EN
登录

成纤维细胞生长因子2通过抑制PI3K/AKT通路促进根尖乳头干细胞的骨/牙源性分化

Fibroblast growth factor 2 promotes osteo/odontogenic differentiation in stem cells from the apical papilla by inhibiting PI3K/AKT pathway

Nature 等信源发布 2024-08-21 14:45

可切换为仅中文


AbstractFibroblast growth factor 2 (FGF2) is a crucial factor in odontoblast differentiation and dentin matrix deposition, which facilitates pulpodentin repair and regeneration. Nevertheless, the specific biological function of FGF2 in odontoblastic differentiation remains unclear because it is controlled by complex signalling pathways.

摘要成纤维细胞生长因子2(FGF2)是成牙本质细胞分化和牙本质基质沉积的关键因素,有助于牙髓修复和再生。。

This study aimed to investigate the mechanism underlying the effect of FGF2 on osteo/odontogenic differentiation of stem cells from the apical papilla (SCAP). SCAP were pretreated with conditioned media containing FGF2 for 1 week, followed by culturing in induced differentiation medium for another week.

。用含有FGF2的条件培养基预处理SCAP 1周,然后在诱导分化培养基中再培养一周。

RNA sequencing (RNA-seq) combined with quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to evaluate the pathways affected by FGF2 in SCAP. Osteo/odontogenic differentiation of SCAP was determined using Alizarin red S staining, alkaline phosphatase staining, RT-qPCR, and western blotting.

RNA测序(RNA-seq)结合定量逆转录聚合酶链反应(RT-qPCR)用于评估SCAP中受FGF2影响的途径。使用茜素红S染色,碱性磷酸酶染色,RT-qPCR和蛋白质印迹法测定SCAP的骨/牙源性分化。

Pretreatment with FGF2 for 1 week increased the osteo/odontogenic differentiation ability of SCAP. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that phosphatidylinositol 3-kinase (PI3K)/AKT signalling is involved in the osteogenic function of FGF2. RT-qPCR results indicated that SCAP expressed FGF receptors, and western blotting showed that p-AKT was reduced in FGF2-pretreated SCAP.

用FGF2预处理1周增加了SCAP的骨/牙源性分化能力。RNA-seq和京都基因和基因组百科全书途径分析显示磷脂酰肌醇3-激酶(PI3K)/AKT信号传导参与FGF2的成骨功能。RT-qPCR结果表明SCAP表达FGF受体,蛋白质印迹显示FGF2预处理的SCAP中p-AKT降低。

The activation of the PI3K/AKT pathway partially reversed the stimulatory effect of FGF2 on osteo/odontogenic differentiation of SCAP. Our findings suggest that pretreatment with FGF2 enhances the osteo/odontogenic differentiation ability of SCAP by inhibiting the PI3K/AKT pathway..

PI3K/AKT途径的激活部分逆转了FGF2对SCAP的骨/牙源性分化的刺激作用。我们的研究结果表明,用FGF2预处理可通过抑制PI3K/AKT途径增强SCAP的骨/牙源性分化能力。。

IntroductionStem cells from the apical papilla (SCAP) are a type of mesenchymal stem cells (MSCs) that hold great potential for dental regeneration because of their high proliferation, migration, and dental differentiation abilities1,2,3. However, the number of SCAP is limited because they exist only during root development, before the tooth erupts into the oral cavity4,5.

引言根尖乳头干细胞(SCAP)是一种间充质干细胞(MSCs),由于其高增殖,迁移和牙齿分化能力,具有巨大的牙齿再生潜力1,2,3。然而,SCAP的数量是有限的,因为它们只存在于牙根发育过程中,在牙齿爆发进入口腔之前4,5。

Therefore, for their formative functions, it is important to efficiently induce SCAP to proliferate and differentiate into odontoblast-like cells6.Fibroblast growth factor 2 (FGF2) plays a crucial role in wound healing and tissue formation7,8,9. At the cellular level, FGF2 regulates various cellular functions by activating FGF receptors (FGFR) on the cell membrane10.

因此,对于它们的形成功能,有效诱导SCAP增殖并分化为成牙本质细胞样细胞6是重要的。成纤维细胞生长因子2(FGF2)在伤口愈合和组织形成中起着至关重要的作用7,8,9。在细胞水平上,FGF2通过激活细胞膜上的FGF受体(FGFR)来调节各种细胞功能10。

This activation leads to the dimerisation and activation of intracellular signalling pathways, such as mitogen-activated protein kinase and phosphoinositide three kinase (PI3K)/AKT, which in turn regulate the proliferation, differentiation, and migration of different types of cells11,12.However, the role of FGF2 in the biological functions of SCAP has not yet been thoroughly investigated.

这种激活导致细胞内信号传导途径的二聚化和激活,例如丝裂原活化蛋白激酶和磷酸肌醇三激酶(PI3K)/AKT,其反过来调节不同类型细胞的增殖,分化和迁移11,12。然而,FGF2在SCAP生物学功能中的作用尚未得到彻底研究。

It was reported that FGF2 maintains the expression of stemness markers such as Oct4, Sox2, and Nanog by activating specific signalling pathways, including the ERK1/2 and PI3K/AKT pathways, and subsequently promotes the self-renewal ability of MSCs13. Although the effect of FGF2 on cell proliferation is well established, its effects on mineralisation and osteogenic differentiation are still being debated.

据报道,FGF2通过激活特定的信号通路(包括ERK1/2和PI3K/AKT通路)来维持干细胞标志物如Oct4,Sox2和Nanog的表达,并随后促进MSCs13的自我更新能力。尽管FGF2对细胞增殖的影响已经确立,但其对矿化和成骨分化的影响仍在争论中。

Previous studies have shown that the effect of FGF2 on the differentiation of dental MSCs depends on both the cellular phase and duration of FGF2 exposure14,15. In other words, different durations of FGF treatment or pretreatment may either inhibit or en.

先前的研究表明,FGF2对牙科MSCs分化的影响取决于FGF2暴露的细胞期和持续时间14,15。换句话说,FGF治疗或预处理的不同持续时间可能会抑制或抑制。

Data availability

数据可用性

The authors confirm that the data supporting the findings of this study are available within the article and supplementary materials. More data will be made available (Jiayuan Wu, Email address: wujiayuan@zmu.edu.cn) on reasonable request.

作者证实,文章和补充材料中提供了支持本研究结果的数据。将提供更多数据(Jiayuan Wu,电子邮件地址:wujiayuan@zmu.edu.cn)应合理要求。

ReferencesBojic, S. et al. Dental stem cells—Characteristics and potential. Histol. Histopathol. 29(6), 699–706 (2014).CAS

参考文献Bojic,S。等人。牙科干细胞的特征和潜力。历史。组织病理学。29(6),699-706(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, J. et al. Stem cells from the apical papilla: A promising source for stem cell-based therapy. Biomed Res. Int. 2019, 6104738 (2019).PubMed

Kang,J.等人。来自顶端乳头的干细胞:基于干细胞的治疗的有希望的来源。生物医学研究国际20196104738(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, G. T. et al. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J. Endod. 34(6), 645–651 (2008).PubMed

Huang,G.T.等人。根尖乳头中隐藏的宝藏:在牙髓/牙本质再生和生物根工程中的潜在作用。J.Endod。34(6),645-651(2008)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, C. et al. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci. 11(3), 23 (2019).ADS

郑,C。等。基于干细胞的骨和牙齿再生:微环境调节的观点。。11(3),23(2019)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Min, J. H. et al. Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum. Cell 24(1), 43–50 (2011).MathSciNet

Min,J.H.等人。在延长的原代培养过程中,人成年牙髓细胞的牙本质形成潜力。哼,《细胞》24(1),43-50(2011)。数学网

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Volponi, A. A., Pang, Y. & Sharpe, P. T. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 20(12), 715–722 (2010).CAS

Volponi,A.A.,Pang,Y。&Sharpe,P.T。基于干细胞的生物牙齿修复和再生。趋势细胞生物学。20(12),715-722(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, H. X. et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One 8(4), e59966 (2013).ADS

。PLoS One 8(4),e59966(2013)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Coffin, J. D., Homer-Bouthiette, C. & Hurley, M. M. Fibroblast growth factor 2 and its receptors in bone biology and disease. J. Endocr. Soc. 2(7), 657–671 (2018).CAS

Coffin,J.D.,Homer Bouthiette,C。&Hurley,M.M。成纤维细胞生长因子2及其在骨生物学和疾病中的受体。J、 内分泌。Soc.2(7),657-671(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Komura, M. et al. Tracheal cartilage growth by intratracheal injection of basic fibroblast growth factor. J. Pediatr. Surg. 52(2), 235–238 (2017).PubMed

Komura,M.等。气管内注射碱性成纤维细胞生长因子促进气管软骨生长。J、 。外科杂志52(2),235-238(2017)。PubMed出版社

Google Scholar

谷歌学者

Xuan, Y. H. et al. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One 9(9), e108182 (2014).ADS

Xuan,Y。H。等人。高糖通过抑制bFGF调节JNK磷酸化来抑制伤口愈合中的人成纤维细胞迁移。PLoS One 9(9),e108182(2014)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nugent, M. A. & Iozzo, R. V. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32(2), 115–120 (2000).CAS

。Int.J.生物化学。细胞生物学。32(2),115-120(2000)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laestander, C. & Engstrom, W. Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif. 47(1), 3–11 (2014).CAS

Laestander,C。&Engstrom,W。成纤维细胞生长因子在诱导细胞反应中的作用。细胞增殖。47(1),3-11(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lim, W. et al. Fibroblast growth factor 2 induces proliferation and distribution of G(2)/M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effects of ER stress. J. Cell Physiol. 233(4), 3295–3305 (2018).CAS

Lim,W。等人。成纤维细胞生长因子2诱导牛子宫内膜细胞G(2)/M期的增殖和分布,涉及激活PI3K/AKT和MAPK细胞信号传导以及预防内质网应激的作用。J、 细胞生理学。233(4),3295-3305(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qian, J. et al. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int. Endod. J. 48(7), 690–700 (2015).CAS

Qian,J.等。碱性成纤维细胞生长因子以治疗依赖的方式影响牙髓干细胞的成骨分化。内景Endod。J、 48(7),690-700(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, J. et al. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J. Endod. 38(5), 614–622 (2012).PubMed

。J、 结束。38(5),614-622(2012)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeng, J. et al. A novel hypoxic lncRNA, HRL-SC, promotes the proliferation and migration of human dental pulp stem cells through the PI3K/AKT signaling pathway. Stem Cell Res. Ther. 13(1), 286 (2022).CAS

Zeng,J。等人。一种新型低氧lncRNA HRL-SC通过PI3K/AKT信号通路促进人牙髓干细胞的增殖和迁移。干细胞研究。13(1),286(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, K. et al. The regenerative potential of bFGF in dental pulp repair and regeneration. Front. Pharmacol. 12, 680209 (2021).CAS

Liu,K。等人。bFGF在牙髓修复和再生中的再生潜力。正面。药理学。12680209(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nowwarote, N. et al. Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stemcells. Asian Biomed. 9(3), 271–283 (2015).

Nowwarote,N.等。碱性成纤维细胞生长因子在牙齿组织来源的间充质干细胞中的作用综述。亚洲生物医学。9(3),271-283(2015)。

Google Scholar

谷歌学者

Fakhry, A. et al. Effects of FGF-2/-9 in calvarial bone cell cultures: Differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone 36(2), 254–266 (2005).CAS

Fakhry,A。等人。FGF-2/-9在颅骨细胞培养物中的作用:分化阶段依赖性促有丝分裂作用,BMP-2和noggin的反向调节以及成骨潜能的增强。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sagomonyants, K. & Mina, M. Stage-specific effects of fibroblast growth factor 2 on the differentiation of dental pulp cells. Cells Tissues Organs 199(5–6), 311–328 (2014).CAS

Sagomonyants,K。&Mina,M。成纤维细胞生长因子2对牙髓细胞分化的阶段特异性作用。细胞组织器官199(5-6),311-328(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Osathanon, T., Nowwarote, N. & Pavasant, P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCgamma signaling pathway. J. Cell Biochem. 112(7), 1807–1816 (2011).CAS

Osathanon,T.,Nowwarote,N。&Pavasant,P。碱性成纤维细胞生长因子抑制矿化,但通过FGFR和PLCgamma信号通路诱导人牙髓干细胞的神经元分化。J、 细胞生物化学。112(7),1807–1816(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sagomonyants, K. et al. Enhanced dentinogenesis of pulp progenitors by early exposure to FGF2. J. Dent. Res. 94(11), 1582–1590 (2015).CAS

Sagomonyants,K.等人通过早期暴露于FGF2增强牙髓祖细胞的牙本质形成。J、 凹痕。第94(11)号决议,1582–1590(2015)号决议。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galler, K. M. et al. Influence of root canal disinfectants on growth factor release from dentin. J. Endod. 41(3), 363–368 (2015).PubMed

Galler,K.M.等人。根管消毒剂对牙本质生长因子释放的影响。J、 结束。41(3),363-368(2015)。PubMed出版社

Google Scholar

谷歌学者

Vaccarino, F. M. & Smith, K. M. Increased brain size in autism—What it will take to solve a mystery. Biol. Psychiatry 66(4), 313–315 (2009).PubMed

瓦卡里诺(Vaccarino,F.M.)和史密斯(Smith,K.M.)增加了自闭症患者的大脑大小,需要什么才能解开一个谜。生物学精神病学66(4),313-315(2009)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Turner, N. & Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer 10(2), 116–129 (2010).CAS

Turner,N。&Grose,R。成纤维细胞生长因子信号传导:从发育到癌症。《自然评论》癌症10(2),116-129(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Helsten, T., Schwaederle, M. & Kurzrock, R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: Biologic and clinical implications. Cancer Metastasis Rev. 34(3), 479–496 (2015).CAS

Helsten,T.,Schwaederle,M。&Kurzrock,R。遗传性和肿瘤性疾病中的成纤维细胞生长因子受体信号传导:生物学和临床意义。癌症转移Rev.34(3),479-496(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakano, R. et al. Fibroblast growth factor receptor-2 contributes to the basic fibroblast growth factor-induced neuronal differentiation in canine bone marrow stromal cells via phosphoinositide 3-kinase/Akt signaling pathway. PLoS One 10(11), e0141581 (2015).PubMed

Nakano,R。等人。成纤维细胞生长因子受体-2通过磷酸肌醇3-激酶/Akt信号通路促进碱性成纤维细胞生长因子诱导的犬骨髓基质细胞神经元分化。PLoS One 10(11),e0141581(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, M. C. et al. Effect of bFGF on the growth and matrix turnover of stem cells from human apical papilla: Role of MEK/ERK signaling. J. Formos Med. Assoc. 119(11), 1666–1672 (2020).CAS

Chang,M.C.等人。bFGF对人根尖乳头干细胞生长和基质更新的影响:MEK/ERK信号传导的作用。J、 。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, Y. S. et al. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J. Endod. 36(11), 1824–1830 (2010).PubMed

。J、 结束。36(11),1824–1830(2010)。PubMed出版社

Google Scholar

谷歌学者

Tanaka, Y. et al. Suppression of AKT-mTOR signal pathway enhances osteogenic/dentinogenic capacity of stem cells from apical papilla. Stem Cell Res. Ther. 9(1), 334 (2018).CAS

Tanaka,Y。等人。AKT-mTOR信号通路的抑制增强了根尖乳头干细胞的成骨/牙本质形成能力。干细胞研究。9(1),334(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, M. et al. m6A methylation regulates osteoblastic differentiation and bone remodeling. Front. Cell Dev. Biol. 9, 783322 (2021).PubMed

Huang,M。等人。m6A甲基化调节成骨细胞分化和骨重塑。正面。细胞开发生物学。9783322(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, J. et al. Conditioned medium from periapical follicle cells induces the odontogenic differentiation of stem cells from the apical papilla in vitro. J. Endod. 39(8), 1015–1022 (2013).PubMed

Wu,J。等人。来自根尖周卵泡细胞的条件培养基在体外诱导干细胞从根尖乳头的牙源性分化。J、 结束。39(8),1015-1022(2013)。PubMed出版社

Google Scholar

谷歌学者

Liang, J. et al. A pilot study on biological characteristics of human CD24(+) stem cells from the apical papilla. J. Dent. Sci. 17(1), 264–275 (2022).PubMed

Liang,J。等人。来自顶端乳头的人CD24(+)干细胞生物学特性的初步研究。J、 凹痕。科学。17(1),264-275(2022)。PubMed出版社

Google Scholar

谷歌学者

Park, S. Y. et al. Inactivation of PI3K/Akt promotes the odontoblastic differentiation and suppresses the stemness with autophagic flux in dental pulp cells. J. Dent. Sci. 17(1), 145–154 (2022).PubMed

Park,S.Y。等人。PI3K/Akt的失活促进成牙本质细胞分化并抑制牙髓细胞中自噬通量的干性。J、 凹痕。科学。17(1),145-154(2022)。PubMed出版社

Google Scholar

谷歌学者

Download referencesFundingThis study was supported by grants from Guizhou Provincial Health Commission Science and Technology Fund Project (No. gzwjkj2020-1-163), Science and Technology Plan Project of Guizhou Province (QKH- Foundation-ZK (2022) General 638), The Etiology and Prevention Team Project of Oral Infectious and Malignant Diseases in the Affiliated Stomatological Hospital of Zunyi Medical University (No.

下载参考文献资助本研究得到了贵州省卫生委员会科学技术基金项目(编号gzwjkj2020-1-163),贵州省科学技术计划项目(QKH-基金ZK(2022)General 638),遵义医科大学附属口腔医院口腔传染病和恶性疾病病因学和预防团队项目(No。

(2020)293).Author informationAuthor notesThese authors contributed equally: Zijie Wang and Chuying Chen.Authors and AffiliationsHospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, ChinaZijie Wang, Liying Sun, Mei He, Ting Huang, Jiji Zheng & Jiayuan WuSchool of Stomatology, Southern Medical University, Guangzhou, 510000, Guangdong, ChinaChuying ChenDepartment of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, ChinaChuying ChenAuthorsZijie WangView author publicationsYou can also search for this author in.

(2020)293)。作者信息作者注意到这些作者做出了同样的贡献:王子杰和陈楚英。作者和附属机构遵义医科大学口腔医学院,遵义,563000,贵州,中国王子杰,孙丽英,梅荷,黄婷,郑季吉,吴佳元南方医科大学口腔医学院,广州,510000,广东,中国陈楚英南方医科大学南方医院口腔科,广州,510000,中国陈楚英作者王子杰作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarChuying ChenView author publicationsYou can also search for this author in

PubMed Google ScholarChuying ChenView作者出版物您也可以在

PubMed Google ScholarLiying SunView author publicationsYou can also search for this author in

PubMed Google Scholarlying SunView作者出版物您也可以在

PubMed Google ScholarMei HeView author publicationsYou can also search for this author in

PubMed Google Scholarmaei HeView作者出版物您也可以在

PubMed Google ScholarTing HuangView author publicationsYou can also search for this author in

PubMed Google ScholarJiji ZhengView author publicationsYou can also search for this author in

PubMed Google ScholarJiji ZhengView作者出版物您也可以在

PubMed Google ScholarJiayuan WuView author publicationsYou can also search for this author in

PubMed谷歌学者Jiayuan WuView作者出版物您也可以在

PubMed Google ScholarContributionsZijie Wang: Conceptualisation, methodology, formal analysis, data curation, writing—original draft, writing—review and editing, visualisation. Chuying Chen: Writing—original draft, writing—review and editing, formal analysis. Liying Sun: Acquisition of data, or analysis and interpretation of data.

PubMed谷歌学术贡献王:概念化,方法论,形式分析,数据管理,撰写原稿,撰写评论和编辑,可视化。陈楚英:撰写原稿,撰写评论和编辑,形式分析。孙立英:获取数据,或分析和解释数据。

Mei He: Acquisition of data, or analysis and interpretation of data. Ting Huang: Acquisition of data, or analysis and interpretation of data. Jiji Zheng: Acquisition of data, or analysis and interpretation of data. Jiayuan Wu: Conceptualisation, methodology, formal analysis. The final manuscript was reviewed and approved by all the authors.Corresponding authorCorrespondence to.

。黄婷:获取数据,或分析和解释数据。Jiji Zheng:获取数据,或分析和解释数据。吴佳元:概念化,方法论,形式分析。所有作者都审查并批准了最终稿件。对应作者对应。

Jiayuan Wu.Ethics declarations

吴佳元。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information 1.Supplementary Information 2.Supplementary Information 3.Supplementary Information 4.Supplementary Information 5.Supplementary Information 6.Rights and permissions.

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息1。补充信息2。补充信息3。补充信息4。补充信息5。补充信息6。权利和权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleWang, Z., Chen, C., Sun, L. et al. Fibroblast growth factor 2 promotes osteo/odontogenic differentiation in stem cells from the apical papilla by inhibiting PI3K/AKT pathway.

转载和许可本文引用本文Wang,Z.,Chen,C.,Sun,L。等人。成纤维细胞生长因子2通过抑制PI3K/AKT途径促进干细胞从顶端乳头的骨/牙源性分化。

Sci Rep 14, 19354 (2024). https://doi.org/10.1038/s41598-024-70123-0Download citationReceived: 29 January 2024Accepted: 13 August 2024Published: 21 August 2024DOI: https://doi.org/10.1038/s41598-024-70123-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1419354(2024)。https://doi.org/10.1038/s41598-024-70123-0Download引文接收日期:2024年1月29日接受日期:2024年8月13日发布日期:2024年8月21日OI:https://doi.org/10.1038/s41598-024-70123-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。