Commun. 12, 5854 (2021).Article

Richardson,C.R.等人,《2型糖尿病的管理》(密歇根医科大学,2021年)。Dai,C.等人。用于多组学整合和大数据分析的蛋白质组学样本元数据表示。国家公社。125854(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).Article

Hasin,Y.,Seldin,M。&Lusis,A。疾病的多组学方法。基因组生物学。18,83(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karczewski, K. J. & Snyder, M. P. Integrative Omics for Health and Disease Vol. 19, 299–310 (Nature Publishing Group, 2018).Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953–e13953 (2010).Article

Karczewski,K.J.&Snyder,M.P。健康与疾病综合组学第19299-310卷(自然出版集团,2018)。Suhre,K.等人,《糖尿病的代谢足迹:流行病学环境中的多平台代谢组学研究》。PLoS ONE 5,e13953–e13953(2010)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, D. et al. CXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning. J. Lipid Res. 62, 100117 (2021).Article

Lee,D。等人。冷暴露期间巨噬细胞分泌的CXCL5介导白色脂肪组织褐变。J、 脂质研究62100117(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sarmiento, U. et al. Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab Invest 77, 243–256 (1997).CAS

Sarmiento,U。等人。重组人瘦素诱导C57BL/6小鼠白色和棕色脂肪组织的形态学和分子变化。实验室投资77243-256(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).Article

瘦素和胰岛素作用于POMC神经元,促进白色脂肪褐变。细胞160,88-104(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bluher, M. Metabolically healthy obesity. Endocr. Rev. 41, bnaa004 (2020).Cooles, F. A. H. et al. Interferon-alpha-mediated therapeutic resistance in early rheumatoid arthritis implicates epigenetic reprogramming. Ann. Rheum. Dis. 81, 1214–1223 (2022).Article

Bluher,M。代谢健康肥胖。内分泌。第41版,bnaa004(2020)。Cooles,F.A.H.等人。干扰素α介导的早期类风湿性关节炎的治疗耐药性涉及表观遗传重编程。安。瑞姆。Dis。811214-1223(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, M. et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1998–2006 (2016).Article

Zhao,M。等人。IFI44L启动子甲基化作为系统性红斑狼疮的血液生物标志物。安。瑞姆。Dis。751998-2006(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pan, H. et al. Integrative multi-omics database (iMOMdb) of Asian pregnant women. Hum. Mol. Genet 31, 3051–3067 (2022).Article

Pan,H.等人。亚洲孕妇综合多组学数据库(iMOMdb)。Hum.Mol.Genet 313051-3067(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saw, W. Y. et al. Establishing multiple omics baselines for three Southeast Asian populations in the Singapore Integrative Omics Study. Nat. Commun. 8, 653 (2017).Article

Saw,W.Y.等人在新加坡综合组学研究中为三个东南亚人群建立多个组学基线。国家公社。8653(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yousri, N. A., Albagha, O. M. E. & Hunt, S. C. Integrated epigenome, whole genome sequence and metabolome analyses identify novel multi-omics pathways in type 2 diabetes: a Middle Eastern study. BMC Med 21, 347 (2023).Article

Yousri,N.A.,Albagha,O.M.E.&Hunt,S.C。整合的表观基因组,全基因组序列和代谢组学分析确定了2型糖尿病的新型多组学途径:一项中东研究。BMC Med 21347(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).Trbojević Akmačić, I.

Gold,L.等人。用于生物标志物发现的基于适体的多重蛋白质组学技术。PLoS ONE 5,e15004(2010)。Assarsson,E。等人。同质96重PEA免疫测定显示出高灵敏度,特异性和优异的可扩展性。PLoS ONE 9,e95192(2014)。TrbojevićAkmačić,i。

et al. High-throughput glycomics: optimization of sample preparation. Biochemistry 80, 934–942 (2015).PubMed .

等。高通量糖组学:样品制备的优化。生物化学80934-942(2015)。PubMed。

Google Scholar

谷歌学者

Wahl, A. et al. IgG glycosylation and DNA methylation are interconnected with smoking. Biochim. Biophys. Acta Gen. Subj. 1862, 637–648 (2018).Article

Wahl,A。等人。IgG糖基化和DNA甲基化与吸烟相互关联。生物化学。生物物理。Acta Gen.Sub.1862637–648(2018)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pučić, M. et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell. Proteom. 10, M111.010090 (2011).Menni, C. et al. Glycosylation of immunoglobulin G: role of genetic and epigenetic influences.

Pučić,M.等人。三个分离人群中IgG变异性和IgG糖组遗传力的高通量分离和糖基化分析。摩尔电池。蛋白质组学。10,M111.010090(2011)。Menni,C。等人。免疫球蛋白G的糖基化:遗传和表观遗传影响的作用。

PLoS ONE 8, e82558 (2013).Dotz, V. et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J. Am. Soc. Nephrol. 32, 2455–2465 (2021).Article .

PLoS ONE 8,e82558(2013)。Dotz,V。等人。血清免疫球蛋白A的O-和N-糖基化与IgA肾病和肾小球功能有关。J、 美国社会肾脏病学会。。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Momcilovic, A. et al. Simultaneous immunoglobulin A and G glycopeptide profiling for high-throughput applications. Anal. Chem. 92, 4518–4526 (2020).Article

Momcilovic,A。等人。高通量应用的同时免疫球蛋白A和G糖肽分析。肛门。化学。924518-4526(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems.

Evans,A.M.,DeHaven,C.D.,Barrett,T.,Mitchell,M。&Milgram,E。集成的,非靶向的超高效液相色谱/电喷雾电离串联质谱平台,用于鉴定和相对定量生物系统的小分子补体。

Anal. Chem. 81, 6656–6667 (2009).Article .

肛门。化学。816656-6667(2009)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Evans, A.M. High-resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1 (2014).Römisch-Margl, W. et al. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics.

Evans,A.M。与高通量分析代谢组学中的单位质谱法相比,高分辨率质谱法提高了数据的数量和质量。代谢组学4,1(2014)。Römisch-Margl,W.等人。高通量靶向代谢组学的组织样品制备和代谢物提取程序。

Metabolomics 8, 133–142 (2012).Article .

代谢组学8133-142(2012)。文章。

Google Scholar

谷歌学者

Illig, T. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141 (2010).Article

Illig,T.等人。人类代谢遗传变异的全基因组视角。纳特·吉内特。42137-141(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Löfgren, L. et al. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 53, 1690–1700 (2012).Article

Löfgren,L。等人。BUME方法:一种新的血浆自动无氯仿96孔总脂质提取方法。J、 脂质研究531690-1700(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quell, J. D. et al. Characterization of bulk phosphatidylcholine compositions in human plasma using side-chain resolving lipidomics. Metabolites 9, 109–109 (2019).Article

Quell,J.D.等人。使用侧链分辨脂质组学表征人血浆中的大量磷脂酰胆碱组合物。代谢物9109-109(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Budde, K. et al. Quality assurance in the pre-analytical phase of human urine samples by 1H NMR spectroscopy. Arch. Biochem. Biophys. 589, 10–17 (2016).Article

Budde,K.等人。通过1H NMR光谱法对人尿液样品进行预分析阶段的质量保证。拱门。生物化学。生物物理。589,10-17(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 1781–1785 (2009).Article

Soininen,P。等人。高通量血清NMR代谢组学,用于系统代谢的成本效益整体研究。分析师1341781-1785(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Soininen, P., Kangas, A. J., Würtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).Article

Soininen,P.,Kangas,A.J.,Würtz,P.,Suna,T。&Ala-Korpela,M。心血管流行病学和遗传学中的定量血清核磁共振代谢组学。保监会。心血管。基因。8192-206(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Do, K. T. et al. Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies. Metabolomics 14, 128 (2018).Article

。代谢组学14128(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).Article

Chang,C.C.等人,《第二代PLINK:迎接更大、更丰富数据集的挑战》。Gigascience 4,7(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).Article

。生物信息学354851-4853(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zaghlool, S. B. et al. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat. Commun. 12, 1279 (2021).Article

Zaghlool,S.B.等人利用遗传驱动因素揭示了人血浆蛋白质组在肥胖中的作用。国家公社。121279(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharapov, S. Z. et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum. Mol. Genet 28, 2062–2077 (2019).CAS

Sharapov,S.Z.等人使用全基因组关联研究定义人血浆N-糖组的遗传控制。Hum.Mol.Genet 282062-2077(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Belkadi, A. et al. Identification of genetic variants controlling RNA editing and their effect on RNA structure stabilization. Eur. J. Hum. Genet 28, 1753–1762 (2020).Article

Belkadi,A。等人。控制RNA编辑的遗传变异的鉴定及其对RNA结构稳定的影响。《欧洲期刊》Hum,Genet 281753-1762(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Matias-Garcia, P. R. et al. Plasma proteomics of renal function: a transethnic meta-analysis and mendelian randomization study. J. Am. Soc. Nephrol. 32, 1747–1763 (2021).Article

Matias-Garcia,P.R.等。肾功能的血浆蛋白质组学:一项跨神经荟萃分析和孟德尔随机研究。J、 美国社会肾脏病学会。321747-1763(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Buyukozkan, M., Benedetti, E. & Krumsiek, J. rox: a statistical model for regression with missing values. Metabolites 13, 127 (2023).Sekula, P. et al. From discovery to translation: characterization of c-mannosyltryptophan and pseudouridine as markers of kidney function. Sci. Rep. 7, 17400 (2017).Article .

Buyukozkan,M.,Benedetti,E。&Krumsiek,J。rox:缺失值回归的统计模型。代谢物13127(2023)。Sekula,P.等人,《从发现到翻译:c-甘露糖基色氨酸和假尿苷作为肾功能标志物的表征》。科学。代表717400(2017)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe are grateful to all participants of QMDiab for providing their time and blood, and to the late Prof. Mohammed M. El-Din Selim for enabling the sample collection at Hamad Medical Corporation, Doha, Qatar. K.S. is supported by the Biomedical Research Program at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation.

下载参考文献致谢我们感谢QMDiab的所有参与者提供了他们的时间和血液,并感谢已故的Mohammed M.El Din Selim教授能够在卡塔尔多哈的Hamad Medical Corporation进行样本采集。K、 美国得到了卡塔尔威尔康奈尔医学院生物医学研究项目的支持,该项目由卡塔尔基金会资助。

K.S. is also supported by the Qatar National Research Fund (QNRF) grant NPRP11C-0115-180010 and ARG01-0420-23000. A.H. is supported by the Qatar National Research Fund (QNRF) grant NPRP12S-0205-190042 and NPRP11S-0122-180359. The statements made herein are solely the responsibility of the authors.Author informationAuthors and AffiliationsBioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, QatarAnna Halama, Shaza Zaghlool, Gaurav Thareja, Sara Kader, Nisha Stephan & Karsten SuhreDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USAAnna Halama, Shaza Zaghlool, Gaurav Thareja, Sara Kader, Marjonneke Mook-Kanamori, Nisha Stephan, Jan Krumsiek & Karsten SuhreQatar Genome Program, Qatar Foundation, Qatar Science and Technology Park, Innovation Center, Doha, QatarWadha Al MuftahDepartment of Genetic Medicine, Weill Cornell Medicine, Doha, QatarWadha Al Muftah & Joel A.

K、 美国也得到了卡塔尔国家研究基金会(QNRF)资助NPRP11C-0115-180010和ARG01-0420-23000的支持。A、 H.得到卡塔尔国家研究基金(QNRF)资助NPRP12S-0205-190042和NPRP11S-0122-180359的支持。。作者信息作者和附属机构卡塔尔威尔康奈尔医学院信息学核心,教育城,多哈,卡塔尔哈拉玛,沙扎扎格卢尔,戈拉夫·塔雷亚,萨拉·卡德尔,尼莎·斯蒂芬和卡斯滕·苏赫勒生理学和生物物理学系,威尔康奈尔医学,纽约,纽约,乌萨纳·哈拉玛,沙扎扎格卢尔,戈拉夫·塔雷亚,萨拉·卡德尔,马尔乔内克·穆克·卡纳莫里,尼莎·斯蒂芬,扬·克鲁姆西克和卡斯滕·苏赫勒卡塔尔基因组计划,卡塔尔基金会,卡塔尔科技园,创新中心,卡塔尔多哈卡塔尔多哈威尔·康奈尔医学院遗传医学系。

MalekProteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, QatarHina Sarwath & Frank SchmidtGenomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, QatarYasmin Ali Mohamoud & Joel A. MalekGerman Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, GermanySabine Ameling, Nele Friedrich & Uwe VölkerDepartment of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Med.

MalekProteomics Core,Weill Cornell Medicine卡塔尔,教育城,多哈,卡塔尔Sarwath&Frank SchmidtGenomics Core,Weill Cornell Medicine卡塔尔,教育城,多哈,卡塔尔,卡塔尔,Ali Mohamoud&Joel A.MalekGerman心血管研究中心,合作伙伴网站Greifswald,大学医学Greifswald,Greifswald,GermanySabine Ameling,Nele Friedrich&Uwe VölkerDepartment of Functional Genomics,Interfaculty Institute for Genetics and Functional Genomics,University Med。

PubMed Google ScholarShaza ZaghloolView author publicationsYou can also search for this author in

PubMed Google ScholarShaza ZaghloolView作者出版物您也可以在

PubMed Google ScholarGaurav TharejaView author publicationsYou can also search for this author in

PubMed Google ScholarGaurav TharejaView作者出版物您也可以在

PubMed Google ScholarSara KaderView author publicationsYou can also search for this author in

PubMed Google ScholarSara KaderView作者出版物您也可以在

PubMed Google ScholarWadha Al MuftahView author publicationsYou can also search for this author in

PubMed Google ScholarWadha Al-MuftahView作者出版物您也可以在

PubMed Google ScholarMarjonneke Mook-KanamoriView author publicationsYou can also search for this author in

PubMed Google ScholarMarjonneke Mook KanamoriView作者出版物您也可以在

PubMed Google ScholarHina SarwathView author publicationsYou can also search for this author in

PubMed Google ScholarYasmin Ali MohamoudView author publicationsYou can also search for this author in

PubMed Google ScholarYasmin Ali MohamoudView作者出版物您也可以在

PubMed Google ScholarNisha StephanView author publicationsYou can also search for this author in

PubMed Google ScholarNisha StephanView作者出版物您也可以在

PubMed Google ScholarSabine AmelingView author publicationsYou can also search for this author in

PubMed Google ScholarMaja Pucic BakovićView author publicationsYou can also search for this author in

PubMed Google ScholarMaja Pucic BakovićView作者出版物您也可以在

PubMed Google ScholarJan KrumsiekView author publicationsYou can also search for this author in

PubMed Google ScholarJan KrumsiekView作者出版物您也可以在

PubMed Google ScholarCornelia PrehnView author publicationsYou can also search for this author in

PubMed Google ScholarCornelia PrehnView作者出版物您也可以在

PubMed Google ScholarJerzy AdamskiView author publicationsYou can also search for this author in

PubMed Google ScholarJerzy AdamskiView作者出版物您也可以在

PubMed Google ScholarJochen M. SchwenkView author publicationsYou can also search for this author in

PubMed基金会谷歌奖学金Jochen M.SchwenkView作者出版物您也可以在

PubMed Google ScholarNele FriedrichView author publicationsYou can also search for this author in

PubMed Google ScholarNele FriedrichView作者出版物您也可以在

PubMed Google ScholarUwe VölkerView author publicationsYou can also search for this author in

PubMed Google ScholarUwe VölkerView作者出版物您也可以在

PubMed Google ScholarManfred WuhrerView author publicationsYou can also search for this author in

PubMed Google ScholarManfred Wuhreview作者出版物您也可以在

PubMed Google ScholarGordan LaucView author publicationsYou can also search for this author in

PubMed Google ScholarGordan LaucView作者出版物您也可以在

PubMed Google ScholarS. Hani Najafi-ShoushtariView author publicationsYou can also search for this author in

PubMed谷歌学者。Hani Najafi ShoushtariView作者出版物您也可以在

PubMed Google ScholarJoel A. MalekView author publicationsYou can also search for this author in

PubMed Google ScholarJoel A.MalekView作者出版物您也可以在

PubMed Google ScholarJohannes GraumannView author publicationsYou can also search for this author in

PubMed Google ScholarJohannes GraumannView作者出版物您也可以在

PubMed Google ScholarDennis Mook-KanamoriView author publicationsYou can also search for this author in

PubMed Google ScholarDennis Mook KanamoriView作者出版物您也可以在

PubMed Google ScholarFrank SchmidtView author publicationsYou can also search for this author in

PubMed谷歌学者Frank SchmidtView作者出版物您也可以在

PubMed Google ScholarKarsten SuhreView author publicationsYou can also search for this author in

PubMed Google ScholarKarsten SuhreView作者出版物您也可以在

PubMed Google ScholarContributionsStudy design: A.H., K.S.; Sample collection: S.K., W.Al.M., M.M.-K., Conducted Experiments: H.S., Y.A.M., S.A., M.P.B., C.P., J.A., N.F., U.V., M.W., G.L., S.H.N.-S., J.A.M., S.A., J.G., D.M.-K., F.S., Data analysis: K.S., S.Z.; Data interpretation: A.H., K.S.; Provided Materials: A.H., N.S., G.T., S.K., W.Al.M., M.M.-K., J.K., J.M.S.; Manuscript writing: A.H, K.S.; Manuscript editing: A.H., K.S., J.M.S., F.S.

PubMed谷歌学术贡献研究设计:A.H.,K.S。;样本采集:S.K.,W.Al.M.,M.M.-K.,进行实验:H.S.,Y.A.M.,S.A.,M.P.B.,C.P.,J.A.,N.F.,U.V.,M.W.,G.L.,S.H.N.-S.,J.A.M.,S.A.,J.G.,D.M.-K.,F.S.,数据分析:K.S.,S.Z。;数据解释:A.H.,K.S。;提供的材料:A.H.,N.S.,G.T.,S.K.,W.Al.M.,M.M.-K.,J.K.,J.M.S。;手稿写作:A.H,K.S。;手稿编辑:A.H.,K.S.,J.M.S.,F.S。

All authors contributed to the critically reviewed manuscript.Corresponding authorsCorrespondence to.

所有作者都为经过严格审查的手稿做出了贡献。通讯作者通讯。

Anna Halama or Karsten Suhre.Ethics declarations

安娜·哈拉玛或卡斯滕·苏尔。道德宣言

Competing interests

相互竞争的利益

The authors declare the following conflicts of interest: M.P.B. and G.L. are working for or have stakes in Genos Ltd., a private company specialized in glycomics analyses. All the other authors declare no competing interests.

作者声明存在以下利益冲突:M.P.B.和G.L.正在为Genos Ltd.工作或拥有股份,Genos Ltd.是一家专门从事糖组学分析的私营公司。所有其他作者都声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Jessica Lasky-Su, and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢杰西卡·拉斯基·苏(JessicaLaskySu)和其他匿名审稿人对这项工作的同行评议做出的贡献。同行评议文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of additional supplementary filesSupplementary DataReporting SummaryRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据报告摘要权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleHalama, A., Zaghlool, S., Thareja, G. et al. A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes.

转载和许可本文引用本文Halama,A.,Zaghlool,S.,Thareja,G。等人,将多组学与人群特征和糖尿病亚型联系起来的分子人类路线图。

Nat Commun 15, 7111 (2024). https://doi.org/10.1038/s41467-024-51134-xDownload citationReceived: 01 August 2023Accepted: 26 July 2024Published: 19 August 2024DOI: https://doi.org/10.1038/s41467-024-51134-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》157111(2024)。https://doi.org/10.1038/s41467-024-51134-xDownloadhttps://doi.org/10.1038/s41467-024-51134-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

GlycomicsLipidomicsMetabolomicsProteomicsType 2 diabetes

糖组学、脂肪组学、代谢组学、蛋白质组学、2型糖尿病

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。