EN
登录

人胶质母细胞瘤衍生的细胞膜纳米囊泡:一种新的、细胞特异性的硼中子俘获治疗脑肿瘤的策略

Human glioblastoma-derived cell membrane nanovesicles: a novel, cell-specific strategy for boron neutron capture therapy of brain tumors

Nature 等信源发布 2024-08-20 12:19

可切换为仅中文


AbstractGlioblastoma (GBM), one of the deadliest brain tumors, accounts for approximately 50% of all primary malignant CNS tumors, therefore novel, highly effective remedies are urgently needed. Boron neutron capture therapy, which has recently repositioned as a promising strategy to treat high-grade gliomas, requires a conspicuous accumulation of boron atoms in the cancer cells.

。硼中子俘获疗法最近被重新定位为治疗高级别神经胶质瘤的一种有前途的策略,它需要在癌细胞中明显积累硼原子。

With the aim of selectively deliver sodium borocaptate (BSH, a 12 B atoms-including molecule already employed in the clinics) to GBM cells, we developed novel cell membrane-derived vesicles (CMVs), overcoming the limits of natural extracellular vesicles as drug carriers, while maintaining their inherent homing abilities that make them preferable to fully synthetic nanocarriers.

为了选择性地将硼Captate钠(BSH,一种12 B原子,包括已经用于临床的分子)递送至GBM细胞,我们开发了新型细胞膜衍生囊泡(CMV),克服了天然细胞外囊泡作为药物载体的局限性,同时保持其固有的归巢能力,使其优于完全合成的纳米载体。

Purified cell membrane fragments, isolated from patient-derived GBM stem-like cell cultures, were used to prepare nanosized CMVs, which retained some membrane proteins specific of the GBM parent cells and were devoid of potentially detrimental genetic material. In vitro tests evidenced the targeting ability of this novel nanosystem and ruled out any cytotoxicity.

从患者来源的GBM干细胞样细胞培养物中分离出的纯化细胞膜片段用于制备纳米级CMV,该CMV保留了GBM亲本细胞特有的一些膜蛋白,并且没有潜在的有害遗传物质。体外测试证明了这种新型纳米系统的靶向能力,并排除了任何细胞毒性。

The CMVs were successfully loaded with BSH, by following two different procedures, i.e. sonication and electroporation, demonstrating their potential applicability in GBM therapy..

。。

IntroductionDiffuse gliomas are the most prevalent malignant and deadliest primary brain tumors in adults1. Glioblastoma IDH-wild type WHO 4 (GBM)2, accounting for approximately 50% of all primary malignant CNS tumors3, presents very poor prognosis and a median survival of about 15 months4; it is characterized by uncontrolled cell proliferation, diffuse infiltration and necrosis, and robust angiogenesis5, which largely depend on the presence and activity of cancer stem cells within the tumor mass2.

引言弥漫性胶质瘤是成人中最常见的恶性和致命的原发性脑肿瘤1。胶质母细胞瘤IDH野生型WHO 4(GBM)2约占所有原发性恶性中枢神经系统肿瘤的50%3,预后极差,中位生存期约为15个月4;它的特征是不受控制的细胞增殖,弥漫性浸润和坏死以及强大的血管生成5,这在很大程度上取决于肿瘤块内癌症干细胞的存在和活性2。

Usually, GBM patients at diagnosis display non-specific neurological symptoms, like headaches, seizures, focal neurologic deficits, memory loss, visual changes, personality changes, and vomiting1,6. Current standard treatment for GBM includes maximal surgical resection followed by concurrent radiotherapy with the alkylating drug temozolomide and further adjuvant temozolomide7.

通常,诊断时的GBM患者表现出非特异性神经系统症状,如头痛,癫痫发作,局灶性神经功能缺损,记忆力减退,视力改变,性格改变和呕吐1,6。目前GBM的标准治疗包括最大程度的手术切除,然后同时使用烷化药物替莫唑胺和进一步的辅助替莫唑胺7进行放疗。

Although few new drugs have recently been approved for GBM treatment, the outcome is still largely unsatisfactory, and more effective therapies are urgently needed. Indeed, many innovative therapeutic approaches, involving combinations of radiotherapy with immunotherapy or nanoparticle (NPs)-vehiculated drugs, are currently under study8.Exosomes, nanosized extracellular vesicles released by the majority of cell types, have been proposed as drug carriers due to their ability to shuttle biomolecules, their innate selectivity towards the parent cell of origin or cell type (i.e., homing ability), and their low immunogenicity9.

尽管最近很少有新药被批准用于GBM治疗,但结果仍然很不令人满意,迫切需要更有效的治疗方法。事实上,目前正在研究许多创新的治疗方法,包括放疗与免疫疗法或纳米颗粒(NPs)-载体药物的组合。外泌体是大多数细胞类型释放的纳米级细胞外囊泡,由于其穿梭生物分子的能力,其对起源或细胞类型的亲本细胞的先天选择性(即归巢能力)及其低免疫原性9,已被提议作为药物载体。

However, exosome purification and characterization are challenging, and their yield and loading efficiency are relatively poor, limiting their large-scale application in the clinics10. Therefore, the generation of bioinspired exosome-mimetics with higher yield and consistency is attra.

然而,外泌体的纯化和表征具有挑战性,它们的产量和负载效率相对较差,限制了它们在临床上的大规模应用10。因此,具有更高产量和一致性的生物启发外泌体模拟物的产生是必然的。

Table 1 Most abundant membrane proteins found with the proteomic analysis of a CMV sample.Full size tableSeveral of the identified membrane proteins have been reported in the literature as characteristic of GBM cells, including annexin A239, CD4440, HLA class I histocompatibility antigen A41 and adipocyte plasma membrane-associated protein42.

。在文献中已经报道了几种已鉴定的膜蛋白的全尺寸表作为GBM细胞的特征,包括膜联蛋白A239,CD4440,HLA I类组织相容性抗原A41和脂肪细胞质膜相关蛋白42。

In particular, the most abundant membrane protein found in the CMVs was annexin A2, a calcium-binding protein expressed on the surface of macrophages, mononuclear and endothelial cells, as well as in several types of cancer cells43. The expression of annexin A2 has been associated with cell dissemination and metastasis in many cancer types; it is overexpressed in GBM cells and positively correlated with tumor aggressiveness and progression sustaining cell invasion, angiogenesis, proliferation, matrix invasion and mesenchymal transition44,45.

特别是,在CMV中发现的最丰富的膜蛋白是膜联蛋白A2,一种在巨噬细胞,单核细胞和内皮细胞以及几种类型的癌细胞表面表达的钙结合蛋白43。膜联蛋白A2的表达与许多癌症类型的细胞传播和转移有关;它在GBM细胞中过表达,与肿瘤侵袭性和进展呈正相关,维持细胞侵袭,血管生成,增殖,基质侵袭和间充质转化44,45。

Interestingly, knockdown of annexin A2 decreased glioma cell migration in vitro and slowed down tumor progression in vivo, as evidenced by decreased proliferation, invasion, and angiogenesis46.To further investigate the presence of annexin A2 on the surface of the CMVs, the vesicles were incubated with a fluorescent labelled anti-annexin antibody and, after removal of the unbound ligands, a drop of suspension was observed through confocal microscopy.

有趣的是,膜联蛋白A2的敲低降低了体外神经胶质瘤细胞的迁移并减缓了体内肿瘤的进展,这可以通过增殖,侵袭和血管生成的减少来证明46。为了进一步研究膜联蛋白A2在CMV表面的存在,将囊泡与荧光标记的抗膜联蛋白抗体一起孵育,并且在去除未结合的配体后,通过共聚焦显微镜观察到一滴悬浮液。

As shown in Fig. 3, a co-localization of the red fluorescent signal, deriving from the CM-DiI-labeled CMVs, and of the green fluorescent signal deriving from the Alexa Fluor 488-labeled anti-annexin antibody, was highlighted.Figure 3Confocal images of CM-DiI-labeled CMVs after incubation with anti-annexin A2 antibody labeled with the Alexa Fluor 488 dye.

如图3所示,突出显示了源自CM-DiI标记的CMV的红色荧光信号和源自Alexa Fluor 488标记的抗膜联蛋白抗体的绿色荧光信号的共定位。图3与用Alexa Fluor 488染料标记的抗膜联蛋白A2抗体孵育后,CM-DiI标记的CMV的共聚焦图像。

(A) Red fluorescent signal deriving from CM-DiI-labelled CMVs (λex = 561 nm); (B) Green fluores.

(A) 来自CM-DiI标记的CMV的红色荧光信号(λex=561 nm);(B) 绿色荧光。

Table 2 EE% and drug loading results obtained from the two different loading procedures. Results are expressed as mean ± standard deviation (n = 3).Full size tableNoteworthy, in most literature works reporting the loading of exosomes and other biomimetic nanosystems with active molecules, drug loading is expressed as amount of drug/amount of proteins; however, we decided to express it also in terms of µg BSH/number of CMVs, which might be more informative in the case of clinical application.Since both loading procedures might impair vesicle integrity, the mean size and PDI of CMVs was monitored after the loading and purification processes.

表2从两种不同的加载程序获得的EE%和药物加载结果。结果表示为平均±标准偏差(n=3)。全尺寸表值得注意的是,在大多数报道外泌体和其他具有活性分子的仿生纳米系统负载的文献中,药物负载量表示为药物量/蛋白质量;但是,我们决定也以µg BSH/CMV数量表示,这在临床应用中可能会提供更多信息。由于两种加载程序都可能损害囊泡的完整性,因此在加载和纯化过程后监测CMV的平均大小和PDI。

As shown in Fig. 4, the sonication procedure did not significantly affect the mean size and PDI; on the contrary, the electroporation procedure led to a significant increase in CMV mean size (from 125 ± 2 nm to 176 ± 3 nm), accompanied by a PDI increase (from 0.1 ± 0.1 to 0.4 ± 0.2), possibly due to a little extent of aggregation phenomena caused by the electric field49.

如图4所示,超声处理程序对平均大小和PDI没有显着影响;相反,电穿孔过程导致CMV平均大小显着增加(从125±2 nm到176±3 nm),伴随着PDI增加(从0.1±0.1到0.4±0.2),这可能是由于电场引起的聚集现象程度较小49。

However, even if significantly enlarged, the CMVs subjected to electroporation maintained their nanosized dimensions, acceptable for parenteral administration, and the PDI value is still indicating the presence of a monodisperse population.Figure 4Mean CMV size and PDI values before and after BSH loading, carried out by sonication and electroporation.

。图4通过超声处理和电穿孔进行BSH加载前后的平均CMV大小和PDI值。

Mean ± standard deviation (n = 3).Full size imageThe size and zeta potential of BSH-loaded CMVs did not significantly change (p < 0.05) over two-week storage at 4 °C, confirming the stability of the system at the storage conditions during this timeframe (Figs. 5A,B).Figure 5Stability of the BSH-loaded CMVs over 2 week storage at 4 °C, monitoring the size (A), zeta potential (B) and BSH content (C).Full size imageBSH leak.

平均±标准偏差(n=3)。全尺寸图像负载BSH的CMV的大小和zeta电位在4°C下储存两周后没有显着变化(p<0.05),证实了该时间段内系统在储存条件下的稳定性(图5A,B)。图5负载BSH的CMV在4°C下储存2周后的稳定性,监测尺寸(A),zeta电位(B)和BSH含量(C)。全尺寸imageBSH泄漏。

Data availability

数据可用性

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

在当前研究期间生成和/或分析的数据集可根据合理要求从通讯作者处获得。

ReferencesMaher, E. A. et al. Malignant glioma: Genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).Article

参考文献Maher,E.A。等人,《恶性胶质瘤:严重问题的遗传学和生物学》。Genes Dev.151311–1333(2001)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Florio, T. & Barbieri, F. The status of the art of human malignant glioma management: The promising role of targeting tumor-initiating cells. Drug Discov. Today 17, 1103–1110 (2012).Article

Florio,T。&Barbieri,F。人类恶性胶质瘤管理的现状:靶向肿瘤起始细胞的有希望的作用。药物发现。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ostrom, Q. T. et al. The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro-Oncology 16, 896–913 (2014).Article

Ostrom,Q.T.等人,《成人胶质瘤的流行病学:科学现状》综述。神经肿瘤学16896-913(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grochans, S. et al. Epidemiology of glioblastoma multiforme-literature review. Cancers 14, 2412 (2022).Article

Grochans,S。等。多形性胶质母细胞瘤的流行病学文献综述。癌症142412(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Furnari, F. B. et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).Article

Furnari,F.B。等。恶性星形胶质细胞胶质瘤:遗传学,生物学和治疗途径。基因发展212683-2710(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 310, 1842–1850 (2013).Article

Omuro,A。&DeAngelis,L.M。胶质母细胞瘤和其他恶性胶质瘤:临床综述。JAMA 3101842–1850(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).Article

Stupp,R。等人。放射治疗加伴随和辅助替莫唑胺治疗胶质母细胞瘤。N、 英语。J、 医学352987-996(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gouazé-Andersson, V. & Cohen-Jonathan Moyal, E. New avenues in radiotherapy of glioblastoma: From bench to bedside. Curr. Treat. Options Neurol. 22, 45 (2020).Article

Gouazé-Andersson,V。和Cohen Jonathan Moyal,E。胶质母细胞瘤放射治疗的新途径:从长凳到床边。货币。治疗。选项Neurol。22,45(2020)。文章

Google Scholar

谷歌学者

Ailuno, G., Baldassari, S., Lai, F., Florio, T. & Caviglioli, G. Exosomes and extracellular vesicles as emerging theranostic platforms in cancer research. Cells 9, 2569 (2020).Article

Ailuno,G.,Baldassari,S.,Lai,F.,Florio,T。&Caviglioli,G。外泌体和细胞外囊泡作为癌症研究中新兴的治疗诊断平台。细胞92569(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, J.-Y. et al. Exosomes and biomimetic nanovesicles-mediated anti-glioblastoma therapy: A head-to-head comparison. J. Control. Release 336, 510–521 (2021).Article

Wu,J.-Y.等人。外泌体和仿生纳米囊泡介导的抗胶质母细胞瘤治疗:头对头比较。J、 控制。发布336510–521(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Oieni, J. et al. Nano-Ghosts: Biomimetic membranal vesicles, technology and characterization. Methods Extracell. Vesicles Mimetics 177, 126–134 (2020).

Oieni,J。等。纳米鬼影:仿生膜囊泡,技术和表征。方法细胞外。囊泡模拟物177126-134(2020)。

Google Scholar

谷歌学者

Toledano Furman, N. E. et al. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett. 13, 3248–3255 (2013).Article

Toledano-Furman,N.E.等人。重建的干细胞纳米重影:一种天然的肿瘤靶向平台。纳诺莱特。133248-3255(2013)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Liu, X., Zhong, X. & Li, C. Challenges in cell membrane-camouflaged drug delivery systems: Development strategies and future prospects. Chin. Chem. Lett. 32, 2347–2358 (2021).Article

Liu,X.,Zhong,X。&Li,C。细胞膜伪装药物递送系统的挑战:发展策略和未来前景。下巴。。利特。322347-2358(2021)。文章

Google Scholar

谷歌学者

Ren, Y. et al. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma. Pharmaceuticals 15, 157 (2022).Article

Ren,Y.等人。同型癌细胞膜伪装纳米粒子,用于靶向药物递送和增强胶质瘤的化学光热疗法。制药15157(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rayamajhi, S., Nguyen, T. D. T., Marasini, R. & Aryal, S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 94, 482–494 (2019).Article

。生物计量学报。94482-494(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hu, K. et al. Boron agents for neutron capture therapy. Coord. Chem. Rev. 405, 213139 (2020).Article

。协调。。修订版405213139(2020)。文章

Google Scholar

谷歌学者

Barth, R. F. et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 7, 146 (2012).Article

Barth,R.F.等人。硼中子俘获治疗高级别胶质瘤和复发性头颈癌的现状。辐射。Oncol公司。7146(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyatake, S.-I. et al. Boron neutron capture therapy of malignant gliomas. Prog. Neurol. Surg. 32, 48–56 (2018).Article

Miyatake,S.-I.等。恶性胶质瘤的硼中子俘获治疗。程序。神经病学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hiratsuka, J. et al. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget’s disease with curative responses. Cancer Commun. 38, 38 (2018).Article

Hiratsuka,J.等人。硼中子俘获疗法治疗外阴黑色素瘤和生殖器乳腺外佩吉特病,具有疗效。癌症社区。38,38(2018)。文章

Google Scholar

谷歌学者

Matsuya, Y., Fukunaga, H., Omura, M. & Date, H. A model for estimating dose-rate effects on cell-killing of human melanoma after boron neutron capture therapy. Cells 9, 1117 (2020).Article

Matsuya,Y.,Fukunaga,H.,Omura,M。&Date,H。估计硼中子俘获疗法后剂量率对人黑色素瘤细胞杀伤作用的模型。细胞91117(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barth, R. F., Mi, P. & Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 38, 35 (2018).ADS

。癌症社区。38,35(2018)。广告

Google Scholar

谷歌学者

Ailuno, G. et al. Boron vehiculating nanosystems for neutron capture therapy in cancer treatment. Cells 11, 4029 (2022).Article

Ailuno,G。等人。用于癌症治疗中中子俘获疗法的硼载体纳米系统。细胞114029(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, J.-Y. et al. Multifunctional exosome-mimetics for targeted anti-glioblastoma therapy by manipulating protein corona. J. Nanobiotechnol. 19, 405 (2021).Article

Wu,J.-Y.等。通过操纵蛋白质电晕靶向抗胶质母细胞瘤治疗的多功能外泌体模拟物。J、 纳米生物技术。19405(2021)。文章

Google Scholar

谷歌学者

Jia, Y. et al. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 13, 386–398 (2019).Article

Jia,Y。等人。光疗学:使用仿生蛋白脂质纳米颗粒主动靶向原位神经胶质瘤。ACS Nano 13386-398(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Guo, Y. et al. Eliminating the original cargos of glioblastoma cell-derived small extracellular vesicles for efficient drug delivery to glioblastoma with improved biosafety. Bioact. Mater. 16, 204–217 (2022).PubMed

Guo,Y.等人。消除胶质母细胞瘤细胞衍生的小细胞外囊泡的原始货物,以提高生物安全性,有效地将药物递送至胶质母细胞瘤。生物CT。马特。16204-217(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, G. et al. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat. Commun. 13, 4214 (2022).Article

Lu,G。等人。工程仿生纳米粒子实现了针对胶质母细胞瘤的靶向递送和有效的基于代谢的协同疗法。国家公社。134214(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, H. et al. Biomimetic nanosonosensitizers combined with noninvasive ultrasound actuation to reverse drug resistance and sonodynamic-enhanced chemotherapy against orthotopic glioblastoma. ACS Nano 17, 421–436 (2023).Article

Chen,H.等。仿生纳米声敏剂联合无创超声驱动逆转原位胶质母细胞瘤的耐药性和声动力学增强化疗。ACS Nano 17421–436(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Barbieri, F. et al. Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. J. Exp. Clin. Cancer Res. CR 41, 53 (2022).Article

Barbieri,F。等人。胶质母细胞瘤的发展不需要氯化物细胞内通道1活性,但其抑制作用决定了胶质瘤干细胞对新型双胍衍生物的反应性。J、 实验临床。癌症研究CR 41,53(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Barbieri, F. et al. Inhibition of chloride intracellular channel 1 (CLIC1) as biguanide class-effect to impair human glioblastoma stem cell viability. Front. Pharmacol. 9, 899 (2018).Article

Barbieri,F。等人。抑制氯离子细胞内通道1(CLIC1)作为双胍类效应以损害人胶质母细胞瘤干细胞活力。正面。药理学。9899(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Griffero, F. et al. Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors*. J. Biol. Chem. 284, 7138–7148 (2009).Article

Griffero,F。等人。人脑胶质瘤肿瘤起始细胞对表皮生长因子受体激酶抑制剂的不同反应*。J、 生物。。2847138–7148(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yerneni, S. S. et al. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater. 149, 198–212 (2022).Article

Yerneni,S.S.等人。使用可溶性微针阵列皮肤靶向递送细胞外囊泡包封的姜黄素。生物计量学报。149198-212(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bajetto, A. et al. different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Front. Cell. Neurosci. 11, 312 (2017).Article

Bajetto,A。等人。人脐带间充质干细胞通过直接细胞相互作用或通过释放的可溶性因子对胶质母细胞瘤干细胞的不同作用。正面。细胞。神经科学。11312(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barbieri, F. et al. Stem-like signatures in human meningioma cells are under the control of CXCL11/CXCL12 chemokine activity. Neuro-Oncology 25, 1775–1787 (2023).Article

Barbieri,F。等人。人脑膜瘤细胞中的干细胞样特征受CXCL11/CXCL12趋化因子活性的控制。神经肿瘤学251775-1787(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Richter, M. et al. From donor to the lab: A fascinating journey of primary cell lines. Front. Cell Dev. Biol. 9, 711381 (2021).Article

Richter,M.等人,《从捐赠者到实验室:原代细胞系的迷人旅程》。正面。细胞开发生物学。9711381(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Würth, R. et al. Phenotypical and pharmacological characterization of stem-like cells in human pituitary adenomas. Mol. Neurobiol. 54, 4879–4895 (2017).Article

Würth,R.等人。人垂体腺瘤中干细胞样细胞的表型和药理学表征。分子神经生物学。544879-4895(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Suski, J. M. et al. Isolation of plasma membrane–associated membranes from rat liver. Nat. Protoc. 9, 312–322 (2014).Article

Suski,J.M.等人。从大鼠肝脏中分离质膜相关膜。自然协议。9312-322(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Austin, J., Minelli, C., Hamilton, D., Wywijas, M. & Jones, H. J. Nanoparticle number concentration measurements by multi-angle dynamic light scattering. J. Nanoparticle Res. 22, 108 (2020).Article

Austin,J.,Minelli,C.,Hamilton,D.,Wywijas,M。&Jones,H.J。通过多角度动态光散射测量纳米颗粒数浓度。《纳米颗粒研究》22108(2020)。文章

ADS

广告

Google Scholar

谷歌学者

Ailuno, G. et al. Development of biotinylated liposomes encapsulating metformin for therapeutic targeting of inflammation-based diseases. Pharmaceutics 16, 235 (2024).Article

Ailuno,G。等人。包封二甲双胍的生物素化脂质体的开发,用于治疗基于炎症的疾病。药剂学16235(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, M. C. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int. J. Cancer 144, 2074–2081 (2019).Article

Sharma,M.C。膜联蛋白A2(ANX A2):一种新兴的生物标志物和潜在的侵袭性癌症治疗靶点。Int.J.Cancer 1442074-2081(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lubanska, D. et al. Impairing proliferation of glioblastoma multiforme with CD44+ selective conjugated polymer nanoparticles. Sci. Rep. 12, 12078 (2022).Article

Lubanska,D。等人。用CD44+选择性缀合的聚合物纳米颗粒损害多形性胶质母细胞瘤的增殖。科学。代表112078(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rose, M. et al. Surfaceome proteomic of glioblastoma revealed potential targets for immunotherapy. Front. Immunol. 12, 746168 (2021).Article

Rose,M。等人。胶质母细胞瘤的表面组蛋白质组学揭示了免疫治疗的潜在靶标。正面。免疫。12746168(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mallawaaratchy, D. M. et al. Membrane proteome analysis of glioblastoma cell invasion. J. Neuropathol. Exp. Neurol. 74, 425–441 (2015).Article

Mallawaaratchy,D.M.等。胶质母细胞瘤细胞侵袭的膜蛋白质组分析。J、 神经病。实验神经学。74425-441(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hedhli, N. et al. The annexin A2/S100A10 system in health and disease: Emerging paradigms. J. Biomed. Biotechnol. 2012, 406273 (2012).Article

Hedhli,N.等人,《健康与疾病中的膜联蛋白A2/S100A10系统:新兴范例》。J、 生物医学。生物技术。2012406273(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Matsumoto, Y. et al. Annexin A2-STAT3-oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma. Acta Neuropathol. Commun. 8, 42 (2020).Article

Matsumoto,Y。等人。膜联蛋白A2-STAT3-抑癌素M受体轴驱动胶质母细胞瘤的表型和间充质变化。神经病学报。Commun公司。8,42(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maule, F. et al. Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget 7, 54632–54649 (2016).Article

膜联蛋白2A维持胶质母细胞瘤细胞的传播和增殖。Oncotarget 754632–54649(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhai, H. et al. Annexin A2 promotes glioma cell invasion and tumor progression. J. Neurosci. Off. J. Soc. Neurosci. 31, 14346–14360 (2011).Article

翟,H。等。膜联蛋白A2促进胶质瘤细胞侵袭和肿瘤进展。J、 神经科学。Off。J。Soc。Neurosci。3114346-14360(2011)。文章

Google Scholar

谷歌学者

Zeng, H. et al. Current strategies for exosome cargo loading and targeting delivery. Cells 12, 1416 (2023).Article

Zeng,H.等人。外泌体货物装载和靶向递送的当前策略。细胞121416(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hirase, S. et al. Dodecaborate-encapsulated extracellular vesicles with modification of cell-penetrating peptides for enhancing macropinocytotic cellular uptake and biological activity in boron neutron capture therapy. Mol. Pharm. 19, 1135–1145 (2022).Article

Hirase,S。等人。十二硼酸盐包裹的细胞外囊泡,修饰细胞穿透肽,以增强硼中子俘获疗法中的巨胞饮细胞摄取和生物活性。摩尔药理学191135-1145(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pomatto, M. A. C. et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol. Ther. Methods Clin. Dev. 13, 133–144 (2019).Article

Pomatto,M.A.C.等人改进了血浆来源的细胞外囊泡的负载以包封抗肿瘤miRNA。摩尔热。方法临床。第11333-144页(2019年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWork supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006)—A Multiscale integrated approach to the study of the nervous system in health and disease (DN.

下载参考文献致谢工作由#NEXTGENERATIONEU(NGEU)支持,由大学与研究部(MUR),国家恢复与恢复计划(NRRP),MNESYS项目(PE0000006)资助-一种多尺度综合方法,用于研究神经系统健康与疾病(DN)。

1553 11.10.2022)Author informationAuthor notesThese authors contributed equally: Alice Balboni and Giorgia Ailuno.These authors jointly supervised this work: Tullio Florio and Gabriele Caviglioli.Authors and AffiliationsDepartment of Pharmacy, University of Genoa, 16148, Genoa, ItalyAlice Balboni, Giorgia Ailuno, Sara Baldassari, Giuliana Drava & Gabriele CaviglioliIRCCS Istituto Giannina Gaslini, 16147, Genoa, ItalyAndrea Petretto & Nicole GrinoveroDepartment of Physics, University of Genoa, 16146, Genoa, ItalyOrnella Cavalleri, Elena Angeli, Andrea Lagomarsino & Paolo CanepaDepartment of Internal Medicine, University of Genoa, 16132, Genoa, ItalyAlessandro Corsaro, Beatrice Tremonti, Federica Barbieri, Stefano Thellung, Paola Contini & Tullio FlorioDepartment of Experimental Medicine, University of Genoa, 16132, Genoa, ItalyKatia CorteseIRCCS Ospedale Policlinico San Martino, 16132, Genoa, ItalyTullio Florio & Gabriele CaviglioliAuthorsAlice BalboniView author publicationsYou can also search for this author in.

1553 11.10.2022)作者信息作者注意到这些作者做出了同样的贡献:爱丽丝·巴尔博尼和乔治·艾卢诺。这些作者共同监督了这项工作:Tullio Florio和Gabriele Caviglioli。作者和附属机构热那亚大学药学系,16148,热那亚,ItalyAlice Balboni,Giorgia Ailuno,Sara Baldassari,Giuliana Drava&Gabriele CaviglioliIRCCS Istituto Giannina Gaslini,16147,热那亚,ItalyAndrea Petretto&Nicole Grinovere热那亚大学物理系,16146,热那亚,ItalyOrnella Cavalleri,Elena Angeli,Andrea Lagomarsino&Paolo Canepad热那亚大学内科,16132,热那亚,ItalyAlessandro Cor萨罗(Saro),比阿特丽斯·特雷蒙蒂(Beatrice Tremonti),费德里卡·巴比里(Federica Barbieri),斯特凡诺·塞隆(Stefano Thellung),保拉·康蒂尼(Paola Contini)和图利奥·弗洛里奥(Tullio Florio)热那亚大学实验医学系,16132,热那亚(Genoa),意大利科蒂西亚(ItalyKatia CorteseIRCCS Ospedale Policlinico San Martino),16132,热那亚(Genoa),意大利图利奥·弗洛里奥(ItalyTullio Florio)和加布里埃尔·卡维利奥(Gabriele CaviglioliAuthorsAlice BalboniView)作者出版物你也可以在。

PubMed Google ScholarGiorgia AilunoView author publicationsYou can also search for this author in

PubMed Google ScholarGiorgia AilunoView作者出版物您也可以在

PubMed Google ScholarSara BaldassariView author publicationsYou can also search for this author in

PubMed Google ScholarSara BaldassariView作者出版物您也可以在

PubMed Google ScholarGiuliana DravaView author publicationsYou can also search for this author in

PubMed Google ScholarGiuliana Dravavaview作者出版物您也可以在

PubMed Google ScholarAndrea PetrettoView author publicationsYou can also search for this author in

PubMed Google ScholarAndrea PetrettoView作者出版物您也可以在

PubMed Google ScholarNicole GrinoveroView author publicationsYou can also search for this author in

PubMed Google ScholarNicole GrinoveroView作者出版物您也可以在

PubMed Google ScholarOrnella CavalleriView author publicationsYou can also search for this author in

PubMed Google Scholarrornella CavalleriView作者出版物您也可以在

PubMed Google ScholarElena AngeliView author publicationsYou can also search for this author in

PubMed Google ScholarElena AngeliView作者出版物您也可以在

PubMed Google ScholarAndrea LagomarsinoView author publicationsYou can also search for this author in

PubMed Google ScholarAndrea LagomarsinoView作者出版物您也可以在

PubMed Google ScholarPaolo CanepaView author publicationsYou can also search for this author in

PubMed Google ScholarPaolo CanepaView作者出版物您也可以在

PubMed Google ScholarAlessandro CorsaroView author publicationsYou can also search for this author in

PubMed Google ScholarAlessandro CorsaroView作者出版物您也可以在

PubMed Google ScholarBeatrice TremontiView author publicationsYou can also search for this author in

PubMed Google ScholarBeatrice TremontiView作者出版物您也可以在

PubMed Google ScholarFederica BarbieriView author publicationsYou can also search for this author in

PubMed Google ScholarFederica BarbieriView作者出版物您也可以在

PubMed Google ScholarStefano ThellungView author publicationsYou can also search for this author in

PubMed Google ScholarPaola ContiniView author publicationsYou can also search for this author in

PubMed Google ScholarPaola ContiniView作者出版物您也可以在

PubMed Google ScholarKatia CorteseView author publicationsYou can also search for this author in

PubMed Google ScholarKatia CorteseView作者出版物您也可以在

PubMed Google ScholarTullio FlorioView author publicationsYou can also search for this author in

PubMed Google ScholarTullio FlorioView作者出版物您也可以在

PubMed Google ScholarGabriele CaviglioliView author publicationsYou can also search for this author in

PubMed Google ScholarGabriele CaviglioliView作者出版物您也可以在

PubMed Google ScholarContributionsA.B. and G.A. equally contributed to this work and both should be considered as first author. T.F. and G.C. contributed equally to this work and both should be considered as last senior authors. A.B.: Conceptualization; Methodology; Investigation; Writing—Review and Editing; G.A.: Conceptualization; Methodology; Investigation; Writing—Original Draft; Writing—Review and Editing; S.B.: Methodology; Writing—Original Draft; Writing—Review and Editing; G.D.: Methodology; Investigation; Resources; Writing—Review and Editing; A.P.: Methodology; Investigation; Resources; N.G.: Investigation; O.C.: Methodology; Resources; Writing—Review and Editing; E.A.: Investigation; A.L.: Investigation; P.C.: Investigation; A.C.: Investigation; B.T.: Investigation; F.B.: Formal analysis; Investigation; Writing—Review and Editing; S.T.: Investigation; P.C.: Investigation; K.C.: Investigation; T.F.: Methodology; Resources; Writing—Review and Editing; Supervision; Funding acquisition; G.C.: Conceptualization; Methodology; Resources; Writing—Review and Editing; Supervision; Funding acquisition.

PubMed谷歌学术贡献。B、 和G.A.对这项工作做出了同样的贡献,两者都应被视为第一作者。T、 。A、 B.:概念化;方法论;调查;写作评论和编辑;G、 A:概念化;方法论;调查;撰写初稿;写作评论和编辑;S、 B.:方法论;撰写初稿;写作评论和编辑;G、 D.:方法论;调查;资源;写作评论和编辑;A、 P.:方法论;调查;资源;N、 ;O、 C.:方法论;资源;写作评论和编辑;E、 A.:调查;A、 L.:调查;P、 C.:调查;A、 C.:调查;B、 T.:调查;F、 B.:形式分析;调查;写作评论和编辑;S、 T.:调查;P、 C.:调查;K、 C.:调查;T、 F.:方法论;资源;写作评论和编辑;监督;资金获取;G、 ;方法论;资源;写作评论和编辑;监督;资金收购。

All authors have read and approved the final version of the manuscript.Corresponding authorsCorrespondence to.

所有作者都阅读并批准了稿件的最终版本。通讯作者通讯。

Giorgia Ailuno or Tullio Florio.Ethics declarations

Giorgia Ailuno或Tullio Florio。道德宣言

Competing interest

竞争利益

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

作者声明,他们没有已知的竞争性经济利益或个人关系可能会影响本文报道的工作。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleBalboni, A., Ailuno, G., Baldassari, S. et al. Human glioblastoma-derived cell membrane nanovesicles: a novel, cell-specific strategy for boron neutron capture therapy of brain tumors.

转载和许可本文引用本文Balboni,A.,Ailuno,G.,Baldassari,S。等人。人类胶质母细胞瘤衍生的细胞膜纳米囊泡:一种用于脑肿瘤硼中子捕获治疗的新型细胞特异性策略。

Sci Rep 14, 19225 (2024). https://doi.org/10.1038/s41598-024-69696-7Download citationReceived: 10 April 2024Accepted: 06 August 2024Published: 20 August 2024DOI: https://doi.org/10.1038/s41598-024-69696-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41598-024-69696-7Download引文接收日期:2024年4月10日接受日期:2024年8月6日发布日期:2024年8月20日OI:https://doi.org/10.1038/s41598-024-69696-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsCell membraneCancer treatmentBioinspired vesiclesCell internalizationProteomics

关键词细胞膜癌治疗生物激发的囊泡细胞内化蛋白质组学

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。