EN
登录

Esco2黏连蛋白病小鼠模型中的肢体减少是由p53依赖性凋亡和血管破坏介导的

Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption

Nature 等信源发布 2024-08-21 18:30

可切换为仅中文


AbstractRoberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis.

摘要罗伯茨综合征(RBS)是一种常染色体隐性遗传疾病,由ESCO2功能丧失变异引起严重的生长缺陷和肢体减少。在这里,我们阐明了Esco2fl/fl肢体减少的发病机理;在胚胎发生过程中使用体细胞和单细胞RNA-seq和基因共表达网络分析的Prrx1-CreTg/0小鼠模型。

Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo.

我们的结果揭示了形态和血管缺陷,最终导致E12.5突变肢体出血。这种异常发育进程的基础是凋亡前的间充质细胞群,该细胞群特异于突变肢芽,从E9.5开始富含p53相关信号传导。然后,我们表征了体内细胞周期停滞,DNA损伤,细胞死亡和炎症性白三烯信号通路的这些p53相关过程。

In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions..

在子宫内用p53抑制剂pifithrin-α治疗可以挽救突变肢体的出血。最后,在与RBS,沙利度胺胚胎病和其他遗传性肢体减少疾病相关的基因中发现了显着的富集,表明这些疾病中存在常见的血管病因。。

IntroductionCohesinopathies are a group of genetic disorders caused by pathogenic variants in genes encoding the cohesin subunits or their various regulators that participate in chromosome segregation and gene transcription1,2,3,4. These disorders are heterogeneous and include Roberts syndrome (RBS) and Cornelia de Lange syndrome, as well as CHOPS, chronic atrial and intestinal dysrhythmia, holoprosencephaly 13, intellectual disability-hypotonic facies, and Warsaw breakage syndromes4,5,6,7,8,9.

引言粘着蛋白病是由编码粘着蛋白亚基的基因或其参与染色体分离和基因转录的各种调节因子的致病变异引起的一组遗传疾病1,2,3,4。这些疾病是异质性的,包括罗伯茨综合征(RBS)和Cornelia de Lange综合征,以及CHOPS,慢性心房和肠道节律失常,全前脑13,智力障碍低渗相和华沙断裂综合征4,5,6,7,8,9。

Among the most severe is RBS, a monogenic disorder with an autosomal recessive pattern of inheritance caused by loss-of-function (LOF) pathogenic variants in the Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2 (ESCO2) gene, which encodes a regulator of the cohesin complex7,10,11.Infants with RBS experience profound growth deficiency of prenatal onset and present with various congenital anomalies, most notably with phocomelia or severe limb reduction, and craniofacial abnormalities10,12,13,14.

其中最严重的是RBS,这是一种具有常染色体隐性遗传模式的单基因疾病,由姐妹染色单体内聚N-乙酰转移酶2(ESCO2)基因的建立中的功能丧失(LOF)致病变异引起,该基因编码粘着蛋白复合物的调节剂7,10,11。患有RBS的婴儿在产前发作时会出现严重的生长缺陷,并伴有各种先天性异常,最明显的是phocomelia或严重的肢体减少以及颅面异常10,12,13,14。

There is phenotypic variability between cases with a positive correlation of severity between the craniofacial abnormalities and the limb reduction5,8,14. The most striking clinical presentation includes complete, bilateral symmetric reduction of the limbs, while less severe cases exhibit hypomelia due to mesomelic or rhizomelic shortening12,14.

颅面异常与肢体缩小之间的严重程度呈正相关的病例之间存在表型变异[5,8,14]。最引人注目的临床表现包括四肢完全双侧对称复位,而较不严重的病例由于中胚层或根茎缩短而表现出hypomelia12,14。

Typically, the upper and lower limb reduction or absence are accompanied by digit malformations, often presenting with oligodactyly, thumb aplasia or hypoplasia, syndactyly, clinodactyly, and elbow and knee flexion contractures12,14. Given the syndromic nature of the disease, survival is poor beyond the neonatal period, although mild cases can survive into adulthood with varying degrees of physical and intellectual disability.

通常,上肢和下肢的减少或缺失伴有手指畸形,通常表现为少指畸形,拇指发育不全或发育不全,并指畸形,斜指畸形以及肘部和膝关节屈曲挛缩12,14。鉴于该疾病的综合征性质,新生儿期以后的生存率很低,尽管轻度病例可以存活到成年,并伴有不同程度的身体和智力残疾。

The ph.

ph。

Esco2

埃斯科2

fl/fl;Prrx1-Cre

in/fl;Prrx1 Cre

Tg/0 mouse model resembles the human RBS limb phenotypeTo study the function of ESCO2 in the context of limb development, we generated an Esco2fl/fl conditional knockout (CKO) mouse line bred with Prrx1-CreTg/0 to preferentially eliminate Esco2 from limb mesenchyme. We introduced a deletion in exon 4 resulting in a premature stop codon, replicating the effect of a documented human pathogenic variant in ESCO2 (c.879_880delAG (p.D292fsX47); ClinVar ID: 21250) that is predicted to produce a truncated Esco2 transcript with nonsense-mediate decay (Supplementary Fig. 1a–c)10.

Tg/0小鼠模型类似于人类RBS肢体表型为了研究ESCO2在肢体发育中的功能,我们产生了用Prrx1-CreTg/0繁殖的Esco2fl/fl条件性敲除(CKO)小鼠系,以优先消除肢体间充质中的ESCO2。我们在第4外显子中引入了一个缺失,导致终止密码子过早,复制了ESCO2中已记录的人类致病变异的作用(c.879Ͱu 880delAG(p.D292fsX47);ClinVar ID:21250),预计会产生无义介导衰变的截短的Esco2转录本(补充图1a–c)10。

The first appearance of the limb buds and the activity of Prrx1-induced Cre recombinase are observed at E9.550. Prrx1 is expressed in a proportion of forelimb mesenchymal cells and completes recombination in all forelimb mesenchymal cells at E10.5.While most developing Esco2fl/fl;Prrx1-CreTg/0 embryos resulted in perinatal lethality, some were livebirths.

在E9.550处观察到肢芽的首次出现和Prrx1诱导的Cre重组酶的活性。Prrx1在一定比例的前肢间充质细胞中表达,并在E10.5时在所有前肢间充质细胞中完成重组。而大多数发育中的Esco2fl/fl;Prrx1-CreTg/0胚胎导致围产期致死率,其中一些是活产。

Esco2fl/fl;Prrx1-CreTg/0 pups at P0 were born with striking limb reduction that resembled the human RBS phenotype (Fig. 1a). This deletion was highly penetrant with 100% of n = 120 Esco2fl/fl;Prrx1-CreTg/0 embryos displaying the RBS limb phenotype (Fig. 1a). Post-mortem autopsy analysis of mutants revealed islands of disorganized chondrocytes and poorly developed chondroid matrix compared to controls (Fig. 1b).

Esco2fl/fl;P0的Prrx1-CreTg/0幼崽出生时肢体明显减少,类似于人类RBS表型(图1a)。;Prrx1-CreTg/0胚胎显示RBS肢体表型(图1a)。与对照组相比,对突变体的尸检分析显示,软骨细胞岛杂乱无章,软骨样基质发育不良(图1b)。

The long bones of the fore- and hindlimbs were unidentifiable, with loose mesenchyme replacing skeletal muscle around the bones (Fig. 1b, Supplementary Fig. 1d, e). Internal organs were not significantly affected where Prrx1 was not expressed51,52 (Fig. 1a).Fig. 1: Esco2fl/fl;Prrx1-CreTg/0 mouse model of Roberts syndrome.a P0 mice in dorsal and lateral views with indicated genotypes.

前肢和后肢的长骨无法识别,松散的间充质替代了骨骼周围的骨骼肌(图1b,补充图1d,e)。没有表达Prrx1的内部器官没有受到显着影响51,52(图1a)。图1:Esco2fl/fl;罗伯茨综合征的Prrx1-CreTg/0小鼠模型。具有指定基因型的背侧和侧视图中的P0小鼠。

Mutant mice present with phocomelia and craniofacial abnormalit.

突变小鼠出现phocomelia和颅面异常。

Injections of pifithrin-α were administered according to Jones et al.56. Pifithrin-α (Enzo, BML-GR325-0005) was injected intraperitoneally at 2.2 mg per kg (body weight) in PBS. Female mice were weighed daily to determine the necessary dosage. Treatment was daily from E8.5 until the embryos were harvested at E11.5 or E12.5, and subsequently analyzed.Gene enrichment analysisA literature search was performed using PubMed and OMIM to identify genes implicated in genetic disorders that cause with limb reduction and thalidomide embryopathy.

根据Jones等人56注射pifithrin-α。在PBS中以2.2mg/kg(体重)腹膜内注射Pifithrin-α(Enzo,BML-GR325-0005)。每天称重雌性小鼠以确定必要的剂量。从E8.5开始每天进行处理,直到在E11.5或E12.5收获胚胎,然后进行分析。基因富集分析使用PubMed和OMIM进行文献检索,以鉴定与导致肢体减少和沙利度胺胚胎病的遗传疾病有关的基因。

A total of 326 genes were collectively identified and used for the enrichment analysis (designated gene_list). Genes were converted to their mouse orthologs using babelgene package in R. Differentially expressed genes from E9.5 determined by scRNA-seq analysis were tested for significant (p ≤ 0.05) gene set enrichment against gene_list.

共鉴定出326个基因,并将其用于富集分析(指定为gene\u列表)。。

Fisher’s exact tests with a Bonferroni correction applied for multiple comparisons testing was applied.Other statistical analyzesAnalyzes determining statistical significance between Esco2fl/fl and Esco2fl/fl;Prrx1-CreTg/0 samples for TUNEL assays, number of branch points, and blood vessel diameter were performed using a Student’s t-test in Microsoft Excel.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..

应用具有Bonferroni校正的Fisher精确检验进行多重比较检验。其他统计分析分析确定Esco2fl/fl和Esco2fl/fl之间的统计显着性;使用Microsoft Excel中的学生t检验进行用于TUNEL分析的Prrx1-CreTg/0样品,分支点数和血管直径。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。

Data availability

数据可用性

The data generated in this study have been deposited in the Gene Expression Omnibus under the GEO accession number GSE230493 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101099]. The processed data are available in the supplementary datasets within the article. All other relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon request. Source data are provided with this paper..

这项研究产生的数据已保存在GEO登录号GSE230493的Gene Expression Omnibus中[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101099]。处理后的数据可在本文的补充数据集中找到。支持本研究主要发现的所有其他相关数据均可在文章及其补充信息文件中获得,或应要求从通讯作者处获得。本文提供了源数据。。

ReferencesSkibbens, R. V. et al. Cohesinopathies of a feather flock together. PLoS Genet 9, e1004036 (2013).PubMed

ReferencesSkibbens,R.V。等人,《羽毛聚集的粘着病》。PLoS Genet 9,e1004036(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banerji, R., Skibbens, R. V. & Iovine, M. K. How many roads lead to cohesinopathies? Dev. Dyn. 246, 881–888 (2017).CAS

Banerji,R.,Skibbens,R.V。和Iovine,M.K。有多少条路通往粘着病?开发动态。246881-888(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

McNairn, A. J. & Gerton, J. L. Cohesinopathies: one ring, many obligations. Mutat. Res–Fund. Mol. M. 647, 103–111 (2008).CAS

McNairn,A.J.&Gerton,J.L.Cohesinopathies:一环,多义务。突变。Res–基金。。中科院

Google Scholar

谷歌学者

Piché, J., Van Vliet, P. P., Pucéat, M. & Andelfinger, G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 18, 2828–2848 (2019).PubMed

Piché,J.,Van Vliet,P.P.,Pucéat,M。&Andelfinger,G。粘着蛋白病的扩展表型:一个环来统治它们!细胞周期182828-2848(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kantaputra, P. N. et al. Juberg-Hayward syndrome is a cohesinopathy, caused by mutation in ESCO2. Eur. J. Orthod. 43, 45–50 (2021).PubMed

Juberg-Hayward综合征是一种粘着病,由ESCO2突变引起。欧洲J.Orthod。。PubMed出版社

Google Scholar

谷歌学者

Liu, J. & Krantz, I. D. Cornelia de Lange syndrome, cohesin, and beyond. Clin. Genet. 76, 303–314 (2009).CAS

Liu,J。&Krantz,I.D。Cornelia de Lange综合征,cohesin等。临床。基因。76303-314(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vega, H. et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat. Genet. 37, 468–470 (2005).CAS

Vega,H。等人,Roberts综合征是由ESCO2突变引起的,ESCO2是酵母ECO1的人类同源物,对于建立姐妹染色单体凝聚力至关重要。纳特·吉内特。37468-470(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schüle, B., Oviedo, A., Johnston, K., Pai, S. & Francke, U. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am. J. Hum. Genet. 77, 1117–1128 (2005).PubMed

Schüle,B.,Oviedo,A.,Johnston,K.,Pai,S。&Francke,U。ESCO2中的失活突变导致SC phocomelia和Roberts综合征:无表型-基因型相关性。上午J。嗯。Genet。771117-1128(2005)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kantaputra, P. N. et al. Juberg-Hayward syndrome and Roberts syndrome are allelic, caused by mutations in ESCO2. Arch. Oral Biol. 119, 104918 (2020).CAS

Kantaputra,P.N。等人。Juberg-Hayward综合征和Roberts综合征是等位基因,由ESCO2突变引起。拱门。口腔生物学。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gordillo, M. et al. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum. Mol. Genet. 17, 2172–2180 (2008).CAS

。嗯,摩尔·吉内特。172172-2180(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robert, J. B. A child with double cleft of lip and palate, protrusion of the intermaxillary portion of the upper jaw and imperfect development of the bones of the four extremities. Ann. Surg. 70, 252–253 (1919).

Robert,J.B。患有唇腭裂,上颌颌间突出和四肢骨骼发育不全的儿童。《外科杂志》70252-253(1919)。

Google Scholar

谷歌学者

Goh, E. S. Y. et al. The Roberts syndrome/SC phocomelia spectrum—a case report of an adult with review of the literature. Am. J. Med. Genet. A. 152, 472–478 (2010).

Goh,E.S.Y.等人,《罗伯茨综合征/SC phocomelia谱》——一例成人病例报告并文献复习。美国医学杂志Genet。A、 152472-478(2010)。

Google Scholar

谷歌学者

Lenz, W. D., Marquardt, E. & Weicker, H. Pseudothalidomide syndrome. Birth Defects Orig. Art. Ser. 11, 97–107 (1974).

Lenz,W.D.,Marquardt,E。&Weicker,H。假沙利度胺综合征。出生缺陷起源。艺术序列。11,97-107(1974)。

Google Scholar

谷歌学者

Vega, H. et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J. Med. Genet. 47, 30–37 (2010).CAS

Vega,H。等人。49例ESCO2突变的表型变异性,包括乙酰转移酶结构域中的新型错义和密码子缺失,与ESCO2表达相关,并建立了罗伯茨综合征的临床标准。J、 Genet医学院。47,30-37(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sanchez, A. C., Thren, E. D., Iovine, M. K. & Skibbens, R. V. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 21, 501–513 (2022).CAS

。细胞周期21501-513(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McBride, W. G. Thalidomide and congenital abnormalities. Lancet 2, 90927–90928 (1961).

McBride,W.G.沙利度胺和先天性异常。柳叶刀290927-90928(1961)。

Google Scholar

谷歌学者

Bodera, P. & Stankiewicz, W. Immunomodulatory properties of thalidomide analogs: pomalidomide and lenalidomide, experimental and therapeutic applications. Recent Pat. Endocr. Metab. Immune Drug Discov. 5, 192–196 (2011).CAS

Bodera,P。&Stankiewicz,W。沙利度胺类似物的免疫调节特性:pomalidomide和来那度胺,实验和治疗应用。最近的Pat。内分泌。代谢。免疫药物Discov。5192-196(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schwartz, M. P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl. Acad. Sci. 112, 12516–12521 (2015).ADS

Schwartz,M.P.等人。用于预测神经毒性的人类多能干细胞衍生的神经构建体。程序。纳特尔。阿卡德。科学。11212516-12521(2015)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ulmke, P. A. et al. Molecular profiling reveals involvement of ESCO2 in intermediate progenitor cell maintenance in the developing mouse cortex. Stem Cell Rep 16, 968–984 (2021).CAS

Ulmke,P.A。等人的分子谱分析揭示了ESCO2参与发育中的小鼠皮层的中间祖细胞维持。。中科院

Google Scholar

谷歌学者

Guo, X. B., Huang, B., Pan, Y. H., Su, S. G. & Li, Y. ESCO2 inhibits tumor metastasis via transcriptionally repressing MMP2 in colorectal cancer. Cancer Manag. Res. 10, 6157–6166 (2018).CAS

Guo,X.B.,Huang,B.,Pan,Y.H.,Su,S.G.&Li,Y.ESCO2通过转录抑制结直肠癌中的MMP2来抑制肿瘤转移。癌症管理。第106157-6166号决议(2018年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).ADS

Ito,T。等人。沙利度胺致畸性主要靶标的鉴定。科学3271345-1350(2010)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ito, T., Ando, H. & Handa, H. Teratogenic effects of thalidomide: molecular mechanisms. Cell. Mol. Life Sci. 68, 1569–1579 (2011).CAS

Ito,T.,Ando,H。&Handa,H。沙利度胺的致畸作用:分子机制。细胞。。681569-1579(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banerji, R., Skibbens, R. V. & Iovine, M. K. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol. Open 6, 1802–1813 (2017).CAS

Banerji,R.,Skibbens,R.V。&Iovine,M.K。Cohesin在罗伯茨综合征的斑马鱼再生鳍模型中介导Esco2依赖性转录调控。生物学公开61802-1813(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, H. et al. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet. 15, e1007685 (2019).CAS

Sun,H。等人。Cul4-Ddb1泛素连接酶通过调节粘着蛋白乙酰转移酶Esco2促进DNA复制偶联的姐妹染色单体内聚。PLoS Genet。15,e1007685(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Minamino, M. et al. Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex. Curr. Biol. 28, 2665–2672 (2018).CAS

Minamino,M。等人。MCM复合物,CUL4-DDB1-VPRBP复合物和后期促进复合物对ESCO2降解的时间调节。货币。生物学282665-2672(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13, 307–319 (1999).CAS

Skibbens,R.V.,Corson,L.B.,Koshland,D。&Hieter,P。Ctf7p对于姐妹染色单体凝聚力至关重要,并将有丝分裂染色体结构与DNA复制机制联系起来。Genes Dev 1307–319(1999)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tóth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13, 320–333 (1999).PubMed

酵母粘着蛋白复合物需要一种保守的蛋白质Eco1p(Ctf7),以在DNA复制过程中建立姐妹染色单体之间的凝聚力。Genes Dev 13320–333(1999)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bellows, A. M., Kenna, M. A., Cassimeris, L. & Skibbens, R. V. Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res. 31, 6334–6343 (2003).CAS

Bellows,A.M.,Kenna,M.A.,Cassimeris,L。&Skibbens,R.V。人EFO1p具有乙酰转移酶活性,是接头组蛋白和Ctf7p/Eco1p染色单体内聚建立域的独特组合。核酸决议316334-6343(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev 22, 3089–3114 (2008).CAS

Peters,J.M.,Tedeschi,A。&Schmitz,J。粘着蛋白复合物及其在染色体生物学中的作用。Genes Dev 223089–3114(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).CAS

Michaelis,C.,Ciosk,R。&Nasmyth,K。Cohesins:防止姐妹染色单体过早分离的染色体蛋白。细胞91,35-45(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

DiNardo, S., Voelkel, K. & Sternglanz, R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl Acad. Sci. USA 81, 2616–2620 (1984).ADS

DiNardo,S.,Voelkel,K。&Sternglanz,R。酿酒酵母的DNA拓扑异构酶II突变体:拓扑异构酶II是DNA复制终止时分离子分子所必需的。程序。国家科学院。科学。美国812616-2620(1984)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gassler, J. et al. A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600–3618 (2017).CAS

Gassler,J。等人。粘着蛋白依赖性环挤出的机制组织合子基因组结构。EMBO J 363600–3618(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).ADS

Davidson,I.F.等人。人类粘着蛋白的DNA环挤出。科学3661338-1345(2019)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).ADS

Kim,Y.,Shi,Z.,Zhang,H.,Finkelstein,I.J。&Yu,H。人类粘着蛋白通过环挤出压缩DNA。科学3661345-1349(2019)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 9, e53885 (2020).PubMed

Golfier,S.,Quail,T.,Kimura,H。&Brugues,J。Cohesin和condensin以细胞周期依赖性方式挤出DNA环。eLife 9,e53885(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36, 3573–3599 (2017).CAS

Wutz,G。等人。拓扑关联结构域和染色质环依赖于粘着蛋白,并受CTCF,WAPL和PDS5蛋白调控。EMBO J 363573–3599(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ball, A. R. Jr & Yokomori, K. Damage‐induced reactivation of cohesin in postreplicative DNA repair. Bioessays 30, 5–9 (2008).CAS

Ball,A。R。Jr&Yokomori,K。在复制后DNA修复中损伤诱导的粘着蛋白再激活。生物测定30,5-9(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage–induced recombination between homologous chromosomes. PLoS Genet 6, e1001006 (2010).PubMed

Covo,S.,Westmoreland,J.W.,Gordenin,D.A。和Resnick,M.A。Cohesin限制了同源染色体之间DNA损伤诱导的重组的抑制。PLoS Genet 6,e1001006(2010)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Watrin, E. & Peters, J. M. The cohesin complex is required for the DNA damage‐induced G2/M checkpoint in mammalian cells. EMBO J 28, 2625–2635 (2009).CAS

。EMBO J 282625–2635(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16, 560–570 (2002).CAS

Kim,S.T.,Xu,B。&Kastan,M.B。粘着蛋白Smc1参与Atm依赖性和独立的DNA损伤反应。Genes Dev 16560–570(2002)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ünal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell. 16, 991–1002 (2004).PubMed

。摩尔电池。16991-1002(2004)。PubMed出版社

Google Scholar

谷歌学者

Mönnich, M., Kuriger, Z., Print, C. G. & Horsfield, J. A. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PloS One 6, e20051 (2011).ADS

Mönnich,M.,Kuriger,Z.,Print,C.G。&Horsfield,J.A。罗伯茨综合征的斑马鱼模型显示,Esco2耗竭通过破坏细胞周期来干扰发育。PloS One 6,e20051(2011)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Whelan, G. et al. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 31, 71–82 (2012).CAS

Whelan,G。等人。粘着蛋白乙酰转移酶Esco2是一种细胞活力因子,是周围异染色质凝聚所必需的。EMBO J 31,71-82(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Percival, S. M. et al. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis. Model Mech. 8, 941–955 (2015).CAS

Percival,S.M.等人。esco2突变斑马鱼姐妹染色单体凝聚力功能障碍的变化反映了罗伯茨综合征的表型多样性。Dis。模型机械。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jabs, E. W., Tuck-Muller, C. M., Cusano, R. & Rattner, J. B. Centromere separation and aneuploidy in human mitotic mutants: Roberts syndrome. Prog. Clin. Biol. Res. 318, 111–118 (1989).CAS

Jabs,E.W.,Tuck Muller,C.M.,Cusano,R。&Rattner,J.B。人类有丝分裂突变体中的着丝粒分离和非整倍性:罗伯茨综合征。程序。临床。《生物学》第318111-118号决议(1989年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tomkins, D. J. & Sisken, J. E. Abnormalities in the cell-division cycle in Roberts syndrome fibroblasts: a cellular basis for the phenotypic characteristics? Am. J. Hum. Genet. 36, 1332 (1984).CAS

?上午J。嗯。Genet。361332(1984)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burns, M. A. & Tomkins, D. J. Hypersensitivity to mitomycin C cell-killing in Roberts syndrome fibroblasts with, but not without, the heterochromatin abnormality. Mutat. Res., Sect. Environ. Mutagen. Relat. Subj 216, 243–249 (1989).CAS

Burns,M.A.&Tomkins,D.J.对Roberts综合征成纤维细胞中丝裂霉素C细胞杀伤的超敏反应,伴有但不伴有异染色质异常。突变。研究,第。环境。诱变剂。相关。Sub 216243-249(1989)。中科院

Google Scholar

谷歌学者

van der Lelij, P. et al. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PloS One 4, e6936 (2009).ADS

van der Lelij,P。等人。通过异位表达ESCO2揭示的罗伯茨综合征成纤维细胞的细胞表型。PloS One 4,e6936(2009)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Den Berg, D. J. & Francke, U. Sensitivity of Roberts syndrome cells to gamma radiation, mitomycin C, and protein synthesis inhibitors. Somat. Cell Mol. Genet. 19, 377–392 (1993).PubMed

Van Den Berg,D.J。&Francke,U。Roberts综合征细胞对γ辐射,丝裂霉素C和蛋白质合成抑制剂的敏感性。索姆。细胞分子遗传学。19377-392(1993)。PubMed出版社

Google Scholar

谷歌学者

Logan, M. et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).CAS

Logan,M.等人。由Prxl增强子驱动的发育中的小鼠肢芽中Cre重组酶的表达。创世记33,77-80(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martin, J. F. & Olson, E. N. Identification of a prx1 limb enhancer. Genesis 26, 225–229 (2000).CAS

Martin,J.F。&Olson,E.N。鉴定prx1肢体增强子。《创世纪》26225-229(2000)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Durland, J. L., Sferlazzo, M., Logan, M. & Burke, A. C. Visualizing the lateral somitic frontier in the Prx1Cre transgenic mouse. J. Anat. 212, 590–602 (2008).CAS

Durland,J.L.,Sferlazzo,M.,Logan,M。&Burke,A.C。可视化Prx1Cre转基因小鼠的外侧躯体前沿。J、 阿纳特。212590-602(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yin, M. & Pacifici, M. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev. Dyn. 222, 522–533 (2001).CAS

Yin,M。&Pacifici,M。血管消退是发育中肢体间充质凝结和软骨形成所必需的。开发动态。222522-533(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Eshkar-Oren, I. et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136, 1263–1272 (2009).CAS

Eshkar Oren,I。等人。形成的肢体骨骼通过调节Vegf作为肢体脉管系统模式的信号中心。发展1361263-1272(2009)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).CAS

Komarov,P.G。等人。一种p53的化学抑制剂,可保护小鼠免受癌症治疗的副作用。科学2851733-1737(1999)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).CAS

Jones,N.C.等人。通过抑制p53功能预防神经嵴病Treacher Collins综合征。《自然医学》第14125-133页(2008年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, X., Wang, M., Katsyv, I., Irie, H. & Zhang, B. EMUDRA: ensemble of multiple drug repositioning approaches to improve prediction accuracy. Bioinformatics 34, 3151–3159 (2018).CAS

Zhou,X.,Wang,M.,Katsyv,I.,Irie,H。&Zhang,B。EMUDRA:多种药物重新定位方法的集合,以提高预测准确性。生物信息学343151-3159(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mfarej, M. G. & Skibbens, R. V. An ever-changing landscape in Roberts syndrome biology: implications for macromolecular damage. PLoS Genet 16, e1009219 (2020).CAS

Mfarej,M.G。&Skibbens,R.V。罗伯茨综合征生物学中不断变化的景观:对大分子损伤的影响。PLoS Genet 16,e1009219(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salmon, T. B., Evert, B. A., Song, B. & Doetsch, P. W. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32, 3712–3723 (2004).CAS

Salmon,T.B.,Evert,B.A.,Song,B。&Doetsch,P.W。氧化应激诱导的酿酒酵母DNA损伤的生物学后果。核酸研究323712-3723(2004)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rowe, L. A., Degtyareva, N. & Doetsch, P. W. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic. Biol. Med. 45, 1167–1177 (2008).CAS

Rowe,L.A.,Degtyareva,N。&Doetsch,P.W。DNA损伤诱导酿酒酵母中的活性氧(ROS)应激反应。自由基。生物医学杂志451167-1177(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, M. et al. DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis. 3, e249 (2012).CAS

Kang,M。等人。DNA损伤通过H2AX-Nox1/Rac1途径诱导活性氧产生。细胞死亡Dis。3,e249(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, B., Lee, K. K., Zhang, L. & Gerton, J. L. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet. 9, e1003857 (2013).PubMed

Xu,B.,Lee,K.K.,Zhang,L。&Gerton,J.L。用L-亮氨酸刺激mTORC1可以挽救与罗伯茨综合征相关的缺陷。PLoS Genet。9,e1003857(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, B., Gogol, M., Gaudenz, K. & Gerton, J. L. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genom. 17, 1–18 (2016).

Xu,B.,Gogol,M.,Gaudenz,K。&Gerton,J.L。通过L-亮氨酸刺激罗伯茨综合征中的mTORC1改善了转录和翻译。。17,1-18(2016)。

Google Scholar

谷歌学者

McKay, M. J. et al. A Roberts syndrome individual with differential genotoxin sensitivity and a DNA damage response defect. Int. J. Radiat. Oncol. Biol. Phys. 103, 1194–1202 (2019).PubMed

McKay,M.J.等人,罗伯茨综合征患者,具有不同的基因毒素敏感性和DNA损伤反应缺陷。内景J.辐射。Oncol公司。生物物理。1031194-1202(2019)。PubMed出版社

Google Scholar

谷歌学者

Ren, Q., Yang, H., Gao, B. & Zhang, Z. Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin. Compar. Funct. Genom. 2008, e634283 (2008).

Ren,Q.,Yang,H.,Gao,B。&Zhang,Z。姐妹染色单体粘着蛋白突变诱导的酵母细胞死亡的全局转录分析。。函数。基因组。2008年,e634283(2008)。

Google Scholar

谷歌学者

Perkins, A. T., Das, T. M., Panzera, L. C. & Bickel, S. E. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc. Natl Acad. Sci. USA 113, 6823–6830 (2016).ADS

Perkins,A.T.,Das,T.M.,Panzera,L.C。&Bickel,S.E。卵母细胞在中期前期的氧化应激会导致内聚力过早丧失和染色体分离错误。程序。国家科学院。科学。美国1136823–6830(2016)。广告

Google Scholar

谷歌学者

Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).ADS

Polyak,K.,Xia,Y.,Zweier,J.L.,Kinzler,K.W。&Vogelstein,B。p53诱导细胞凋亡的模型。自然389300-305(1997)。广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Norbury, C. J. & Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 23, 2797–2808 (2004).CAS

Norbury,C.J。&Zhivotovsky,B。DNA损伤诱导的细胞凋亡。癌基因232797-2808(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shen, H. M. & Liu, Z. G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 40, 928–939 (2006).CAS

Shen,H.M。&Liu,Z.G。JNK信号通路是由活性氧和氮物质介导的细胞死亡的关键调节剂。自由基。生物医学杂志40928-939(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Madesh, M. & Hajnóczky, G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J. Cell Biol. 155, 1003–1016 (2001).CAS

Madesh,M。&Hajnóczky,G。超氧化物对外线粒体膜的VDAC依赖性透化诱导快速和大量的细胞色素c释放。J、 细胞生物学。1551003-1016(2001)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415–418 (2000).CAS

Simon,H.U.,Haj-Yehia,A。&Levi-Schaffer,F。活性氧(ROS)在细胞凋亡诱导中的作用。细胞凋亡5415-418(2000)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gotoh, Y. & Cooper, J. A. Reactive oxygen species-and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-α signal transduction. J. Biol. Chem. 273, 17477–17482 (1998).CAS

Gotoh,Y。&Cooper,J.A。活性氧和二聚化诱导肿瘤坏死因子-α信号转导中凋亡信号调节激酶1的激活。J、 生物。化学。27317477-17482(1998)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lopez, K. E. & Bouchier-Hayes, L. Lethal and non-lethal functions of caspases in the DNA damage response. Cells 11, e1887 (2022).

Lopez,K.E。&Bouchier-Hayes,L。半胱天冬酶在DNA损伤反应中的致死和非致死功能。细胞11,e1887(2022)。

Google Scholar

谷歌学者

Schaub, F. J. et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat. Med. 6, 790–796 (2000).CAS

Schaub,F.J。等人。Fas/FADD介导的血管平滑肌细胞中炎症基因表达特定程序的激活。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).CAS

凋亡细胞通过caspase-3介导的脂质吸引信号的释放诱导吞噬细胞的迁移。细胞113717-730(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horsfield, J. A. et al. Cohesin-dependent regulation of Runx genes. Development 134, 2639–2649 (2007).CAS

Horsfield,J.A。等人。Runx基因的粘着蛋白依赖性调控。发展1342639-2649(2007)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, B. J. et al. Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem. Biophys. Res. Commun. 372, 298–304 (2008).CAS

。生物化学。生物物理。公共资源。372298-304(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rhodes, J. M., McEwan, M. & Horsfield, J. A. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol. Cancer Res. 9, 1587–1607 (2011).CAS

Rhodes,J.M.,McEwan,M。&Horsfield,J.A。粘着蛋白在癌症中的基因调控:戒指是增殖的意外一方吗?Mol.Cancer Res.91587–1607(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mehta, G. D., Rizvi, S. M. A. & Ghosh, S. K. Cohesin: a guardian of genome integrity. Biochim. Biophys. Acta. Mol. Cell. Res. 1823, 1324–1342 (2012).CAS

Mehta,G.D.,Rizvi,S.M.A。和Ghosh,S.K。Cohesin:基因组完整性的守护者。生物化学。生物物理。学报。摩尔电池。第18231324-1342号决议(2012年)。中科院

Google Scholar

谷歌学者

Skibbens, R. V., Marzillier, J. & Eastman, L. Cohesins coordinate gene transcriptions of related function within Saccharomyces cerevisiae. Cell Cycle 9, 1601–1606 (2010).CAS

Skibbens,R.V.,Marzillier,J。&Eastman,L。Cohesins协调酿酒酵母中相关功能的基因转录。细胞周期91601-1606(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Waldman, T. Emerging themes in cohesin cancer biology. Nat. Rev. Cancer 20, 504–515 (2020).CAS

。《国家癌症评论》20504-515(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vargesson, N. The teratogenic effects of thalidomide on limbs. J Hand Surg Eur Vol. 44, 88–95 (2019).PubMed

Vargesson,N。沙利度胺对四肢的致畸作用。J Hand Surg Eur第44卷,88-95(2019)。PubMed出版社

Google Scholar

谷歌学者

Vargesson, N. & Hootnick, D. Arterial dysgenesis and limb defects: clinical and experimental examples. Reprod. Toxicol. 70, 21–29 (2017).CAS

Vargesson,N。&Hootnick,D。动脉发育不全和肢体缺陷:临床和实验例子。重新编程。毒理学。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meganathan, K. et al. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells. PloS One 7, e44228 (2012).ADS

Meganathan,K。等人。人类胚胎干细胞分化过程中沙利度胺特异性转录组学和蛋白质组学特征的鉴定。PloS One 7,e44228(2012)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bean, C. J., Hunt, P. A., Millie, E. A. & Hassold, T. J. Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum. Mol. Genet. 10, 963–972 (2001).CAS

Bean,C.J.,Hunt,P.A.,Millie,E.A。&Hassold,T.J。对小鼠Y染色体异常分离的分析:哺乳动物胚胎最早的卵裂分裂不易分离的证据。嗯,摩尔·吉内特。10963-972(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Y. et al. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+ P253R mice. BMC Dev. Bio. 10, 1–20 (2010).

Wang,Y。等人。Apert综合征Fgfr2+P253R小鼠颅骨异常中p38 MAPK通路的激活。BMC Dev.Bio.10,1-20(2010)。

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS

Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bernsen, J. Dynamic thresholding of grey-level images fcV. Proceeding of the 8 International Conference O11 Pattern Recognition, 1251–1255 (1986).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).

Bernsen,J。灰度图像的动态阈值fcV。第8届O11模式识别国际会议论文集,1251-1255(1986)。Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet J 17,10-12(2011)。

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS

Dobin,A。等人STAR:超快通用RNA-seq比对仪。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).CAS

Liao,Y.,Smyth,G.K。&Shi,W。FeatureCounts:一种有效的通用程序,用于将序列读数分配给基因组特征。生物信息学30923-930(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed

Ritchie,M.E.等人Limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12, 1–16 (2011).

Li,B。&Dewey,C。N。RSEM:从有或没有参考基因组的RNA-Seq数据进行准确的转录本定量。BMC Bioinform 12,1-16(2011)。

Google Scholar

谷歌学者

Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, 1–17 (2014).

Law,C.W.,Chen,Y.,Shi,W。&Smyth,G.K。Voom:精确权重解锁RNA-seq读取计数的线性模型分析工具。基因组生物学。15,1-17(2014)。

Google Scholar

谷歌学者

Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, W193–W200 (2007).PubMed

Reimand,J.,Kull,M.,Peterson,H.,Hansen,J.&Vilo,J.g:Profiler-一种基于网络的工具集,用于从大规模实验中对基因列表进行功能分析。核酸研究35,W193–W200(2007)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).CAS

Butler,A.,Hoffman,P.,Smibert,P.,Papalexi,E。&Satija,R。整合不同条件,技术和物种的单细胞转录组数据。美国国家生物技术公司。36411-420(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).CAS

Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).CAS

Hafemeister,C。&Satija,R。使用正则化负二项回归对单细胞RNA-seq数据进行归一化和方差稳定。基因组生物学。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).CAS

Trapnell,C。等人。通过单细胞的伪时间顺序揭示了细胞命运决定的动力学和调节因子。美国国家生物技术公司。32381-386(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).ADS

La Manno,G。等人。单细胞的RNA速度。自然560494-498(2018)。广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

RDevelopment, C.O.R.E. TEAM 2009: R: a language and environment for statistical computing. Internet: http://www.R-project.org (2012).Song, W. M. & Zhang, B. Multiscale embedded gene co-expression network analysis. PLoS Comput. Biol. 11, e1004574 (2015).PubMed

R开发,C.O.R.E.团队2009:R:统计计算的语言和环境。http://www.R-project.org。Song,W.M。&Zhang,B。多尺度嵌入式基因共表达网络分析。PLoS计算机。生物学11,e1004574(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).ADS

Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。美国10215545–15550(2005)。广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS

Shannon,P。等。Cytoscape:用于生物分子相互作用网络集成模型的软件环境。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank our colleagues at Mount Sinai’s Microscopy CoRE and CCMS’s Necroscopy core. This work was supported, in part, through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

下载参考文献致谢我们要感谢西奈山显微镜核心和CCMS坏死镜核心的同事。这项工作部分得到了西奈山伊坎医学院科学计算所提供的计算资源和员工专业知识的支持。

Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health (NIH) under award number S10OD026880 and NIH grants R01AG068030 (B.Z.), R03DE026814 (E.J and B.Z.), R01DE029832 (E.J. and H.B.), and R01DE029322 (E.J. and H.B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Author informationAuthors and AffiliationsDepartment of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L.

本文报道的研究得到了美国国立卫生研究院(NIH)研究基础设施办公室的支持,奖项编号为S10OD026880,NIH拨款R01AG068030(B.Z.),R03DE026814(E.J和B.Z.),R01DE029832(E.J.和H.B.)和R01DE029322(E.J.和H.B.)。内容完全由作者负责,不一定代表美国国立卫生研究院的官方观点。作者信息作者和附属机构西奈山伊坎医学院遗传学和基因组科学系,古斯塔夫L。

Levy Place, New York, NY, USAArielle S. Strasser, Ana Silvia Gonzalez-Reiche, Xianxiao Zhou, Braulio Valdebenito-Maturana, Xiaoqian Ye, Bin Zhang, Meng Wu, Harm van Bakel & Ethylin Wang JabsMount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L.

Levy Place,纽约州纽约市,USAArielle S.Strasser,Ana Silvia Gonzalez Reiche,Xianxiao Zhou,Braulio Valdebenito Maturana,Xiaoqian Ye,Bin Zhang,Meng Wu,Harm van Bakel&Ethylin Wang JabsMount西奈山伊坎医学院西奈转化性疾病建模中心,One Gustave L。

Levy Place, New York, NY, USAXianxiao Zhou & Bin ZhangDepartment of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USABin ZhangDepartment of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USAMeng Wu & Ethylin Wang JabsDepartment of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USAMeng Wu & Ethylin Wang JabsIcahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L.

利维广场,纽约,纽约,USAXianxiao Zhou&Bin Zhang西奈山伊坎医学院药理科学系,一个Gustave L.利维广场,纽约,纽约,USABin Zhang,梅奥诊所临床基因组学系,200 First Street,Rochester,MN,USAMeng Wu&Ethylin Wang Jabsecahn生物化学与分子生物学系,梅奥诊所,200 First Street,Rochester,MN,USAMeng Wu&Ethylin Wang JabsIcahn Genomics Institute,西奈山伊坎医学院,一个Gustave L。

Levy Place, New York, NY, USAHarm van BakelDepartment of Microbiology, Icahn School of Medicine .

PubMed Google ScholarAna Silvia Gonzalez-ReicheView author publicationsYou can also search for this author in

PubMed Google ScholarAna Silvia Gonzalez ReicheView作者出版物您也可以在

PubMed Google ScholarXianxiao ZhouView author publicationsYou can also search for this author in

PubMed Google ScholarXianxiao Zhou查看作者出版物您也可以在

PubMed Google ScholarBraulio Valdebenito-MaturanaView author publicationsYou can also search for this author in

PubMed Google ScholarBraulio Valdebenito MaturanaView作者出版物您也可以在

PubMed Google ScholarXiaoqian YeView author publicationsYou can also search for this author in

PubMed谷歌学者Xiaoqian YeView作者出版物您也可以在

PubMed Google ScholarBin ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarBin ZhangView作者出版物您也可以在

PubMed Google ScholarMeng WuView author publicationsYou can also search for this author in

PubMed Google Scholarmang WuView作者出版物您也可以在

PubMed Google ScholarHarm van BakelView author publicationsYou can also search for this author in

PubMed Google ScholarHarm van BakelView作者出版物您也可以在

PubMed Google ScholarEthylin Wang JabsView author publicationsYou can also search for this author in

PubMed Google ScholarEthylin Wang JabsView作者出版物您也可以在

PubMed Google ScholarContributionsX.Y. developed and implemented LoxP-Cre strategies for creating the Esco2 CKO mouse model. M.W. and A.S.S. characterized the mouse model. A.S.G.R. and A.S.S. conducted the bulk and single-cell RNA-seq analyzes. B.V-M. conducted the InferCNV analysis, trajectory and RNA velocity analyzes and assisted with single-cell RNA-seq analyzes.

PubMed谷歌学术贡献x。Y、 开发并实施了LoxP-Cre策略,用于创建Esco2 CKO小鼠模型。M、 W.和A.S.S.对小鼠模型进行了表征。A、 S.G.R.和A.S.S.进行了大量和单细胞RNA-seq分析。B、 V-M.进行了InferCNV分析,轨迹和RNA速度分析,并辅助了单细胞RNA-seq分析。

X.Z., B.Z., and A.S.S. conducted the gene co-expression network and drug repositioning analyzes. A.S.S., M.W. completed all wet-lab related experimentation. A.S.S. generated all the figures and tables for the manuscript with input from H.v.B. and E.W.J. A.S.S. wrote the initial manuscript draft with input and suggestions from H.v.B.

十、 Z.,B.Z。和A.S.S.进行了基因共表达网络和药物重新定位分析。A、 S.S.,M.W.完成了所有与湿实验室相关的实验。A、 S.S.根据H.v.B.的输入生成了稿件的所有图表,E.W.J.A.S.S.根据H.v.B.的输入和建议撰写了稿件初稿。

and E.W.J. H.v.B and E.W.J provided advice and guidance throughout. All the authors contributed to editing and revising the paper.Corresponding authorsCorrespondence to.

E.W.J.H.v.B和E.W.J自始至终都提供了建议和指导。所有作者都为编辑和修订论文做出了贡献。通讯作者通讯。

Meng Wu, Harm van Bakel or Ethylin Wang Jabs.Ethics declarations

孟武,哈姆·范巴克尔或伊瑟林·王刺拳。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Katta Girisha, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Katta Girisha和另一位匿名审稿人对这项工作的同行评审所做的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Reporting SummaryPeer Review FileSource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6报告摘要同行评审文件源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleStrasser, A.S., Gonzalez-Reiche, A.S., Zhou, X. et al. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption.

转载和许可本文引用本文Strasser,A.S.,Gonzalez-Reiche,A.S.,Zhou,X。等人。Esco2粘着蛋白病小鼠模型中的肢体减少是由p53依赖性细胞凋亡和血管破坏介导的。

Nat Commun 15, 7154 (2024). https://doi.org/10.1038/s41467-024-51328-3Download citationReceived: 01 September 2023Accepted: 01 August 2024Published: 21 August 2024DOI: https://doi.org/10.1038/s41467-024-51328-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41467-024-51328-3Download引文接收日期:2023年9月1日接收日期:2024年8月1日发布日期:2024年8月21日OI:https://doi.org/10.1038/s41467-024-51328-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

AngiogenesisComputational biology and bioinformaticsDevelopmentGene expressionGenetic models

血管生成计算生物学和生物信息学发展基因表达遗传模型

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。