商务合作
动脉网APP
可切换为仅中文
AbstractThe Insula functions as a multisensory relay involved in socio-emotional processing with projections to sensory, cognitive, emotional, and motivational regions. Notably, the interhemispheric projection from the Insula to the contralateral Insula is a robust yet underexplored connection. Using viral-based tracing neuroanatomy, ex vivo and in vivo electrophysiology, in vivo fiber photometry along with targeted circuit manipulation, we elucidated the nature and role of InsulaIns communication in social and anxiety processing in mice.
。值得注意的是,从脑岛到对侧脑岛的半球间投影是一个强大但尚未充分探索的连接。使用基于病毒的追踪神经解剖学,离体和体内电生理学,体内纤维光度测定以及靶向电路操作,我们阐明了胰岛素通讯在小鼠社交和焦虑处理中的性质和作用。
In this study, we 1) characterized the anatomical and molecular profile of the InsulaIns neurons, 2) demonstrated that stimulation of this neuronal subpopulation induces excitation in the Insula interhemispheric circuit, 3) revealed that InsulaIns neurons are essential for social discrimination after 24 h of isolation in male mice.
在这项研究中,我们1)表征了胰岛素神经元的解剖和分子特征,2)证明刺激该神经元亚群会诱导岛叶半球回路的兴奋,3)揭示了胰岛素神经元对于24小时后的社会歧视至关重要。雄性小鼠的隔离。
In conclusion, our findings highlight InsulaIns neurons as a distinct class of neurons within the insula and offer new insights into the neuronal mechanisms underlying social behavior..
总之,我们的研究结果强调了脑岛神经元是脑岛内一类独特的神经元,并为社会行为的神经元机制提供了新的见解。。
IntroductionThe Insular Cortex is classically described as an integrator of multimodal sensory signals coming from external cues (the environment) and internal cues (the body changes). For example, Insula responds to auditory or tactile cues1 and cardiac interoceptive signals2. Interacting with novel individuals is an experience that leads to the integration of signals from both interoceptive and exteroceptive sources.
引言岛叶皮层通常被描述为来自外部线索(环境)和内部线索(身体变化)的多模态感觉信号的集成商。例如,脑岛对听觉或触觉线索1和心脏感受信号2有反应。与新个体互动是一种体验,它可以整合来自感受内和感受外的信号。
Recently, it has been shown that some Insula cells respond to social interaction3. Interestingly these “social-on” cells solely represent a subset of Insula neurons that remained unexplored. In physiological situations, Insula neurons are engaged in social interaction and notably in social affective behaviors4,5,6,7,8,9.
最近,有研究表明,一些脑岛细胞对社交互动有反应3。有趣的是,这些“社交on”细胞仅代表了尚未探索的脑岛神经元的一个子集。在生理情况下,脑岛神经元参与社交互动,特别是社交情感行为4,5,6,7,8,9。
For example, it has been highlighted that Insula neurons projecting to the nucleus accumbens core regulate the social approach to stressed juvenile rats8. Autism spectrum Disorders (ASD) and Anxiety Disorders are pathologies with sensory integration defects that have been associated with dysfunction of the Insula1,10,11,12,13.
例如,有人强调,投射到伏隔核核心的脑岛神经元调节了应激幼年大鼠的社交方式8。自闭症谱系障碍(ASD)和焦虑症是具有感觉统合缺陷的病理,与胰岛功能障碍有关1,10,11,12,13。
An Insula maturation deficit was detected in a mouse model of ASD which is notably characterized by social interaction deficits, leading to an alteration in the integration of sensory information within the Insula1. Moreover, clinical studies show an Insula overactivation in anxious patients10,14. Altogether, these studies suggest that Insula is well-positioned to integrate and participate in regulating socio-emotional processing.
在ASD的小鼠模型中检测到脑岛成熟缺陷,其特征在于社交互动缺陷,导致脑岛内感觉信息整合的改变1。此外,临床研究显示焦虑患者的脑岛过度活化10,14。。
Indeed, the Insula shares multiple projections with sensory and interoceptive regions (sensory cortex, thalamus, olfactory bulb), with cognitive regions (medial prefrontal cortex, orbitofrontal cortex), emotional territories (amygdala, bed nucleus of the stria terminalis), and motivation-a.
事实上,脑岛与感觉和感受区域(感觉皮层,丘脑,嗅球),认知区域(内侧前额叶皮层,眶额皮层),情绪区域(杏仁核,纹状体终末床核)和动机-a共享多个投影。
Tissue preparation
组织准备
Mice were deeply anesthetized and perfused transcardially with a mixture of 3% paraformaldehyde (PFA) and 0.5% glutaraldehyde in 0.1 M phosphate buffer at pH 7.4. Brains were quickly removed, left overnight in 3% PFA at 4 °C. Coronal sections of the brain were cut on a vibrating microtome at 50 µm, collected in PBS, cryoprotected, freeze-thawed, and stored in PBS with 0.03% sodium azide until use..
将小鼠深度麻醉,并在pH 7.4的0.1M磷酸盐缓冲液中用3%多聚甲醛(PFA)和0.5%戊二醛的混合物经心脏灌注。迅速取出大脑,在4℃下在3%PFA中放置过夜。在50µm的振动切片机上切下大脑的冠状切片,收集在PBS中,冷冻保护,冻融,并保存在含0.03%叠氮化钠的PBS中直至使用。。
Immunogold experiments
免疫金实验
GFP was analyzed at electron microscopic level in Insula, Corpus Callosum, Anterior Commissure, dlBNST and CeA. GFP was detected by the preembedding immunogold technique, sections were incubated in 4% NGS for 45 min and then in a mixture of a rabbit anti-GFP (1/5000) antibody supplemented with 1% NGS overnight at RT.
在电子显微镜下分析了岛叶,call体,前连合,dlBNST和CeA中的GFP。通过预处理免疫金技术检测GFP,将切片在4%NGS中孵育45分钟,然后在补充有1%NGS的兔抗GFP(1/5000)抗体的混合物中于室温孵育过夜。
After washing, in PBS and PBS-BSAc (aurion, the Netherlands), the sections were incubated for 3 h at RT in Goat anti-rabbit IgG conjugated to ultrasmall gold particles (1.4 nm; nanoprobes) diluted 1/100 in PBS-BSAc- gel. The sections were washed and post-fixed in 1% glutaraldehyde in PBS for 10 min.
;纳米探针)在PBS-BSAc-凝胶中稀释1/100。将切片洗涤并在PBS中的1%戊二醛中后固定10分钟。
After washing in PBS and water distilled, the immunogold signal was intensified using a silver enhancement kit (HQ silver; Nanoprobes, Yaphank, NY) for 8 min at RT in the dark. After several washes in PBS, the sections were then processed for electron microscopy..
在PBS中洗涤并用水蒸馏后,使用银增强试剂盒(HQ silver;Nanoprobes,Yaphank,NY)在黑暗中于室温下增强免疫金信号8分钟。在PBS中洗涤几次后,然后将切片处理用于电子显微镜。。
The sections were post-fixed in 0.5% osmium tetroxide and dehydrated in ascending series of ethanol dilutions that also included 70% ethanol containing 1% uranyl acetate. The sections were post-fixed, dehydrated, and included in resin (Durcupan ACM; Fluka). Serial ultrathin sections were cut with a Reichert Ultracut S, contrasted with lead citrate and imaged in a transmission electron microscope (H7650, Hitachi) equipped with a 467 SC1000 Orius camera (Gatan)..
将切片后固定在0.5%四氧化锇中,并在一系列递增的乙醇稀释液中脱水,这些乙醇稀释液还包括含有1%乙酸铀酰的70%乙醇。将切片后固定,脱水并包含在树脂(Durcupan ACM;Fluka)中。用Reichert Ultracut S切割连续超薄切片,与柠檬酸铅对比,并在配备467 SC1000 Orius相机(Gatan)的透射电子显微镜(H7650,Hitachi)中成像。。
Ex vivo electrophysiologyAfter allowing at least 4 weeks for viral vector expression acute coronal brain slices containing the Insula were cut on a vibratome (VT1200S; Leica microsystems). Mice were deeply anaesthetized by i.p. injection of a mixture of ketamine-xylazine (100 mg/kg and 20 mg/Kg, respectively).
离体电生理学在允许病毒载体表达至少4周后,在振动刀(VT1200S;Leica microsystems)上切割含有岛叶的急性冠状脑切片。通过腹膜内注射氯胺酮-甲苯噻嗪(分别为100 mg/kg和20 mg/kg)的混合物对小鼠进行深度麻醉。
A thoracotomy followed by a transcardiac perfusion with a saturated (95%O2/5%CO2), iced-cold solution (cutting solution) containing 250 mM sucrose,10 mM MgSO4·7H2O, 2.5 mM KCl, 1.25 mM NaH2PO4·H2O, 0.5 mM CaCl2·H2O, 1.3 mM MgCl2, 26 mM NaHCO3, and 10 mM d-glucose (pH 7.4) was performed. The brain was then quickly removed from the skull, blocked in the coronal plan, glued on the stage of the vibratome, submerged in iced-cold, saturated cutting solution and cut in 300-µm thick sections.
开胸手术,然后用含有250 mM蔗糖,10 mM MgSO4·7H2O,2.5 mM KCl,1.25 mM NaH2PO4·H2O,0.5 mM CaCl2·H2O,1.3 mM MgCl2,26 mM NaHCO3和10 mM d-葡萄糖(pH 7.4)的饱和(95%O2/5%CO2),冰冷溶液(切割溶液)进行心脏灌注。然后将大脑迅速从颅骨中取出,在冠状平面图中阻塞,粘在振动刀的台上,浸入冰冷的饱和切割溶液中,切成300µm厚的切片。
Brain slices were transferred in a storage chamber at 34 °C for 1 h in an artificial cerebral spinal solution (referred as « recording ACSF ») saturated by bubbling 95%O2/5%CO2 and containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4·H2O, 2 mM CaCl2·H2O, 2 mM MgSO4·7H2O, 26 mM NaHCO3, and 10 mM D-glucose, supplemented with 5 mM glutathion and 1 mM sodium pyruvate (pH: 7.4; Osmolarity: 310-315 mOsm).
将脑切片在人工脑脊髓溶液(称为“记录ACSF”)中于34°C的储存室中转移1小时,该溶液通过鼓泡95%O2/5%CO2饱和,并含有126 mM NaCl,2.5 mM KCl,1.25 mM NaH2PO4·H2O,2 mM CaCl2·H2O,2 mM MgSO4·7H2O,26 mM NaHCO3和10 mM D-葡萄糖,并补充5 1mM谷胱甘肽和1mM丙酮酸钠(pH:7.4;渗透压:310-315 mOsm)。
They were then maintained at room temperature in the same solution until recording.Whole-cell patch-clamp recordings were performed in a submerged chamber under an upright microscope (AxioExaminer Z1; Zeiss) equipped with IR-DIC illumination. Slices were bathed in recording solution. Recording pipettes (5–7 MΩ) were prepared from borosilicate glass capillaries (GC150F-10; Harvard Apparatus) with a horizontal puller (Sutter Instrument, Model P-97).
然后将它们在室温下保持在相同的溶液中直至记录。全细胞膜片钳记录是在配备IR-DIC照明的立式显微镜(AxioExaminer Z1;Zeiss)下的浸没室中进行的。将切片浸入记录溶液中。使用水平拉拔器(Sutter Instrument,型号P-97)从硼硅酸盐玻璃毛细管(GC150F-10;哈佛仪器)制备记录移液管(5–7 MΩ)。
They were filled an internal solution composed of 135 mM K-gluconate, 3.8 mM NaCl, 1 mM MgCl2·6H2O,10 mM HEPES, 0.1 mM Na4EGTA, 0.4 mM Na2GTP, 2.
它们填充由135 mM葡萄糖酸钾,3.8 mM NaCl,1 mM MgCl2·6H2O,10 mM HEPES,0.1 mM Na4EGTA,0.4 mM Na2GTP,2组成的内部溶液。
(1)
(1)
Low-frequency fluctuations and signal drift were removed using the adaptive iteratively reweighted Penalized Least Squares (airPLS) algorithm () on the 405 nm control signal and 470 nm calcium-dependent signal.
使用自适应迭代加权惩罚最小二乘(airPLS)算法()对405 nm控制信号和470 nm钙依赖信号去除低频波动和信号漂移。
(2)
(2)
Each signal was standardized (z-scored). \({z\; signal}=\frac{{signal}-{mean}({signal})}{{std}({signal})}\)
每个信号都被标准化(z评分)\({z;信号}=\frac{{signal}-{均值}({信号})}{{标准}({信号})}\)
(3)
(3)
A least-squares linear fit was applied to the 405 nm control signal and fitted to the 470 nm signal over the whole behavioral recording. This signal was then subtracted from the z-scored 470 nm signal:
将最小二乘线性拟合应用于405 nm控制信号,并在整个行为记录中拟合到470 nm信号。然后从z得分的470nm信号中减去该信号:
$$z\varDelta F/F=[z470{nm\; signal}-{fitted}(z405{nm})]$$To determine the average activity within the regions of interest (ROI), we averaged the z-scored trace when the animals for each frame within the ROI (global signal). The last five minutes of habituation and first five minutes in the behavioral apparatus was used.Peaks were detected if above 1.96 on the z-scored trace with a minimum distance between peaks of 500 ms and duration of 150 ms.
$$z \ varDelta F/F=[z470{nm;信号}-{拟合}(z405{nm})]$$为了确定感兴趣区域(ROI)内的平均活动,我们对ROI(全局信号)内每帧动物的z得分轨迹进行平均。习惯化的最后五分钟和行为装置的前五分钟被使用。如果在z评分迹线上高于1.96,则检测到峰,峰之间的最小距离为500 ms,持续时间为150 ms。
The start and end of the peak were calculated based on when the signal crossed 2*Median Absolute Deviation (MAD). The Area Under the Curve (AUC) was calculated between those two points using the trapezoidal rule. The width was calculated as the time between those two points. The height corresponds to the z-score value at peak detection.We performed an alternated analysis to compute and compare the z-scored trace as described in refs.
峰值的开始和结束是根据信号越过2*中值绝对偏差(MAD)的时间计算的。使用梯形法则计算这两点之间的曲线下面积(AUC)。宽度计算为这两点之间的时间。高度对应于峰值检测时的z分数值。我们进行了交替分析,以计算和比较参考文献中所述的z得分迹线。
60,61 ref. The fractional ΔF/F, a least-squares linear fit was applied to the 405 nm control signal and fitted to the 473 nm signal over the whole behavioral recording (ΔF/F = ([473 nm signal − 405 nm fitted]/405 nm fitted). The ΔF/F were then z-scored over the entire behavioral session.Data analysisFor in vivo electrophysiological experiments, cumulative PSTHs of insula activity were generated during stimulation of the contralateral insula.
60,61参考文献。将分数ΔF/F,最小二乘线性拟合应用于405 nm控制信号,并在整个行为记录中拟合到473 nm信号(ΔF/F)=([473 nm信号-405 nm拟合]/405 nm拟合)。然后在整个行为过程中对ΔF/F进行z评分。数据分析对于体内电生理实验,在刺激对侧岛叶期间产生岛叶活性的累积PSTH。
Excitatory magnitudes were normalized for different levels of baseline impulse activity. Baseline activity was calculated on each PSTH, during the 500 ms preceding the stimulation to generate a Z-score for each responding neuron. What is referred to as a “no response cell” is a neuron that does not emit an action potential in response to stimulation of the insula, specifically within the time window ranging from 0 to 25 ms after stimulation.
对于不同水平的基线冲动活动,兴奋程度被标准化。在刺激之前的500毫秒内,在每个PSTH上计算基线活动,以产生每个响应神经元的Z分数。所谓的“无反应细胞”是一种神经元,它不响应脑岛的刺激而发出动作电位,特别是在刺激后0至25ms的时间窗口内。
Baseline activity w.
基线活动w。
Data availability
数据可用性
None Source data are provided with this paper.
本文没有提供任何源数据。
ReferencesGogolla, N., Takesian, A. E., Feng, G., Fagiolini, M. & Hensch, T. K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 83, 894–905 (2014).CAS
参考文献Gogolla,N.,Takesian,A.E.,Feng,G.,Fagiolini,M。&Hensch,T.K。小鼠岛叶皮层的感觉统合反映了GABA回路的成熟。神经元83894-905(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salomon, R. et al. The insula mediates access to awareness of visual stimuli presented synchronously to the heartbeat. J. Neurosci. 36, 5115–5127 (2016).CAS
Salomon,R。等人。脑岛介导对与心跳同步呈现的视觉刺激的感知。J、 神经科学。365115-5127(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miura, I. et al. Encoding of social exploration by neural ensembles in the insular cortex. PLoS Biol. 18, e3000584 (2020).CAS
Miura,I.等人。通过岛叶皮层中的神经集合编码社会探索。《公共科学图书馆·生物学》。18,e3000584(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bird, C. W. et al. Ifenprodil infusion in agranular insular cortex alters social behavior and vocalizations in rats exposed to moderate levels of ethanol during prenatal development. Behav. Brain Res. 320, 1–11 (2017).CAS
Bird,C.W.等人。在产前发育过程中,在无颗粒岛叶皮层中输注艾芬地尔会改变暴露于中等水平乙醇的大鼠的社交行为和发声。行为。Brain Res.320,1-11(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cavalcante, L. E. S. et al. Modulation of the storage of social recognition memory by neurotransmitter systems in the insular cortex. Behav. Brain Res. 334, 129–134 (2017).CAS
Cavalcante,L.E.S.等人。通过岛叶皮层中的神经递质系统调节社交识别记忆的储存。行为。Brain Res.334129-134(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ramos-Prats, A. et al. VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell Rep. 39, 110893 (2022).CAS
Ramos-Prats,A。等人。前岛叶皮层中表达VIP的中间神经元有助于感觉加工以调节适应行为。Cell Rep.39110893(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rieger, N. S. et al. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior. Neuropsychopharmacology 47, 1156–1168 (2022).CAS
岛叶皮质促肾上腺皮质激素释放因子将压力信号与社会情感行为相结合。神经精神药理学471156-1168(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rogers-Carter, M. M., Djerdjaj, A., Gribbons, K. B., Varela, J. A. & Christianson, J. P. Insular cortex projections to nucleus accumbens core mediate social approach to stressed juvenile rats. J. Neurosci. 39, 8717–8729 (2019).PubMed
罗杰斯·卡特(Rogers Carter,M.M.),杰德贾杰(Djerdjaj),格里伯恩斯(Gribbons),K.B。,瓦雷拉(Varela),J.A。和克里斯蒂安森(Christianson),J.P。伏隔核核心的岛状皮层投射介导了应激幼年大鼠的社交方式。J、 神经科学。398717-8729(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rogers-Carter, M. M. & Christianson, J. P. An insular view of the social decision-making network. Neurosci. Biobehav. Rev. 103, 119–132 (2019).PubMed
罗杰斯·卡特(Rogers Carter,M.M.)和克里斯蒂安森(Christianson,J.P.)《社会决策网络的狭隘观点》。神经科学。生物行为。修订版103119-132(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alvarez, R. P. et al. Increased anterior insula activity in anxious individuals is linked to diminished perceived control. Transl. Psychiatry 5, e591–e591 (2015).CAS
。翻译。精神病学5,e591–e591(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Terasawa, Y., Shibata, M., Moriguchi, Y. & Umeda, S. Anterior insular cortex mediates bodily sensibility and social anxiety. Soc. Cogn. Affect Neurosci. 8, 259–266 (2013).PubMed
Terasawa,Y.,Shibata,M.,Moriguchi,Y。&Umeda,S。前岛叶皮层介导身体敏感性和社交焦虑。社会认知。影响神经科学。8259-266(2013)。PubMed出版社
Google Scholar
谷歌学者
Odriozola, P. et al. Insula response and connectivity during social and non-social attention in children with autism. Soc. Cogn. Affect Neurosci. 11, 433–444 (2016).PubMed
。社会认知。影响神经科学。11433-444(2016)。PubMed出版社
Google Scholar
谷歌学者
Uddin, L. Q. & Menon, V. The anterior insula in autism: Under-connected and under-examined. Neurosci. Biobehav. Rev. 33, 1198–1203 (2009).PubMed
Uddin,L。Q。&Menon,V。自闭症的前脑岛:连接不足和检查不足。神经科学。生物行为。版本331198-1203(2009)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).PubMed
Etkin,A.,Prater,K.E.,Schatzberg,A.F.,Menon,V。&Greicius,M.D。破坏了杏仁核次区域的功能连接,并证明了广泛性焦虑症的代偿网络。拱门。。PubMed出版社
Google Scholar
谷歌学者
Gogolla, N. The insular cortex. Curr. Biol. 27, R580–R586 (2017).CAS
Gogolla,N。岛叶皮层。货币。生物学杂志27,R580–R586(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Z. & Oppenheimer, S. M. Electrophysiological evidence for reciprocal insulo-insular connectivity of baroreceptor-related neurons. Brain Res. 863, 25–41 (2000).CAS
Zhang,Z.&Oppenheimer,S.M。压力感受器相关神经元相互岛-岛连接的电生理证据。Brain Res.863,25-41(2000)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yao, S., Becker, B. & Kendrick, K. M. Reduced inter-hemispheric resting state functional connectivity and its association with social deficits in autism. Front. Psychiatry 12, 629870 (2021).PubMed
Yao,S.,Becker,B。&Kendrick,K.M。减少了半球间静息状态功能连接及其与自闭症社会缺陷的关系。正面。精神病学12629870(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anderson, J. S. et al. Decreased interhemispheric functional connectivity in autism. Cereb. Cortex 21, 1134–1146 (2011).PubMed
Anderson,J.S.等人降低了自闭症的半球间功能连接。塞雷布。皮质211134-1146(2011)。PubMed出版社
Google Scholar
谷歌学者
Linke, A. C., Jao Keehn, R. J., Pueschel, E. B., Fishman, I. & Müller, R.-A. Children with ASD show links between aberrant sound processing, social symptoms, and atypical auditory interhemispheric and thalamocortical functional connectivity. Dev. Cogn. Neurosci. 29, 117–126 (2018).PubMed .
Linke,A.C.,Jao Keehn,R.J.,Pueschel,E.B.,Fishman,I.&Müller,R.-A。患有ASD的儿童表现出异常的声音处理,社会症状以及非典型的听觉半球间和丘脑皮层功能连接之间的联系。开发认知。神经科学。。PubMed。
Google Scholar
谷歌学者
Bocchi, R. et al. Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat. Commun. 8, 1158 (2017).ADS
Bocchi,R。等人。受干扰的Wnt信号传导导致神经元迁移延迟,半球间连接改变和社交行为受损。国家公社。81158(2017)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Compton, R. J. et al. Trouble crossing the bridge: altered interhemispheric communication of emotional images in anxiety. Emotion 8, 684–692 (2008).PubMed
康普顿(Compton,R.J.)等人,《过桥的困难:焦虑中情绪图像的半球间交流发生了改变》。情绪8684-692(2008)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suárez, R. et al. A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum. Proc. Natl Acad. Sci. USA 115, 9622–9627 (2018).ADS
Suárez,R。等人。大脑半球间连接的泛哺乳动物图谱早于call体的进化。程序。国家科学院。科学。美国1159622-9627(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Takeuchi, N., Oouchida, Y. & Izumi, S.-I. Motor control and neural plasticity through interhemispheric interactions. Neural Plast. 2012, 823285 (2012).PubMed
Takeuchi,N.,Oouchida,Y。&Izumi,S.-I。通过半球间相互作用的运动控制和神经可塑性。神经质体。2012823285(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Domínguez-Iturza, N. et al. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat. Commun. 10, 3454 (2019).ADS
Domínguez-Iturza,N。等人。自闭症和精神分裂症相关蛋白CYFIP1调节双侧大脑连接和行为。国家公社。103454(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Harb, K. et al. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. Elife 5, e09531 (2016).PubMed
Harb,K。等人。不同投射神经元亚类的区域特异性发育受出生后表观遗传修饰的调节。。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schiff, H. C. et al. An insula-central amygdala circuit for guiding tastant-reinforced choice behavior. J. Neurosci. 38, 1418–1429 (2018).CAS
Schiff,H.C.等人。一种用于指导味觉强化选择行为的脑岛中央杏仁核回路。J、 神经科学。381418-1429(2018)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ponserre, M., Peters, C., Fermani, F., Conzelmann, K.-K. & Klein, R. The insula cortex contacts distinct output streams of the central amygdala. J. Neurosci. 40, 8870–8882 (2020).CAS
Ponserre,M.,Peters,C.,Fermani,F.,Conzelmann,K.-K.&Klein,R。脑岛皮层接触中央杏仁核的不同输出流。J、 神经科学。408870-8882(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang-Molina, C., Schmit, M. B. & Cai, H. Neural circuit mechanism underlying the feeding controlled by insula-central amygdala pathway. iScience 23,101033 (2020).ADS
Zhang Molina,C.,Schmit,M.B。&Cai,H。神经回路机制是由脑岛中央杏仁核通路控制的进食的基础。iScience 23101033(2020)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luchsinger, J. R. et al. Delineation of an insula-BNST circuit engaged by struggling behavior that regulates avoidance in mice. Nat. Commun. 12, 3561 (2021).ADS
Luchsinger,J.R.等人描述了一个脑岛BNST回路,该回路由调节小鼠回避行为的挣扎行为所参与。国家公社。123561(2021)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bastide, M. F. et al. Involvement of the bed nucleus of the stria terminalis in L-Dopa induced dyskinesia. Sci. Rep. 7, 2348 (2017).ADS
Bastide,M.F.等人。终纹床核参与左旋多巴诱导的运动障碍。科学。代表72348(2017)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Geffen, G. M., Jones, D. L. & Geffen, L. B. Interhemispheric control of manual motor activity. Behav. Brain Res. 64, 131–140 (1994).CAS
Geffen,G.M.,Jones,D.L。和Geffen,L.B。手动运动活动的半球间控制。行为。Brain Res.64131–140(1994)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bloom, J. S. & Hynd, G. W. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol. Rev. 15, 59–71 (2005).PubMed
Bloom,J.S.&Hynd,G.W。胼胝体在半球间信息传递中的作用:兴奋还是抑制?神经心理学。第15版,59-71(2005)。PubMed出版社
Google Scholar
谷歌学者
van der Knaap, L. J. & van der Ham, I. J. M. How does the corpus callosum mediate interhemispheric transfer? A review. Behav. Brain Res. 223, 211–221 (2011).PubMed
van der Knaap,L.J。和van der Ham,I.J.M。胼胝体如何介导半球间转移?回顾。行为。Brain Res.223211–221(2011)。PubMed出版社
Google Scholar
谷歌学者
Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016).CAS
马修斯(Matthews,G.A.)等人,中缝背侧多巴胺神经元代表了社会隔离的经历。细胞164617-631(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Conrad, K. L., Louderback, K. M., Gessner, C. P. & Winder, D. G. Stress-induced alterations in anxiety-like behavior and adaptations in plasticity in the bed nucleus of the stria terminalis. Physiol. Behav. 104, 248–256 (2011).CAS
Conrad,K.L.,Louderback,K.M.,Gessner,C.P。&Winder,D.G。压力引起的焦虑样行为的改变和终纹床核可塑性的适应。生理学。行为。104248–256(2011)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Somerville, L. H., Whalen, P. J. & Kelley, W. M. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol. Psychiatry 68, 416–424 (2010).PubMed
Somerville,L.H.,Whalen,P.J。&Kelley,W.M。人类终纹床核指数高毒菌威胁监测。Biol。精神病学68416-424(2010)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mobbs, D. et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl Acad. Sci. USA 107, 20582–20586 (2010).ADS
Mobbs,D.等人。与监测狼蛛振荡威胁值相关的神经活动。程序。国家科学院。科学。美国10720582–20586(2010)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gehrlach, D. A. et al. Aversive state processing in the posterior insular cortex. Nat. Neurosci. 22, 1424–1437 (2019).CAS
Gehrlach,D.A。等人。后岛叶皮层的厌恶状态处理。自然神经科学。221424-1437(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Méndez-Ruette, M. et al. The role of the rodent insula in anxiety. Front. Physiol. 10, 330 (2019).PubMed
Méndez-Ruette,M.等人。啮齿动物脑岛在焦虑中的作用。正面。生理学。10330(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, T., Feng, S., Wei, M. & Zhou, W. Role of the anterior agranular insular cortex in the modulation of fear and anxiety. Brain Res. Bull. 155, 174–183 (2020).CAS
Shi,T.,Feng,S.,Wei,M。&Zhou,W。前无颗粒岛叶皮层在调节恐惧和焦虑中的作用。Brain Res.公牛。155174-183(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gehrlach, D. A. et al. A whole-brain connectivity map of mouse insular cortex. eLife 9, e55585 (2020).CAS
Gehrlach,D.A。等人。小鼠岛叶皮层的全脑连接图。eLife 9,e55585(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wolman, D. The split brain: a tale of two halves. Nature 483, 260 (2012).ADS
《分裂的大脑:两半的故事》。自然483260(2012)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ortigue, S., King, D., Gazzaniga, M., Miller, M. & Grafton, S. Right hemisphere dominance for understanding the intentions of others: evidence from a split-brain patient. Case Rep. 2009, bcr0720080593 (2009).
Ortigue,S.,King,D.,Gazzaniga,M.,Miller,M。&Grafton,S。右半球在理解他人意图方面的优势:来自大脑分裂患者的证据。案例报告2009,bcr0720080593(2009)。
Google Scholar
谷歌学者
Beaulé, V., Tremblay, S. & Théoret, H. Interhemispheric control of unilateral movement. Neural Plast. 2012, 627816 (2012).PubMed
Beaulé,V.,Tremblay,S。&Théoret,H。半球间单侧运动的控制。神经质体。2012627816(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stark, D. E. et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J. Neurosci. 28, 13754–13764 (2008).CAS
Stark,D.E.等人。内在血流动力学波动的半球间协调的区域变化。J、 神经科学。2813754-13764(2008)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Call, C. L. & Bergles, D. E. Cortical neurons exhibit diverse myelination patterns that scale between mouse brain regions and regenerate after demyelination. Nat. Commun. 12, 4767 (2021).ADS
Call,C.L。&Bergles,D.E。皮质神经元表现出不同的髓鞘形成模式,这些模式在小鼠大脑区域之间缩放并在脱髓鞘后再生。国家公社。124767(2021)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grady, F., Peltekian, L., Iverson, G. & Geerling, J. C. Direct parabrachial–cortical connectivity. Cereb. Cortex 30, 4811–4833 (2020).PubMed
Grady,F.,Peltekian,L.,Iverson,G。&Geerling,J.C。直接臂旁-皮质连接。塞雷布。皮质304811-4833(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qian, K., Liu, J., Cao, Y., Yang, J. & Qiu, S. Intraperitoneal injection of lithium chloride induces lateralized activation of the insular cortex in adult mice. Mol. Brain 14, 71 (2021).CAS
Qian,K.,Liu,J.,Cao,Y.,Yang,J。&Qiu,S。腹腔注射氯化锂诱导成年小鼠岛叶皮层的侧向激活。分子大脑14,71(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Y. et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat. Commun. 11, 640 (2020).ADS
Wu,Y。等人。前岛叶皮层单侧控制进食以响应小鼠的厌恶内脏刺激。国家公社。11640(2020)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kayyal, H. et al. Insula to mPFC reciprocal connectivity differentially underlies novel taste neophobic response and learning in mice. eLife 10, e66686 (2021).CAS
Kayyal,H。等人。脑岛与mPFC的相互连接是小鼠新的味觉恐惧反应和学习的差异基础。eLife 10,e66686(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kayyal, H. et al. Activity of insula to basolateral amygdala projecting neurons is necessary and sufficient for taste valence representation. J. Neurosci. 39, 9369–9382 (2019).PubMed
Kayyal,H。等人。脑岛对基底外侧杏仁核投射神经元的活动对于味觉价表征是必要和充分的。J、 神经科学。399369-9382(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ju, A., Fernandez-Arroyo, B., Wu, Y., Jacky, D. & Beyeler, A. Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex. Mol. Brain 13, 99 (2020).CAS
Ju,A.,Fernandez-Arroyo,B.,Wu,Y.,Jacky,D。&Beyeler,A。血清素1A和2A受体在小鼠岛叶皮层的分子和投射定义神经元中的表达。分子大脑13,99(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Glangetas, C. et al. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nat. Commun. 8, 14456 (2017).ADS
Glangetas,C。等人。终纹床核中NMDA受体依赖性可塑性触发长期抗焦虑。国家公社。814456(2017)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Glangetas, C. et al. Ventral subiculum stimulation promotes persistent hyperactivity of dopamine neurons and facilitates behavioral effects of cocaine. Cell Rep. 13, 2287–2296 (2015).CAS
Glangetas,C。等人。腹侧下托刺激促进多巴胺神经元的持续过度活跃,并促进可卡因的行为效应。Cell Rep.132287–2296(2015)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Georges, F. & Aston-Jones, G. Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J. Neurosci. 22, 5173–5187 (2002).CAS
Georges,F。&Aston-Jones,G。终纹床核激活腹侧被盖区细胞:中脑多巴胺神经元的新型兴奋性氨基酸输入。J、 神经科学。225173-5187(2002)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tannous, S., Darlot, F., Cador, M. & Caille, S. Flavor additives facilitate oral self-administration of nicotine solution in mice. Psychopharmacology 238, 2235–2247 (2021).CAS
Tannous,S.,Darlot,F.,Cador,M。&Caille,S。风味添加剂有助于小鼠口服尼古丁溶液。精神药理学2382235-2247(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).CAS
Mathis,A。等人。DeepLabCut:通过深度学习对用户定义的身体部位进行无标记姿势估计。自然神经科学。211281-1289(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).ADS
Nath,T.等人使用DeepLabCut进行跨物种和行为的3D无标记姿势估计。自然协议。142152-2176(2019)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martianova, E., Aronson, S. & Proulx, C. D. Multi-fiber photometry to record neural activity in freely-moving animals. J. Vis. Exp. https://doi.org/10.3791/60278 (2019)Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).CAS .
Martianova,E.,Aronson,S。&Proulx,C.D。多纤维光度法记录自由活动动物的神经活动。J、 可见。实验。https://doi.org/10.3791/60278(2019)Lerner,T.N.等人。完整的大脑分析揭示了SNc多巴胺亚电路携带的不同信息。细胞162635-647(2015)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morel, C. et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nat. Commun. 13, 1532 (2022).ADS
Morel,C.等人。中脑向基底外侧杏仁核的投射编码类似焦虑的行为,但不编码类似抑郁的行为。国家公社。。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).ADS
Bankhead,P。等。QuPath:用于数字病理图像分析的开源软件。科学。代表716878(2017)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsC.G. is supported by the Foundation for Medical Research: ARF20170938746. This work was supported by recurrent funding from the University of Bordeaux and the CNRS. This study also received financial support from the French government in the framework of the University of Bordeaux’s IdEx “Investments for the Future” program / GPR BRAIN_2030.
。G、 由医学研究基金会支持:ARF20170938746。这项工作得到了波尔多大学和CNRS的经常性资助。这项研究还得到了法国政府在波尔多大学IdEx“未来投资”计划/GPR BRAIN\u 2030框架内的财政支持。
The microscopy was done in the Bordeaux Imaging Center a service unit of the CNRS-INSERM and Bordeaux University, member of the national infrastructure France BioImaging supported by the French National Research Agency (ANR-10-INBS-04). The help of Sebastien Marais is acknowledged.Author informationAuthors and AffiliationsUniv.
显微镜检查是在波尔多成像中心完成的,波尔多成像中心是CNRS-INSERM和波尔多大学的服务单位,是法国国家研究机构(ANR-10-INBS-04)支持的国家基础设施法国生物成像的成员。塞巴斯蒂安·马拉斯的帮助得到了认可。作者信息作者和附属机构IV。
Bordeaux, CNRS, IMN, Bordeaux, FranceChristelle Glangetas, Adriane Guillaumin, Elodie Ladevèze, Anaelle Braine, Manon Gauthier, Léa Bonamy, Evelyne Doudnikoff, Thibault Dhellemmes, Marc Landry, Erwan Bézard, Anne Taupignon, Jérôme Baufreton & François GeorgesUniv. Poitiers, Inserm, LNEC, Poitiers, FranceManon GauthierUniv.
波尔多、CNRS、IMN、波尔多、弗朗西斯·克里斯特尔·格兰盖塔斯、阿德里安·纪尧敏、埃洛迪·拉德维泽、阿内尔·布雷恩、马农·高蒂尔、莱娅·博纳米、伊芙琳·杜德尼科夫、蒂堡·德赫勒姆斯、马克·兰德里、埃尔万·贝扎德、安妮·陶皮农、杰罗姆·鲍弗雷顿和弗朗索瓦·乔治索尼夫。普瓦捷、Inserm、LNEC、普瓦捷、弗朗西曼农·高蒂耶鲁尼夫。
Bordeaux, CNRS, INCIA, Bordeaux, FranceStephanie CailleAuthorsChristelle GlangetasView author publicationsYou can also search for this author in.
波尔多,CNRS,INCIA,波尔多,FrancestephanieCailleAuthorsChristelleGlangetasView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarAdriane GuillauminView author publicationsYou can also search for this author in
PubMed谷歌ScholaradrianeGuillauminView作者出版物您也可以在
PubMed Google ScholarElodie LadevèzeView author publicationsYou can also search for this author in
PubMed Google ScholarElodie LadevèzeView作者出版物您也可以在
PubMed Google ScholarAnaelle BraineView author publicationsYou can also search for this author in
PubMed Google ScholarAnaelle BraineView作者出版物您也可以在
PubMed Google ScholarManon GauthierView author publicationsYou can also search for this author in
PubMed Google ScholarManon GauthierView作者出版物您也可以在
PubMed Google ScholarLéa BonamyView author publicationsYou can also search for this author in
PubMed Google ScholarLéa BonamyView作者出版物您也可以在
PubMed Google ScholarEvelyne DoudnikoffView author publicationsYou can also search for this author in
PubMed Google ScholarEvelyne Doudnikoffiew作者出版物您也可以在
PubMed Google ScholarThibault DhellemmesView author publicationsYou can also search for this author in
PubMed Google ScholarThibault DhellemmesView作者出版物您也可以在
PubMed Google ScholarMarc LandryView author publicationsYou can also search for this author in
PubMed Google ScholarMarc LandryView作者出版物您也可以在
PubMed Google ScholarErwan BézardView author publicationsYou can also search for this author in
PubMed Google ScholarErwan BézardView作者出版物您也可以在
PubMed Google ScholarStephanie CailleView author publicationsYou can also search for this author in
PubMed Google ScholarStephanie CailleView作者出版物您也可以在
PubMed Google ScholarAnne TaupignonView author publicationsYou can also search for this author in
PubMed Google ScholarAnne Taupignoview作者出版物您也可以在
PubMed Google ScholarJérôme BaufretonView author publicationsYou can also search for this author in
PubMed Google ScholarJérôme BaufretonView作者出版物您也可以在
PubMed Google ScholarFrançois GeorgesView author publicationsYou can also search for this author in
PubMed Google ScholarFrançois GeorgesView作者出版物您也可以在
PubMed Google ScholarContributionsC.G. and F.G. conceived and designed the experiments. C.G. performed and analyzed the anatomical study with the participation of E.L., M.G., T.D., M.L., E.D., and E.B. performed the data with electron microscopy. C.G. and A.G. performed and analyzed the in vivo electrophysiology in anesthetized mice.
PubMed谷歌学术贡献中心。G、 F.G.构思并设计了实验。C、 G.在E.L.,M.G.,T.D.,M.L.,E.D.和E.B.的参与下进行并分析了解剖学研究。用电子显微镜进行了数据。C、 G.和A.G.在麻醉小鼠中进行并分析了体内电生理学。
L.B., A.T., and J.B. designed, performed, and analyzed the ex vivo electrophysiological experiments. C.G. and A.G. performed and analyzed the behavioral study. S.C. tested and analyzed the motivation for sweet food in mice. A.B. performed the fiber photometry experiment and A.B. and C.G. analyzed it.
五十、 B.,A.T。和J.B.设计,执行和分析了离体电生理实验。C、 G.和A.G.进行并分析了行为研究。S、 C.测试并分析了小鼠吃甜食的动机。A、 B.进行了纤维光度测定实验,A.B.和C.G.进行了分析。
C.G. and F.G. wrote the manuscript and C.G. prepared the figures.Corresponding authorsCorrespondence to.
C、 G.和F.G.写了手稿,C.G.准备了数字。通讯作者通讯。
Christelle Glangetas or François Georges.Ethics declarations
Christelle Glangetas或François Georges。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Nadine Gogolla, Francesco Papaleo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢Nadine Gogolla、Francesco Papaleo和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions
。补充信息补充信息同行评审文件报告摘要源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleGlangetas, C., Guillaumin, A., Ladevèze, E. et al. A population of Insula neurons encodes for social preference only after acute social isolation in mice.
转载和许可本文引用本文Glangetas,C.,Guillaumin,A.,Ladevèze,E。等人。只有在小鼠急性社会隔离后,脑岛神经元群体才编码社会偏好。
Nat Commun 15, 7142 (2024). https://doi.org/10.1038/s41467-024-51389-4Download citationReceived: 20 December 2022Accepted: 05 August 2024Published: 21 August 2024DOI: https://doi.org/10.1038/s41467-024-51389-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》157142(2024)。https://doi.org/10.1038/s41467-024-51389-4Download引文接收日期:2022年12月20日接收日期:2024年8月5日发布日期:2024年8月21日OI:https://doi.org/10.1038/s41467-024-51389-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。