商务合作
动脉网APP
可切换为仅中文
AbstractMiyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness.
摘要三好肌病/dysferlinopathy(MMD)是由DYSF基因突变引起的罕见肌肉疾病。除骨骼肌外,DYSF也在大脑中表达。但是,尚未探索引起MMD的DYSF变体对大脑结构和功能的影响。为了调查这一点,我们在一个有七个孩子的家庭中使用了磁共振(MR)模式(MR容量法和31P MR光谱法),其中四个孩子患有这种疾病。
The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices.
MMD兄弟姐妹与健康对照组有明显差异:(1)下侧脑室的右侧体积不对称(+232 mm3)显着(p<0.001);(2)[Mg2+]显着降低(p<0.001),同时改变了能量代谢特征,改变了海马以及运动和运动前皮质的膜转换。
The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study..
在补充400毫克/天的镁一个月后,患者的[Mg2+],能量代谢和膜转换指标恢复到健康亲属的水平。。因此,我们呼吁进一步检查更多MMD患者的大脑功能,并测试镁补充剂,这已被证明是我们研究中有效的纠正方法。。
IntroductionMiyoshi myopathy/dysferlinopathy (MMD) is a rare, autosomal recessive, debilitating muscular ailment caused by pathogenic mutations in the DYSF gene (2p12–14), which encodes for dysferlin (also known as dystrophy-associated fer-1-like protein)1,2,3,4,5,6,7. MMD prevalence is estimated worldwide as being from 1 to 9 affected individuals in 1,000,0008,9.MMD is characterized by muscle wasting, typically in the distal parts of the legs.
简介三好肌病/dysferlinopathy(MMD)是一种罕见的常染色体隐性遗传性衰弱性肌肉疾病,由DYSF基因(2p12-14)的致病突变引起,该基因编码dysferlin(也称为营养不良相关的fer-1样蛋白)1,2,3,4,5,6,7。据估计,全球MMD患病率为10000008人中有1至9人受影响。MMD的特征是肌肉消瘦,通常在腿部远端。
With disease progression, patients develop proximal leg weakness to variable degrees, with thigh and gluteal muscles also becoming affected. The forearms of patients might also be involved, whereas the small muscles of the feet and hands are relatively spared1. The typical clinical feature of MMD (at least in the early stages of the disease) is an increase of up to 100-fold in the activity of serum creatine kinase1.
随着疾病的进展,患者会出现不同程度的近端腿部无力,大腿和臀肌也会受到影响。患者的前臂也可能受累,而脚和手的小肌肉相对稀疏1。MMD的典型临床特征(至少在疾病的早期阶段)是血清肌酸激酶1的活性增加了100倍。
MMD onset typically occurs in late adolescence or early adulthood, between the 16th and 20th years of age. The muscle weakness is slowly progressive, with loss of ambulation often in the fourth decade of life, but generally within 10–30 years after the onset of the disease1,8,10,11. Unfortunately, no therapeutic strategy is currently available for halting the progress of MMD.Skeletal magnetic resonance imaging (MRI) of MMD patients usually reveals pronounced muscle septation, fatty replacement of muscle, and muscular atrophy12.
MMD发作通常发生在青春期晚期或成年早期,16至20岁之间。肌肉无力是缓慢进行性的,通常在生命的第四个十年内会失去行走能力,但通常在疾病发作后的10-30年内1,8,10,11。不幸的是,目前尚无治疗策略可用于阻止MMD的进展。MMD患者的骨骼磁共振成像(MRI)通常显示明显的肌肉分隔,肌肉脂肪替代和肌肉萎缩症12。
The reported histopathological features are not exclusive to MMD but can also be found in other types of muscular dystrophy12. Although, amyloid deposition in skeletal muscles is semi-specifically linked to dysferlinopathies13,14. First associated with N-terminal dysferlin mutations, the amyloid deposits were demonstrated to contain dysferlin14.
报道的组织病理学特征不仅限于MMD,还可以在其他类型的肌营养不良症中发现12。尽管骨骼肌中的淀粉样蛋白沉积与铁蛋白异常有关13,14。首先与N端dysferlin突变相关,淀粉样蛋白沉积物被证明含有dysferlin14。
However, subsequent reports of identical patholog.
但是,随后有相同病理学的报道。
31P MRSThe 31P MRS quantification was performed in selected voxels in the hippocampus and premotor and motor cortices (Supplementary Figure S4) with the methods given in Supplementary Table S2. The following 31P metabolites were examined: PME, PDE, PCr, Pi, and α-, β-, γ-ATP, which were further interpreted as standard used metabolite ratios (PCr/ATP, PCr/Pi, Pi/ATP, PME/ATP, PME/PCr, PME/PDE, PDE/ATP, PDE/PCr)78,87.
31P MRS使用补充表S2中给出的方法,在海马和前运动和运动皮层的选定体素中进行31P MRS定量(补充图S4)。检测了以下31P代谢物:PME,PDE,PCr,Pi和α-,β-,γ-ATP,进一步解释为标准使用的代谢物比率(PCr/ATP,PCr/Pi,Pi/ATP,PME/ATP,PME/PCr,PME/PDE,PDE/ATP,PDE/PCr)78,87。
In addition, an indirect measure of [Mg2+] (the chemical shift of β-ATP and PCr) was obtained using the jMRUI-in-built formula88,89.Statistical analysesThe data were explored and analyzed in R ver. 4.0.5. by using the libraries robustbase, multcomp, blandr, nlme, emmeans, and randomForestSRC90,91,92,93,94,95,96.
此外,使用jMRUI内置公式88,89获得了[Mg2+](β-ATP和PCr的化学位移)的间接测量。统计分析数据在R版本4.0.5中进行了探索和分析。通过使用库robustbase、multcomp、blandr、nlme、emmeans和randomForestSRC90、91、92、93、94、95、96。
RNotebook reports with details of data analyses have been deposited in the Mendeley data repository97.Exploratory Data Analysis (EDA) was performed using a boxplot overlaid with a swarmplot, a quantile–quantile plot with a 95% confidence band constructed by bootstrap. Any association between two continuous variables was explored using a scatterplot.
带有数据分析细节的RNotebook报告已保存在Mendeley data repository97中。探索性数据分析(EDA)是使用覆盖有swarmplot的箱线图进行的,swarmplot是由bootstrap构建的具有95%置信带的分位数-分位数图。使用散点图探索了两个连续变量之间的任何关联。
Paired measurements (before, after treatment) were visualized by the spaghettiplot.The anthropometric and biochemical data collected before and after Mg treatment, were analyzed by the Linear Mixed Regression (LMR) model M1 of the following form: response ~ treatment + group + gender + age + (1|id), where treatment is a factor with levels before Mg supplementation, after Mg supplementation; group is a factor with levels fCON (control family members), PAT (patients); gender is a factor with levels F, M and id is subject’s identifier.
配对测量(治疗前,治疗后)通过spaghettitplot可视化。Mg治疗前后收集的人体测量和生化数据通过以下形式的线性混合回归(LMR)模型M1进行分析:反应 〜治疗 + 组 + 性别 + 年龄 + (1 | id),其中治疗是补充Mg之前,补充Mg后水平的因素;组是fCON(对照家庭成员),PAT(患者)水平的因素;性别是F、M级的因素,id是受试者的标识符。
Each LMR was subjected to standard diagnostics using the quantile residuals. Estimated marginal means were obtained by the fitted LMR, and post-hoc custom contrast comparisons.
使用分位数残差对每个LMR进行标准诊断。通过拟合的LMR和事后自定义对比度比较获得估计的边际均值。
Data availability
数据可用性
Data and RNotebook script to produce the html reports which are stored at Mendeley data repository (Doi: https://doi.org/10.17632/nz45zk5g6z.1) are available upon reasonable request from the corresponding author. The newly described genetic variant of DYSF c.2864 + 1dupG has been deposited in ClinVar—NCBI (https://www.ncbi.nlm.nih.gov/clinvar/; submission: SUB14257366, SCV004611142)..
数据和RNotebook脚本生成html报告,这些报告存储在Mendeley数据库(Doi:https://doi.org/10.17632/nz45zk5g6z.1)可根据通讯作者的合理要求提供。(https://www.ncbi.nlm.nih.gov/clinvar/;提交:SUB14257366,SCV004611142)。。
ReferencesMiyoshi, K. et al. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain. 109, 31–54. https://doi.org/10.1093/brain/109.1.31 (1986).Article
参考文献Miyoshi,K。等人。常染色体隐性遗传性远端肌营养不良症是一种新型的进行性肌营养不良症。八个家庭中的十七个病例,包括一个尸检病例。大脑。109,31-54。https://doi.org/10.1093/brain/109.1.31(1986年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Takahashi, T. et al. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B. J. Neurol. Neurosurg. Psychiatry. 84, 433–40. https://doi.org/10.1136/jnnp-2011-301339 (2013).Article
Takahashi,T。等人。临床特征和肢带型肌营养不良症2B迟发突变。J、 神经病学。神经外科。精神病学。。https://doi.org/10.1136/jnnp-2011-301339(2013年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, H. et al. Abnormal expression of dysferlin in blood monocytes supports primary dysferlinopathy in patients confirmed by genetic analyses. Front. Neurol. 11, 540098. https://doi.org/10.3389/fneur.2020.540098 (2020).Article
Zhang,H。等人。通过基因分析证实,血液单核细胞中dysferlin的异常表达支持患者的原发性dysferlinopathy。正面。神经病学。11540098年。https://doi.org/10.3389/fneur.2020.540098(2020年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bejaoui, K. et al. Genetic fine mapping of the Miyoshi myopathy locus and exclusion of eight candidate genes. Neurogenetics. 1, 189–96. https://doi.org/10.1007/s100480050028 (1998).Article
Bejaoui,K.等人。三好肌病基因座的遗传精细定位和八个候选基因的排除。神经遗传学。1189-96年。https://doi.org/10.1007/s100480050028。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bushby, K. & Straub, V. One gene, one or many diseases? Simplifying dysferlinopathy. Neurology. 75, 298–9. https://doi.org/10.1212/WNL.0b013e3181ea1649 (2010).Article
Bushby,K。&Straub,V。一种基因,一种或多种疾病?简化铁蛋白异常。。75298-9。https://doi.org/10.1212/WNL.0b013e3181ea1649(2010年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31–6. https://doi.org/10.1038/1682 (1998).Article
Liu,J。等人。Dysferlin是一种新型骨骼肌基因,在三好肌病和肢带型肌营养不良症中发生突变。纳特·吉内特。20、31–6。https://doi.org/10.1038/1682。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Takahashi, T. et al. Dysferlin mutations in Japanese Miyoshi myopathy: Relationship to phenotype. Neurology. 60, 1799–804. https://doi.org/10.1212/01.wnl.0000068333.43005.12 (2003).Article
Takahashi,T。等人。日本三好肌病中的Dysferlin突变:与表型的关系。。601799-804年。https://doi.org/10.1212/01.wnl.0000068333.43005.12(2003年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
MedlinePlus. Available from: https://medlineplus.gov/.Orphanet. The portal for rare diseases and orphan drugs. 2023–03–20; Available from: https://www.orpha.net.Aoki, M. & Takahashi, T. Dysferlinopathy. 2004 2021 May 27; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1303/.Kirschner, J.
MedlinePlus。可从以下地址获得:https://medlineplus.gov/.Orphanet.罕见疾病和孤儿药的门户。2023-03-20年;可从以下地址获得:https://www.orpha.net.Aoki,M。&Takahashi,T。Dysferlinopathy。2004年2021年5月27日;可从以下地址获得:https://www.ncbi.nlm.nih.gov/books/NBK1303/.Kirschner,J。
& Bonnemann, C. G. The congenital and limb-girdle muscular dystrophies: Sharpening the focus, blurring the boundaries. Arch Neurol. 61, 189–99. https://doi.org/10.1001/archneur.61.2.189 (2004).Article .
&先天性和肢带型肌营养不良症:锐化焦点,模糊界限。Arch Neurol。61189-99。https://doi.org/10.1001/archneur.61.2.189(2004年)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Flachenecker, P. et al. Distal muscular dystrophy of Miyoshi type. Report of two cases and review of the literature. J. Neurol. 244, 23–9. https://doi.org/10.1007/pl00007726 (1997).Article
Flachenecker,P。等人。三好型远端肌营养不良症。两例报告并文献复习。J、 神经病学。244,23-9。https://doi.org/10.1007/pl00007726(1997年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosales, X. Q. et al. Novel diagnostic features of dysferlinopathies. Muscle Nerve. 42, 14–21. https://doi.org/10.1002/mus.21650 (2010).Article
Rosales,X.Q.等人。铁蛋白异常的新诊断特征。肌肉神经。42,14-21。https://doi.org/10.1002/mus.21650(2010年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spuler, S. et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann. Neurol. 63, 323–8. https://doi.org/10.1002/ana.21309 (2008).Article
Spuler,S。等人。Dysferlin缺陷型肌营养不良症以淀粉样变性为特征。安。神经病学。63323-8。https://doi.org/10.1002/ana.21309(2008年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Milone, M., Liewluck, T., Winder, T. L. & Pianosi, P. T. Amyloidosis and exercise intolerance in ANO5 muscular dystrophy. Neuromuscul. Disord. 22, 13–5. https://doi.org/10.1016/j.nmd.2011.07.005 (2012).Article
Milone,M.,Liewluck,T.,Winder,T.L。和Pianosi,P.T。淀粉样变性和运动不耐受在ANO5型肌营养不良症中的作用。神经肌肉。。22,13-5。https://doi.org/10.1016/j.nmd.2011.07.005。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liewluck, T. et al. ANO5-muscular dystrophy: Clinical, pathological and molecular findings. Eur. J. Neurol. 20, 1383–9. https://doi.org/10.1111/ene.12191 (2013).Article
Liewluck,T。等。ANO5型肌营养不良症:临床,病理和分子发现。欧洲神经病学杂志。201383-9年。https://doi.org/10.1111/ene.12191(2013年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cacciottolo, M. et al. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur. J. Hum. Genet. 19, 974–80. https://doi.org/10.1038/ejhg.2011.70 (2011).Article
具有明显Dysferlin缺乏症的肌肉萎缩症一直是由原发性Dysferlin基因突变引起的。Eur.J.Hum.Genet。19474-80岁。https://doi.org/10.1038/ejhg.2011.70(2011年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Database, T. u. m. UMD-DYSF Locus Specific Database. Available from: http://www.umd.be/DYSF/.Bansal, D. et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423, 168–72. https://doi.org/10.1038/nature01573 (2003).Article
数据库,T.u。m。UMD-DYSF基因座特定数据库。可从以下地址获得:http://www.umd.be/DYSF/.Bansal。自然。423168-72。https://doi.org/10.1038/nature01573(2003年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Codding, S. J., Marty, N., Abdullah, N. & Johnson, C. P. Dysferlin Binds SNAREs (Soluble N-Ethylmaleimide-sensitive Factor (NSF) Attachment Protein Receptors) and stimulates membrane fusion in a calcium-sensitive manner. J. Biol. Chem. 291, 14575–84. https://doi.org/10.1074/jbc.M116.727016 (2016).Article .
Codding,S.J.,Marty,N.,Abdullah,N。&Johnson,C.P。Dysferlin结合SNARE(可溶性N-乙基马来酰亚胺敏感因子(NSF)附着蛋白受体)并以钙敏感的方式刺激膜融合。J、 生物。。29114575-84。https://doi.org/10.1074/jbc.M116.727016(2016年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fujita, E. et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: Ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16, 618–29. https://doi.org/10.1093/hmg/ddm002 (2007).Article
Fujita,E。等人。突变型dysferlin新变体的两个内质网相关降解(ERAD)系统:泛素/蛋白酶体ERAD(I)和自噬/溶酶体ERAD(II)。嗯,摩尔·吉内特。16618-29岁。https://doi.org/10.1093/hmg/ddm002。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schoewel, V. et al. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function. PLoS One. 7, e49603. https://doi.org/10.1371/journal.pone.0049603 (2012).Article
Schoewel,V。等人,Dysferlin肽重新分配突变的Dysferlin,从而恢复功能。PLoS One。7,e49603。https://doi.org/10.1371/journal.pone.0049603。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Scott, I. L. et al. Pathogenic mutations in the C2A domain of dysferlin form amyloid that activates the inflammasome. bioRxiv https://doi.org/10.1101/2023.04.24.538129 (2023).Article
Scott,I.L.等人,dysferlin的C2A结构域中的致病突变形成激活炎性体的淀粉样蛋白。生物十四https://doi.org/10.1101/2023.04.24.538129(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sula, A. et al. Crystal structures of the human Dysferlin inner DysF domain. BMC Struct. Biol. 14, 3. https://doi.org/10.1186/1472-6807-14-3 (2014).Article
Sula,A。等人。人Dysferlin内部DysF结构域的晶体结构。BMC结构。生物学14,3。https://doi.org/10.1186/1472-6807-14-3(2014年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Galvin, J. E. et al. The muscle protein dysferlin accumulates in the Alzheimer brain. Acta. Neuropathol. 112, 665–71. https://doi.org/10.1007/s00401-006-0147-8 (2006).Article
Galvin,J.E。等人。肌肉蛋白dysferlin在阿尔茨海默病大脑中积累。学报。神经病。112665-71。https://doi.org/10.1007/s00401-006-0147-8(2006年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Harris, E. et al. The clinical outcome study for dysferlinopathy: An international multicenter study. Neurol. Genet. 2, e89. https://doi.org/10.1212/NXG.0000000000000089 (2016).Article
Harris,E.等人,《铁蛋白异常的临床结果研究:一项国际多中心研究》。神经病学。基因。2,e89。https://doi.org/10.1212/NXG.0000000000000089(2016年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cherbuin, N. et al. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: The PATH through life study. Front Psychiatry. 1, 11. https://doi.org/10.3389/fpsyt.2010.00011 (2010).Article
与正常衰老相比,轻度认知障碍与大脑不对称的不同模式有关:生命之路研究。。1,11。https://doi.org/10.3389/fpsyt.2010.00011(2010年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lewis, M. M. et al. Asymmetrical lateral ventricular enlargement in Parkinson’s disease. Eur. J. Neurol. 16, 475–81. https://doi.org/10.1111/j.1468-1331.2008.02430.x (2009).Article
Lewis,M.M.等人,《帕金森病的不对称侧脑室扩大》。欧洲神经病学杂志。。https://doi.org/10.1111/j.1468-1331.2008.02430.x(2009年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, P. et al. Hemispheric asymmetry in the human brain and in Parkinson’s disease is linked to divergent epigenetic patterns in neurons. Genome Biol. 21, 61. https://doi.org/10.1186/s13059-020-01960-1 (2020).Article
Li,P。等人。人脑和帕金森氏病的半球不对称性与神经元中不同的表观遗传模式有关。基因组生物学。。https://doi.org/10.1186/s13059-020-01960-1(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lubben, N., Ensink, E., Coetzee, G. A. & Labrie, V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun. 3, fcab211. https://doi.org/10.1093/braincomms/fcab211 (2021).Article
Lubben,N.,Ensink,E.,Coetzee,G.A。和Labrie,V。大脑半球不对称性在神经退行性疾病中的谜团和意义。大脑通讯。3,fcab211。https://doi.org/10.1093/braincomms/fcab211(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dromard, Y. et al. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. Neurobiol. Stress. 15, 100402. https://doi.org/10.1016/j.ynstr.2021.100402 (2021).Article
体内树突棘和线粒体的双重成像揭示了可塑性和代谢适应应激的热点。神经生物学。压力。15100402。https://doi.org/10.1016/j.ynstr.2021.100402(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lopez-Gambero, A. J. et al. A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer’s disease, the 5XFAD mouse. Int. J. Mol. Sci. 22, 5365. https://doi.org/10.3390/ijms22105365 (2021).Article
Lopez-Gambero,A.J.等人。负能量平衡与阿尔茨海默病的人源化临床前模型5XFAD小鼠的下丘脑代谢功能障碍有关。Int.J.Mol.Sci。225365页。https://doi.org/10.3390/ijms22105365(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Muddapu, V. R. & Chakravarthy, V. S. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci. Rep. 11, 1754. https://doi.org/10.1038/s41598-021-81185-9 (2021).Article
Muddapu,V.R。&Chakravarthy,V.S。能量缺乏对黑质致密部细胞亚细胞过程的影响,以了解帕金森病神经变性。科学。代表111754。https://doi.org/10.1038/s41598-021-81185-9(2021年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grounds, M. D. et al. Lipid accumulation in dysferlin-deficient muscles. Am. J. Pathol. 184, 1668–1676. https://doi.org/10.1016/j.ajpath.2014.02.005 (2014).Article
Grounds,M.D.等人,《dysferlin缺陷肌肉中的脂质积累》。美国J.Pathol。1841668-1676年。https://doi.org/10.1016/j.ajpath.2014.02.005(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alharbi, N. et al. Clinical, neurophysiological, radiological, pathological, and genetic features of dysferlinopathy in Saudi Arabia. Front Neurosci. 16, 815556. https://doi.org/10.3389/fnins.2022.815556 (2022).Article
Alharbi,N。等人。沙特阿拉伯神经营养不良症的临床、神经生理学、放射学、病理学和遗传学特征。前沿神经学。16815556。https://doi.org/10.3389/fnins.2022.815556(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bell, D. J. Asymmetry of the lateral ventricles. (2022); Available from: https://doi.org/10.53347/rID-59363.Fanin, M., Nascimbeni, A. C. & Angelini, C. Muscle protein analysis in the detection of heterozygotes for recessive limb girdle muscular dystrophy type 2B and 2E. Neuromuscul. Disord.
Bell,D.J。侧脑室的不对称性。(2022年);可从以下地址获得:https://doi.org/10.53347/rID-59363.Fanin,M.,Nascimbeni,A.C。和Angelini,C。肌肉蛋白分析在检测2B型和2E型隐性肢带型肌营养不良症杂合子中的作用。神经肌肉。混乱。
16, 792–9. https://doi.org/10.1016/j.nmd.2006.06.010 (2006).Article .
16, 792–9. https://doi.org/10.1016/j.nmd.2006.06.010 (2006).Article .
PubMed
PubMed
Google Scholar
谷歌学者
Illa, I. et al. Symptomatic dysferlin gene mutation carriers: Characterization of two cases. Neurology. 68, 1284–1289. https://doi.org/10.1212/01.wnl.0000256768.79353.60 (2007).Article
Illa,I。等人。症状性dysferlin基因突变携带者:两例病例的表征。。681284-1289年。https://doi.org/10.1212/01.wnl.0000256768.79353.60。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jalali-Sefid-Dashti, M., Nel, M., Heckmann, J. M. & Gamieldien, J. Exome sequencing identifies novel dysferlin mutation in a family with Pauci-symptomatic heterozygous carriers. BMC Med. Genet. 19, 95. https://doi.org/10.1186/s12881-018-0613-x (2018).Article
Jalali Sefid Dashti,M.,Nel,M.,Heckmann,J.M。&Gamieldien,J。外显子组测序鉴定了一个缺乏症状杂合子携带者的家庭中的新型dysferlin突变。BMC医学基因。19,95。https://doi.org/10.1186/s12881-018-0613-x(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aso, M. et al. Asymmetry of the ventricle and age at the onset of schizophrenia. Eur Arch. Psychiatry Clin. Neurosci. 245, 142–144. https://doi.org/10.1007/BF02193086 (1995).Article
Aso,M。等人。精神分裂症发作时心室的不对称性和年龄。Eur Arch公司。精神病学临床。神经科学。245142-144。https://doi.org/10.1007/BF02193086(1995年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bartos, A., Gregus, D., Ibrahim, I. & Tintera, J. Brain volumes and their ratios in Alzheimer s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res. Neuroimaging. 287, 70–74. https://doi.org/10.1016/j.pscychresns.2019.01.014 (2019).Article
Bartos,A.,Gregus,D.,Ibrahim,I。&Tintera,J。使用Freesurfer 6.0分割的磁共振成像中阿尔茨海默病的脑容量及其比率。精神病学研究神经影像学。287、70-74。https://doi.org/10.1016/j.pscychresns.2019.01.014(2019年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Grosman, H. et al. Computed tomography and lateral ventricular asymmetry: Clinical and brain structural correlates. Can. Assoc. Radiol. J. 41, 342–346 (1990).CAS
。可以。放射科医师协会。J、 41342-346(1990)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kiroglu, Y. et al. Cerebral lateral ventricular asymmetry on CT: How much asymmetry is representing pathology?. Surg. Radiol. Anat. 30, 249–55. https://doi.org/10.1007/s00276-008-0314-9 (2008).Article
Kiroglu,Y。等。CT上的大脑侧脑室不对称:多少不对称代表病理?。外科放射学。阿纳特。30249-55岁。https://doi.org/10.1007/s00276-008-0314-9(2008年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kong, X. Z. et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum. Brain Mapp. 43, 167–181. https://doi.org/10.1002/hbm.25033 (2022).Article
Kong,X.Z.等人。通过ENIGMA联盟绘制健康和疾病中的大脑不对称性。嗯。大脑地图。43167-181。https://doi.org/10.1002/hbm.25033(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Min, J. et al. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: Automated volumetric assessment versus visual assessment. AJR Am. J. Roentgenol. 208, 617–623. https://doi.org/10.2214/AJR.16.16894 (2017).Article
Min,J。等人。结构MRI对轻度至中度阿尔茨海默病患者的诊断效果:自动体积评估与视觉评估。AJR Am.J.Roentgenol。208617-623。https://doi.org/10.2214/AJR.16.16894(2017年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kolisek, M. et al. Magnesium extravaganza: A critical compendium of current research into cellular Mg2+ transporters other than TRPM6/7. Rev. Physiol. Biochem. Pharmacol. 176, 65–105. https://doi.org/10.1007/112_2018_15 (2019).Article
Kolisek,M.等人,《镁盛宴:当前除TRPM6/7以外的细胞Mg2+转运蛋白研究的重要纲要》。生理学评论。生物化学。药理学。176,65-105。https://doi.org/10.1007/112_2018_15(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kolisek, M. et al. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J. 22, 1235–44. https://doi.org/10.1093/emboj/cdg122 (2003).Article
Kolisek,M。等人。Mrs2p是线粒体中主要电泳Mg2+流入系统的重要组成部分。EMBO J.221235-44。https://doi.org/10.1093/emboj/cdg122(2003年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mathew, A. A. & Panonnummal, R. ’Magnesium’-the master cation-as a drug-possibilities and evidences. Biometals. 34, 955–986. https://doi.org/10.1007/s10534-021-00328-7 (2021).Article
Mathew,A.A。&Panonnummal,R。'镁'-作为药物可能性和证据的主要阳离子。生物金属。34955-986年。https://doi.org/10.1007/s10534-021-00328-7(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yamanaka, R. et al. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep. 6, 30027. https://doi.org/10.1038/srep30027 (2016).Article
Yamanaka,R。等人。线粒体Mg2+稳态决定细胞能量代谢和应激易感性。科学。代表630027。https://doi.org/10.1038/srep30027(2016年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosanoff, A. et al. Recommendation on an updated standardization of serum magnesium reference ranges. Eur. J. Nutr. 61, 3697–3706. https://doi.org/10.1007/s00394-022-02916-w (2022).Article
Rosanoff,A.等人关于血清镁参考范围更新标准化的建议。欧洲营养学杂志。613697-3706。https://doi.org/10.1007/s00394-022-02916-w(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Al Shammaa, A. et al. Serum magnesium is inversely Associated with body composition and metabolic syndrome. Diabetes Metab. Syndr. Obes. 16, 95–104. https://doi.org/10.2147/DMSO.S391369 (2023).Article
Al-Shammaa,A。等人。血清镁与身体成分和代谢综合征呈负相关。糖尿病代谢。Syndr公司。Obes。16,95-104。https://doi.org/10.2147/DMSO.S391369(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ilincic, B. & Oluski, D. Association between body composition and magnesium level in midlle aged women: PS073. Porto. Biomed. J. 2, 177–178. https://doi.org/10.1016/j.pbj.2017.07.008 (2017).Article
Ilincic,B。&Oluski,D。中年女性身体成分与镁水平之间的关系:PS073。波尔图。生物医学。J、 2177-178年。https://doi.org/10.1016/j.pbj.2017.07.008(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shamnani, G. et al. Serum magnesium in relation with obesity. Natl. J. Physiol. Pharm. Pharmacol. 8, 1074–1077. https://doi.org/10.5455/njppp.2018.8.0104016022018 (2018).Article
。纳特尔。J、 生理学。药理学。81074-1077年。https://doi.org/10.5455/njppp.2018.8.0104016022018(2018年)。文章
CAS
中科院
Google Scholar
谷歌学者
Van Eyck, A. et al. Body composition helps to elucidate the different origins of low serum magnesium in children with obesity compared to children with type 1 diabetes. Eur. J. Pediatr. 182, 3743–3753. https://doi.org/10.1007/s00431-023-05046-5 (2023).Article
Van Eyck,A.等人的身体成分有助于阐明肥胖儿童与1型糖尿病儿童低血清镁的不同来源。欧洲儿科杂志。1823743-3753。https://doi.org/10.1007/s00431-023-05046-5(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vink, R. & Nechifor, M. Magnesium in the central nervous system (University of Adelaide Press, 2011).Book
Vink,R。&Nechifor,M。中枢神经系统中的镁(阿德莱德大学出版社,2011)。书籍
Google Scholar
谷歌学者
Andrasi, E., Igaz, S., Molnar, Z. & Mako, S. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes. Res. 13, 189–196 (2000).CAS
Andrasi,E.,Igaz,S.,Molnar,Z。&Mako,S。阿尔茨海默病不同大脑区域镁浓度的紊乱。马格纳斯。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barbiroli, B. et al. Phosphorus magnetic resonance spectroscopy in multiple system atrophy and Parkinson’s disease. Mov. Disord. 14, 430–5. https://doi.org/10.1002/1531-8257(199905)14:3%3c430::aid-mds1007%3e3.0.co;2-s (1999).Article
Barbiroli,B。等。多系统萎缩和帕金森病的磷磁共振波谱。莫夫。。14430-5岁。https://doi.org/10.1002/1531-8257(199905)14:3%3c430::aid-mds1007%3e3.0.co;2-s(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lo, K. et al. Relations of magnesium intake to cognitive impairment and dementia among participants in the Women’s health initiative memory study: A prospective cohort study. BMJ Open. 9, e030052. https://doi.org/10.1136/bmjopen-2019-030052 (2019).Article
Lo,K.等人,《女性健康倡议记忆研究参与者镁摄入量与认知障碍和痴呆的关系:一项前瞻性队列研究》。BMJ开放。9,e030052。https://doi.org/10.1136/bmjopen-2019-030052(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maier, J. A. M. et al. Magnesium and the brain: A focus on neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 24, 223. https://doi.org/10.3390/ijms24010223 (2022).Article
Maier,J.A.M.等人,《镁与大脑:关注神经炎症和神经变性》。Int.J.Mol.Sci。24223页。https://doi.org/10.3390/ijms24010223(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nadler, J. L. et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension. 21, 1024–9. https://doi.org/10.1161/01.hyp.21.6.1024 (1993).Article
Nadler,J.L.等人。镁缺乏会产生胰岛素抵抗和血栓素合成增加。高血压。211024-9。https://doi.org/10.1161/01.hyp.21.6.1024(1993年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yasui, M., Kihira, T. & Ota, K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology. 13, 593–600 (1992).CAS
Yasui,M.,Kihira,T。&Ota,K。帕金森病中的钙,镁和铝浓度。神经毒性。13593-600(1992)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, W. et al. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol. Brain. 7, 65. https://doi.org/10.1186/s13041-014-0065-y (2014).Article
Li,W。等人。在阿尔茨海默病小鼠模型中,脑镁的升高可防止突触丢失并逆转认知缺陷。分子大脑。。https://doi.org/10.1186/s13041-014-0065-y(2014年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serita, T. et al. Dietary magnesium deficiency impairs hippocampus-dependent memories without changes in the spine density and morphology of hippocampal neurons in mice. Brain Res. Bull. 144, 149–157. https://doi.org/10.1016/j.brainresbull.2018.11.019 (2019).Article
Serita,T。等人。膳食镁缺乏会损害海马依赖性记忆,而不会改变小鼠海马神经元的脊柱密度和形态。Brain Res.公牛。144149-157。https://doi.org/10.1016/j.brainresbull.2018.11.019(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, Z. P. et al. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One. 9, e108645. https://doi.org/10.1371/journal.pone.0108645 (2014).Article
Xu,Z.P.等人。镁在链脲佐菌素诱导的散发性阿尔茨海默病模型中保护认知功能和突触可塑性。PLoS One。9,e108645。https://doi.org/10.1371/journal.pone.0108645(2014年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kirkland, A. E., Sarlo, G. L. & Holton, K. F. The role of magnesium in neurological disorders. Nutrients. 10, 730. https://doi.org/10.3390/nu10060730 (2018).Article
Kirkland,A.E.,Sarlo,G.L。和Holton,K.F。镁在神经系统疾病中的作用。营养素。10730年。https://doi.org/10.3390/nu10060730(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cherbuin, N., Kumar, R., Sachdev, P. S. & Anstey, K. J. Dietary mineral intake and risk of mild cognitive impairment: The PATH through life project. Front. Aging Neurosci. 6, 4. https://doi.org/10.3389/fnagi.2014.00004 (2014).Article
Cherbuin,N.,Kumar,R.,Sachdev,P.S。&Anstey,K.J。膳食矿物质摄入和轻度认知障碍的风险:生命之路项目。正面。衰老神经科学。6,4。https://doi.org/10.3389/fnagi.2014.00004(2014年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ozawa, M. et al. Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: The Hisayama Study. J. Am. Geriatr. Soc. 60, 1515–20. https://doi.org/10.1111/j.1532-5415.2012.04061.x (2012).Article
Ozawa,M.等人。日本人自我报告的钾、钙和镁的膳食摄入量与痴呆风险:Hisayama研究。J、 我是老年人。Soc.601515-20。https://doi.org/10.1111/j.1532-5415.2012.04061.x。文章
PubMed
PubMed
Google Scholar
谷歌学者
Haszto, C. S., Stanley, J. A., Iyengar, S. & Prasad, K. M. Regionally distinct alterations in membrane phospholipid metabolism in schizophrenia: A meta-analysis of phosphorus magnetic resonance spectroscopy studies. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 5, 264–280. https://doi.org/10.1016/j.bpsc.2019.09.008 (2020).Article .
Haszto,C.S.,Stanley,J.A.,Iyengar,S。&Prasad,K.M。精神分裂症膜磷脂代谢的区域性不同改变:磷磁共振波谱研究的荟萃分析。生物精神病学认知。神经科学。神经影像学。5264-280。https://doi.org/10.1016/j.bpsc.2019.09.008(2020年)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Jett, S. et al. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer’s disease. Front. Aging Neurosci. 15, 1183228. https://doi.org/10.3389/fnagi.2023.1183228 (2023).Article
Jett,S.等人,《31P磁共振波谱研究在衰老和阿尔茨海默病中大脑高能磷酸盐和膜磷脂的系统综述》。正面。衰老神经科学。151183228。https://doi.org/10.3389/fnagi.2023.1183228(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rijpma, A. et al. Altered brain high-energy phosphate metabolism in mild Alzheimer’s disease: A 3-dimensional 31P MR spectroscopic imaging study. Neuroimage Clin. 18, 254–261. https://doi.org/10.1016/j.nicl.2018.01.031 (2018).Article
Rijpma,A.等人,《轻度阿尔茨海默病中大脑高能磷酸盐代谢的改变:三维31P MR光谱成像研究》。神经影像临床。。https://doi.org/10.1016/j.nicl.2018.01.031(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mandal, P. K., Akolkar, H. & Tripathi, M. Mapping of hippocampal pH and neurochemicals from in vivo multi-voxel 31P study in healthy normal young male/female, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis. 31(Suppl 3), S75-86. https://doi.org/10.3233/JAD-2012-120166 (2012).Article .
Mandal,P.K.,Akolkar,H。&Tripathi,M。在健康的正常年轻男性/女性,轻度认知障碍和阿尔茨海默病中,体内多体素31P研究中海马pH和神经化学物质的映射。阿尔茨海默病杂志。31(补充3),S75-86。https://doi.org/10.3233/JAD-2012-120166。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mecheri, G. et al. In vivo hippocampal 31P NMR metabolites in Alzheimer’s disease and ageing. Eur. Psychiatry. 12, 140–8. https://doi.org/10.1016/S0924-9338(97)80203-9 (1997).Article
Mecheri,G。等人。阿尔茨海默病和衰老中的体内海马31P NMR代谢物。欧洲精神病学。12140–8。https://doi.org/10.1016/S0924-9338(97)80203-9(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guillevin, C. et al. 1H–31P magnetic resonance spectroscopy: Effect of biotin in multiple sclerosis. Ann. Clin. Transl. Neurol. 6, 1332–1337. https://doi.org/10.1002/acn3.50825 (2019).Article
Guillevin,C。等。1H–31P磁共振波谱:生物素在多发性硬化症中的作用。安。克林。翻译。神经病学。。https://doi.org/10.1002/acn3.50825(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hnilicova, P. et al. Current methods of magnetic resonance for noninvasive assessment of molecular aspects of pathoetiology in multiple sclerosis. Int. J. Mol. Sci. 21, 6117. https://doi.org/10.3390/ijms21176117 (2020).Article
Hnilicova,P。等人。目前用于无创评估多发性硬化症病理病因分子方面的磁共振方法。Int.J.Mol.Sci。216117年。https://doi.org/10.3390/ijms21176117(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ren, J. 31P-MRS of healthy human brain: revealing the hidden PME signals under phosphoethanolamine and phosphocholine resonances at 7T. medRxiv 21, 6117 (2022).
Ren,J。31P-MRS健康人脑:揭示在7T磷酸乙醇胺和磷酸胆碱共振下隐藏的PME信号。medRxiv 216117(2022)。
Google Scholar
谷歌学者
D’Rozario, A. L. et al. Brain bioenergetics during resting wakefulness are related to neurobehavioral deficits in severe obstructive sleep apnea: A 31P magnetic resonance spectroscopy study. Sleep. 41, zsy117. https://doi.org/10.1093/sleep/zsy117 (2018).Article
D'Rozario,A.L.等人。静息清醒期间的大脑生物能学与严重阻塞性睡眠呼吸暂停的神经行为缺陷有关:一项31P磁共振波谱研究。睡觉。41,zsy117。https://doi.org/10.1093/sleep/zsy117(2018年)。文章
Google Scholar
谷歌学者
From, A. H. & Ugurbil, K. Standard magnetic resonance-based measurements of the Pi–>ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles. Am. J. Physiol. Cell. Physiol. 301, C1-11. https://doi.org/10.1152/ajpcell.00345.2010 (2011).Article
From,A.H.&Ugurbil,K。基于Pi–>ATP速率的标准磁共振测量值不能指示心肌和骨骼肌中氧化磷酸化的速率。Am.J.Physiol。细胞。生理学。301,C1-11。https://doi.org/10.1152/ajpcell.00345.2010(2011年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rietzler, A. et al. Energy metabolism measured by 31P magnetic resonance spectroscopy in the healthy human brain. J. Neuroradiol. 49, 370–379. https://doi.org/10.1016/j.neurad.2021.11.006 (2022).Article
Rietzler,A。等人。通过31P磁共振波谱测量健康人脑中的能量代谢。J、 神经放射学。49370–379。https://doi.org/10.1016/j.neurad.2021.11.006(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Du, F. et al. Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn. Reson. Med. 57, 103–14. https://doi.org/10.1002/mrm.21107 (2007).Article
Du,F。等人。有效的体内31P磁化转移方法,用于无创测定人脑中ATP代谢的多个动力学参数和代谢通量。马格纳。雷森。医学57103-14。https://doi.org/10.1002/mrm.21107。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kolkovsky, A. L. L., 1H and 31P NMR Spectroscopy for the study of brain metabolism at Ultra High Magnetic Field from Rodents to Men. 2015, Université Paris Sud - Paris XI.Council, M. R., Aids to Examination of the Peripheral Nervous System, In Memorandum No. 45., L. Her Majesty’s Stationary Office, Editor.
Kolkovsky,A.L.L.,1H和31P NMR光谱用于研究从啮齿动物到男性的超高磁场下的大脑代谢。2015年,巴黎南大学-巴黎十一大学。《辅助检查周围神经系统》,第45号备忘录,英国女王陛下固定办公室,编辑。
1976, Her Majesty’s Stationary Office: London.Université catholique de Louvain & Hainaut, H. E. L. e. ACTIVLIM-NMD, A measure of Activity limitation for Neuromuscular disorders. (1990); Available from: https://www.rehab-scales.org/scale/activlim.Hajdúk, M. et al. NEUROPSY štandardizácia neuropsychologickej testovej batérie na dospelej slovenskej populácii (Univerzita Komenského v Bratislave, 2021)..
1976年,女王陛下文具办公室:伦敦。鲁汶和埃诺天主教大学,H.E.L.E.ACTIVLIM-NMD,神经肌肉疾病活动限制的测量方法。(1990);可从以下网址获得:https://www.rehab-scales.org/scale/activlim.Hajduk,M.等人。斯洛伐克成年人群神经心理测试组合的神经心理学标准化(布拉迪斯拉发科曼斯克大学,2021)。
Google Scholar
谷歌学者
den Dunnen, J. T. et al. HGVS recommendations for the description of sequence variants: 2016 Update. Hum Mutat. 37, 564–569. https://doi.org/10.1002/humu.22981 (2016).Article
den Dunnen,J.T.等人。HGVS关于序列变异描述的建议:2016年更新。。37564-569。https://doi.org/10.1002/humu.22981(2016年)。文章
CAS
中科院
Google Scholar
谷歌学者
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17, 405–24. https://doi.org/10.1038/gim.2015.30 (2015).Article .
Richards,S.等人,《序列变异解释的标准和指南:美国医学遗传学和基因组学学院与分子病理学协会的联合共识建议》。基因。医学17405-24。https://doi.org/10.1038/gim.2015.30(2015年)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, A. et al. Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts’ consensus recommendations. NMR Biomed. 34, e4484. https://doi.org/10.1002/nbm.4484 (2021).Article
Lin,A.等人。体内磁共振波谱(MRSinMRS)的最低报告标准:专家共识建议。NMR生物医学。34,e4484。https://doi.org/10.1002/nbm.4484(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peter, S. B. & Nandhan, V. R. 31Phosphorus magnetic resonance spectroscopy in evaluation of glioma and metastases in 3T MRI. Indian J. Radiol. Imaging. 31, 873–881. https://doi.org/10.1055/s-0041-1741090 (2021).Article
Peter,S.B.&Nandhan,V.R。31P磁共振波谱在3T MRI中评估胶质瘤和转移瘤。印度放射学杂志。成像。31873-881。https://doi.org/10.1055/s-0041-1741090(2021年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Galijasevic, M. et al. Phosphorous magnetic resonance spectroscopy and molecular markers in IDH1 wild type glioblastoma. Cancers (Basel). 13, 3569. https://doi.org/10.3390/cancers13143569 (2021).Article
Galijasevic,M.等。IDH1野生型胶质母细胞瘤的磷磁共振波谱和分子标记。癌症(巴塞尔)。133569页。https://doi.org/10.3390/cancers13143569(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Iotti, S. et al. In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm. NMR Biomed. 9, 24–32. https://doi.org/10.1002/(SICI)1099-1492(199602)9:1%3c24::AID-NBM392%3e3.0.CO;2-B (1996).Article
Iotti,S.等人。通过31P MRS对人脑中游离镁浓度的体内评估。基于数学算法的新校准曲线。NMR生物医学。。https://doi.org/10.1002/(SICI)1099-1492(199602)9:1%3c24::AID-NBM392%3e3.0.CO;2-B(1996年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Datta, D., blandr: a Bland-Altman Method Comparison package for R. Zenodo. (2017).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom J. 50, 346–63. https://doi.org/10.1002/bimj.200810425 (2008).Article
Datta,D.,blandr:R.Zenodo的Bland-Altman方法比较软件包。。Hothorn,T.,Bretz,F。&Westfall,P。一般参数模型中的同时推断。生物医学杂志50346-63。https://doi.org/10.1002/bimj.200810425(2008年)。文章
MathSciNet
MathSciNet
PubMed
PubMed
Google Scholar
谷歌学者
Ishwaran, H. & Kogalur, U. B., Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC), R package version 3.1.1. (2022).Lenth, R. V., emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.5. . (2022).Maechler, M. et al., robustbase: Basic Robust Statistics R package version 0.93–7.
Ishwaran,H.&Kogalur,U.B.,快速统一随机森林生存,回归和分类(RF-SRC),R包版本3.1.1。(2022年)。Lenth,R.V.,emmeans:估计边际均值,也称最小二乘均值。R包版本1.7.5。。Maechler,M.等人,robustbase:基本稳健统计R软件包版本0.93-7。
(2021).Pinheiro J et al., nlme: Linear and nonlinear mixed effects models. (2021). p. 1–152.Team, R. C. R: A language and environment for statistical computing. (2021); Available from: https://www.R-project.org/.Hnilicova, P. et al. Dysferlinopathy manifesting with volumetric asymmetry of the inferior lateral ventricles, altered 1H and 31P MR spectra and low [Mg2+] in the hippocampus, and motor and premotor cortex.
(2021年)。Pinheiro J等人,nlme:线性和非线性混合效应模型。(2021年)。p、 1-152.Team,R.C.R:统计计算的语言和环境。(2021年);可从以下地址获得:https://www.R-project.org/.Hnilicova,P。等人。Dysferlinopathy表现为下侧脑室的体积不对称,1H和31P MR光谱改变,海马以及运动和运动前皮层的[Mg2+]低。
Mendeley Data https://doi.org/10.17632/622xynmzr2.1 (2023).Article .
Mendeley Data https://doi.org/10.17632/622xynmzr2.1 (2023).Article .
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe extend our thanks to all study participants for their time, cooperation, and compliance, to Martin Marak (JFMED in Martin, Comenius University in Bratislava, Slovakia) for technical support, to Christian Terkanic (Central Army Hospital in Ruzomberok, Slovakia), Marek Chmelik (University of Presov, Slovakia), Tanja Werner (Protina Pharmazeutisches GmbH., Ismanning, Germany), and Jürgen Vormann (Institute for Prevention and Nutrition, Ismanning, Germany) for valuable comments and advice, to Protina Pharmazeutisches GmbH.
下载参考文献致谢我们感谢所有研究参与者的时间,合作和遵守,感谢Martin Marak(JFMED,Martin,Comenius University,Bratislava,Slovaka)的技术支持,感谢Christian Terkanic(Ruzomberok中央陆军医院,斯洛伐克),Marek Chmelik(斯洛伐克普雷索夫大学),Tanja Werner(Protina Pharmaceutisches GmbH.,Ismanning,Germany)和Jürgen Vormann(预防和营养研究所,Ismanning,Germany)的宝贵意见和建议,感谢Protina Pharmaceutisches GmbH。
(Ismanning, Germany) for providing our patients with Diasporal™ Extra 400, and to Dr. Theresa Jones for the language editing of our manuscript.FundingThis work was supported by the Slovak Research and Development Agency grant APVV-19–0222 to M.Ko. and mobility grant APVV-SK-AT-20–0010 to P.H., and Austrian Federal Ministry of Education, Science and Research (BMWFW) mobility grant WTZ Mobility SK11-2021 to I.J.Author informationAuthors and AffiliationsJessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, SlovakiaPetra Hnilicova, Marian Grendar, Alzbeta Trancikova Kralova, Jana Harsanyiova & Martin KolisekClinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, SlovakiaMonika Turcanova Koprusakova, Jan Grossmann & Egon KurcaDepartment of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, AustriaMartin Krssak & Wolfgang BognerDepartment of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austr.
(德国伊斯曼宁)为我们的患者提供Disaporal™Extra 400,并为特里萨·琼斯博士提供稿件的语言编辑。资助这项工作得到了斯洛伐克研究与发展机构向M.Ko提供的APVV-19-0222赠款的支持。和向P.H.授予APVV-SK-AT-20-0010的流动性补助金,以及奥地利联邦教育、科学和研究部(BMWFW)向I.J.授予WTZ流动性SK11-2021的流动性补助金。作者信息作者和附属机构马丁医学院,生物医学中心马丁,布拉迪斯拉发夸美纽斯大学,马拉霍拉4D,03601,马丁,斯洛伐克人Hnilicova,Marian Grendar,Alzbeta Trancikova Kralova,Jana Harsanyiova&Martin KolisekClinic神经病学,马丁杰森尤斯医学院,夸美纽斯大学布拉迪斯拉发,Kollarova 203601,Martin,SlovakiaMonika Turcanova Koprusakova,Jan Grossmann&Egon KurcaDepartment of Biomedical Imaging and Image Guided Therapy,High Field MR Center,维也纳医科大学,Waehringer Guertel 18-201090,维也纳,Australiamartin Krssak&Wolfgang Bogner维也纳医科大学内分泌与代谢系III,Waehringer Guertel 18-201090,维也纳,澳大利亚。
PubMed Google ScholarMarian GrendarView author publicationsYou can also search for this author in
PubMed谷歌学者GrendarView作者出版物您也可以在
PubMed Google ScholarMonika Turcanova KoprusakovaView author publicationsYou can also search for this author in
PubMed Google ScholarMonika Turcanova KoprusakovaView作者出版物您也可以在
PubMed Google ScholarAlzbeta Trancikova KralovaView author publicationsYou can also search for this author in
PubMed Google ScholarAlzbeta Trancikova KralovaView作者出版物您也可以在
PubMed Google ScholarJana HarsanyiovaView author publicationsYou can also search for this author in
PubMed Google ScholarJana Harsanyiovavavavavaview作者出版物您也可以在
PubMed Google ScholarMartin KrssakView author publicationsYou can also search for this author in
PubMed Google ScholarMartin KrssakView作者出版物您也可以在
PubMed Google ScholarIvica JustView author publicationsYou can also search for this author in
PubMed Google ScholarIvica JustView作者出版物您也可以在
PubMed Google ScholarNadezda MisovicovaView author publicationsYou can also search for this author in
PubMed Google ScholarNadezda MisovicovaView作者出版物您也可以在
PubMed Google ScholarMartina HikkelovaView author publicationsYou can also search for this author in
PubMed Google ScholarMartina HikkelovaView作者出版物您也可以在
PubMed Google ScholarJan GrossmannView author publicationsYou can also search for this author in
PubMed Google ScholarJan GrossmannView作者出版物您也可以在
PubMed Google ScholarPeter SpalekView author publicationsYou can also search for this author in
PubMed Google ScholarPeter SpalekView作者出版物您也可以在
PubMed Google ScholarIveta MeciarovaView author publicationsYou can also search for this author in
PubMed Google ScholarIveta MeciarovaView作者出版物您也可以在
PubMed Google ScholarEgon KurcaView author publicationsYou can also search for this author in
PubMed Google ScholarEgon KurcaView作者出版物您也可以在
PubMed Google ScholarNorbert ZilkaView author publicationsYou can also search for this author in
PubMed Google ScholarNorbert ZilkaView作者出版物您也可以在
PubMed Google ScholarKamil ZelenakView author publicationsYou can also search for this author in
PubMed Google ScholarKamil ZelenakView作者出版物您也可以在
PubMed Google ScholarWolfgang BognerView author publicationsYou can also search for this author in
PubMed Google ScholarWolfgang BognerView作者出版物您也可以在
PubMed Google ScholarMartin KolisekView author publicationsYou can also search for this author in
PubMed Google ScholarMartin KolisekView作者出版物您也可以在
PubMed Google ScholarContributionsStudy design and supervision: M.Ko.; Contribution to study design: P.H.; Patient recruitment and examination: M.T.K., M.Ko.; MR data acquisition: P.H.; MR data processing and curation: P.H., M.Kr., I.J., W.B.; MR Supervision: W.B.; Genetics: N.M., M.H.; Cognitive testing: J.G.; Confocal microscopy: A.T.K., J.H.; Histology: P.S., I.M.; Clinical advice and audit: E.K., K.Z., N.Z.; Statistics and machine learning: M.G.; Manuscript writing: M.Ko., P.H., M.G.; Contribution to manuscript writing: M.H., N.Z.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献研究设计与监督:M.Ko。;对研究设计的贡献:P.H。;患者招募和检查:M.T.K.,M.Ko。;MR数据采集:P.H。;。;MR监督:W.B。;遗传学:N.M.,M.H。;认知测试:J.G。;共聚焦显微镜:A.T.K.,J.H。;组织学:P.S.,I.M。;临床建议和审计:E.K.,K.Z.,N.Z。;统计学和机器学习:M.G。;手稿撰写:M.Ko。,P、 H.,M.G。;对稿件撰写的贡献:M.H.,N.Z。通讯作者通讯。
Martin Kolisek.Ethics declarations
马丁·科利塞克。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleHnilicova, P., Grendar, M., Turcanova Koprusakova, M. et al. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies.
转载和许可本文引用本文Hilicova,P.,Grendar,M.,Turcanova-Koprusakova,M。等人。三好肌病/铁蛋白异常患者的大脑表现出结构和代谢异常。
Sci Rep 14, 19267 (2024). https://doi.org/10.1038/s41598-024-69966-4Download citationReceived: 06 February 2024Accepted: 12 August 2024Published: 20 August 2024DOI: https://doi.org/10.1038/s41598-024-69966-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1419267(2024)。https://doi.org/10.1038/s41598-024-69966-4Download引文接收日期:2024年2月6日接受日期:2024年8月12日发布日期:2024年8月20日OI:https://doi.org/10.1038/s41598-024-69966-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsMiyoshi myopathy/dysferlinopathyDysferlinMagnetic resonanceInferior lateral ventriclesBrain volume asymmetryMagnesium
关键词Miyoshi肌病/dysferlinopathyDysferlinMagnetic resonanceInferior lateral ventriculsbrain volume不对称镁
Subjects
主题
BiomarkersMedical researchNeurodegenerationNeuroscienceSigns and symptomsTranslational research
生物标志物医学研究神经退行性疾病神经科学体征和症状替代研究
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。