商务合作
动脉网APP
可切换为仅中文
AbstractOne of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity.
摘要糖尿病肾病(DKD)的主要特征之一是肾小管脂肪酸代谢异常,尤其是脂肪酸氧化缺陷(FAO),加速肾小管损伤和肾小管间质纤维化。硫代硫酸盐硫转移酶(TST)是一种对硫转移至关重要的线粒体酶,在糖尿病和肥胖症等代谢疾病中会减少。
However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure.
然而,TST在调节DKD脂肪酸代谢异常中的潜在作用仍不清楚。在这里,我们的数据显示DKD患者肾皮质中TST表达降低。TST缺乏加剧了糖尿病和肾纤维化小鼠模型中的肾小管损伤,而硫代硫酸钠治疗或TST过表达减轻了高糖暴露下的肾小管损伤。
TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD..
TST下调介导了超长链特异性酰基辅酶A脱氢酶S-磺酰化的减少,导致线粒体FAO功能障碍。这一系列事件加剧了DKD肾小管间质损伤的进展。总之,我们的研究结果表明TST是DKD肾小管损伤的调节剂。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Subscribe to this journalReceive 12 print issues and online access251,40 € per yearonly 20,95 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout
订阅本期刊每年可收到12期印刷版和在线访问251,40欧元每期仅20,95欧元了解更多在SpringerLink上购买本文立即访问全文PDFBuy NOW价格可能需要缴纳结帐时计算的当地税费
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
Contact customer support
联系客户支持
Fig. 1: TST expression was decreased in renal tubular epithelial cells of patients with DKD or in HK-2 cells exposed to high glucose.Fig. 2: Diabetic TST knockout mice worsened renal fibrosis.Fig. 3: Thiosulfate treatment protected kidneys from diabetic lesions via TST activation.Fig. 4: TST overexpression ameliorated the injury of renal tubular epithelial cells caused by high glucose.Fig.
图1:DKD患者的肾小管上皮细胞或暴露于高糖的HK-2细胞中TST表达降低。图2:糖尿病TST基因敲除小鼠加重了肾纤维化。图3:硫代硫酸盐治疗通过TST激活保护肾脏免受糖尿病病变。图4:TST过表达改善了由高糖引起的肾小管上皮细胞的损伤。图。
5: STS treatment alleviated HG-induced tubular epithelial cell dysfunction and mitochondrial damage.Fig. 6: TST maintained mitochondrial FAO homeostasis in renal tubular epithelial cells in diabetic conditions.Fig. 7: TST promoted S-sulfhydration of VLCAD..
5: STS治疗减轻了HG诱导的肾小管上皮细胞功能障碍和线粒体损伤。图6:TST在糖尿病条件下维持肾小管上皮细胞中的线粒体FAO稳态。图7:TST促进VLCAD的S-硫化。。
Data availability
数据可用性
We verify that the authors have provided all pertinent data. We have also submitted complete and uncut western blots as Supplementary Material.
我们验证作者提供了所有相关数据。我们还提交了完整和未切割的蛋白质印迹作为补充材料。
ReferencesTang S, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16:206–22.Article
参考Tang S,Yiu WH。糖尿病肾病的先天免疫。Nat Rev Nephrol。2020年;16: 206-22.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Investig. 2019;129:1129–51.Article
Li Y,Hu Q,Li C,Liang K,Xiang Y,Hsiao H等。PTEN诱导的部分上皮-间质转化驱动糖尿病肾病。J临床研究。2019年;129:1129–51.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14:291–312.Article
福布斯JM,Thorburn博士糖尿病肾病中的线粒体功能障碍。Nat Rev Nephrol。2018年;14: 291-312.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ziyadeh FN. Mediators of diabetic renal disease: the case for TGF-beta as the major mediator. J Am Soc Nephrol. 2004;15:S55–S57.Article
齐亚德FN。糖尿病肾病的介质:TGF-β作为主要介质的情况。J Am Soc Nephrol。2004年;15: S55–S57.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16:269–88.Article
Ruiz Ortega M,Rayego Mateos S,Lamas S,Ortiz A,Rodrigues Diez RR。针对慢性肾脏疾病的进展。Nat Rev Nephrol。2020年;16: 269-88.文章
PubMed
PubMed
Google Scholar
谷歌学者
Huang S, Susztak K. Epithelial plasticity versus EMT in kidney fibrosis. Trends Mol Med. 2016;22:4–6.Article
Huang S,Susztak K.肾纤维化中上皮可塑性与EMT的关系。趋势Mol Med。2016;22:4-6.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miguel V, Tituana J, Herrero JI, Herrero L, Serra D, Cuevas P, et al. Renal tubule cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Investig. 2021;131:e140695. https://doi.org/10.1172/JCI140695.Article
Miguel V,Tituana J,Herrero JI,Herrero L,Serra D,Cuevas P等。肾小管cpt1a过表达通过恢复线粒体稳态来防止肾纤维化。J临床研究。2021年;131:e140695。https://doi.org/10.1172/JCI140695.Article
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21:37–46.Article
Kang HM,Ahn SH,Choi P,Ko YA,Han SH,Chinga F等。肾小管上皮细胞中脂肪酸氧化缺陷在肾纤维化发展中起关键作用。Nat Med。2015;21:37–46.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, Sas KM, et al. Impaired beta-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J Am Soc Nephrol. 2018;29:295–306.Article
Afshinnia F,Rajendiran TM,Soni T,Byun J,Wernisch S,Sas KM等。随着CKD的进展,β-氧化受损并改变了复杂的脂质脂肪酸分配。J Am Soc Nephrol。2018年;29:295–306.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, et al. Deletion of lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J Am Soc Nephrol. 2016;27:439–53.Article
Han SH,Malaga Dieguez L,Chinga F,Kang HM,Tao J,Reidy K等。肾小管上皮细胞中lkb1的缺失通过改变代谢导致CKD。J Am Soc Nephrol。2016年;27:439–53.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jao TM, Nangaku M, Wu CH, Sugahara M, Saito H, Maekawa H, et al. Atf6α downregulation of PPAR alpha promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int. 2019;95:577–89.Article
Jao TM,Nangaku M,Wu CH,Sugahara M,Saito H,Maekawa H等。PPARα的Atf6α下调促进脂毒性诱导的肾小管间质纤维化。;95:577–89.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee SY, Kang JM, Kim DJ, Park SH, Jeong HY, Lee YH, et al. Pgc1α activators mitigate diabetic tubulopathy by improving mitochondrial dynamics and quality control. J Diabetes Res. 2017;2017:6483572.Article
Lee SY,Kang JM,Kim DJ,Park SH,Jeong HY,Lee YH等。Pgc1α激活剂通过改善线粒体动力学和质量控制来减轻糖尿病肾小管病变。J Diabetes Res.2017;2017:6483572.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44.Article
Houten SM,Violante S,Ventura FV,Wanders RJ。线粒体脂肪酸β-氧化及其遗传疾病的生物化学和生理学。Annu Rev Physiol。2016年;78:23-44.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Diekman EF, Ferdinandusse S, van der Pol L, Waterham HR, Ruiter JP, Ijlst L, et al. Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency. Genet Med. 2015;17:989–94.Article
Diekman EF,Ferdinandusse S,van der Pol L,Waterham HR,Ruiter JP,Ijlst L等。脂肪酸氧化通量可预测VLCAD缺乏症的临床严重程度。Genet Med。2015;17: 989-94.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal. 2013;6:s1.Article
Doulias PT,Tenopoulou M,Greene JL,Raju K,Ischiropoulos H.一氧化氮通过可逆的蛋白质S-亚硝基化调节线粒体脂肪酸代谢。Sci信号。2013年;6: s1、条款
Google Scholar
谷歌学者
Tcheng M, Roma A, Ahmed N, Smith RW, Jayanth P, Minden MD, et al. Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood. 2021;137:3518–32.Article
Tcheng M,Roma A,Ahmed N,Smith RW,Jayanth P,Minden MD等。急性髓性白血病需要超长链脂肪酸代谢。血。2021年;137:3518–32.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kruithof PD, Lunev S, Aguilar LS, de Assis BF, Al-Dahmani ZM, Joles JA, et al. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165716.Article
Kruithof PD,Lunev S,Aguilar LS,de Assis BF,Al Dahmani ZM,Joles JA等。揭示硫代硫酸盐硫转移酶在代谢疾病中的作用。Biochim Biophys Acta Mol Basis Dis。2020年;1866:165716.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Morton NM, Beltram J, Carter RN, Michailidou Z, Gorjanc G, Mcfadden C, et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat Med. 2016;22:771–9.Article
Morton NM,Beltram J,Carter RN,Michailidou Z,Gorjanc G,Mcfadden C等。硫代硫酸盐硫转移酶作为脂肪细胞表达的抗糖尿病靶标在瘦身小鼠中的遗传鉴定。Nat Med。2016;22:771–9.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carter RN, Gibbins M, Barrios-Llerena ME, Wilkie SE, Freddolino PL, Libiad M, et al. The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Rep. 2021;37:109958.Article
Carter RN,Gibbins M,Barrios Llerena ME,Wilkie SE,Freddolino PL,Libiad M等。肝脏对全身硫化物升高的代偿反应促进糖尿病。细胞代表2021;37:109958.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H2S signaling through persulfidation. Chem Rev. 2018;118:1253–337.Article
Filipovic MR,Zivanovic J,Alvarez B,Banerjee R.通过硫化物传递H2S信号的化学生物学。化学修订版2018;118:1253–337.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pagani S, Galante YM. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Biochim Biophys Acta. 1983;742:278–84.Article
帕加尼S,加兰特YM。罗丹酶与线粒体NADH脱氢酶的相互作用。生物化学生物物理学报。1983年;742:278–84.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li A, Yi B, Han H, Yang S, Hu Z, Zheng L, et al. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy. 2022;18:877–90.Article
Li A,Yi B,Han H,Yang S,Hu Z,Zheng L等。维生素D-VDR(维生素D受体)通过AMPK途径调节链脲佐菌素诱导的糖尿病小鼠肾小管上皮细胞的自噬缺陷。自噬。2022年;18: 877-90.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brenner M, Azer SM, Oh KJ, Han CH, Lee J, Mahon SB, et al. Oral glycine and sodium thiosulfate for lethal cyanide ingestion. J Clin Toxicol. 2017;7:355. https://doi.org/10.4172/2167-7972.1000355.Article
Brenner M,Azer SM,Oh KJ,Han CH,Lee J,Mahon SB等。口服甘氨酸和硫代硫酸钠用于致命的氰化物摄入。J临床毒理学。2017年;7: 355页。https://doi.org/10.4172/2167-7972.1000355.Article
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55:561–72.Article
Herman Edelstein M,Scherzer P,Tobar A,Levi M,Gafter U.改变了人类糖尿病肾病的肾脏脂质代谢和肾脏脂质积累。J Lipid Res.2014;55:561–72.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang J, Muise ES, Han S, Kutchukian PS, Costet P, Zhu Y, et al. Molecular profiling reveals a common metabolic signature of tissue fibrosis. Cell Rep Med. 2020;1:100056.Article
Zhang J,Muise ES,Han S,Kutchukian PS,Costet P,Zhu Y等。分子谱分析揭示了组织纤维化的常见代谢特征。Cell Rep Med。2020;1: 100056条
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sas KM, Kayampilly P, Byun J, Nair V, Hinder LM, Hur J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1:e86976.Article
Sas KM,Kayampilly P,Byun J,Nair V,Impaird LM,Hur J等。组织特异性代谢重编程驱动糖尿病并发症中的营养通量。JCI Insight。2016年;1: e86976。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ibarra-Gonzalez I, Cruz-Bautista I, Bello-Chavolla OY, Vela-Amieva M, Pallares-Mendez R, Ruiz DSYN, et al. Optimization of kidney dysfunction prediction in diabetic kidney disease using targeted metabolomics. Acta Diabetol. 2018;55:1151–61.Article
Ibarra Gonzalez I,Cruz Bautista I,Bello Chavolla OY,Vela Amieva M,Pallares Mendez R,Ruiz DSYN等。使用靶向代谢组学优化糖尿病肾病肾功能障碍预测。糖尿病学报。2018年;55:1151–61.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Looker HC, Colombo M, Hess S, Brosnan MJ, Farran B, Dalton RN, et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015;88:888–96.Article
Looker HC,Colombo M,Hess S,Brosnan MJ,Farran B,Dalton RN等。2型糖尿病慢性肾脏疾病快速进展的生物标志物。肾脏国际2015;88:888–96.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bergman HM, Lindfors L, Palm F, Kihlberg J, Lanekoff I. Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging. Anal Bioanal Chem. 2019;411:2809–16.Article
Bergman HM,Lindfors L,Palm F,Kihlberg J,Lanekoff I.使用质谱成像在大鼠肾脏中检测到早期糖尿病的代谢物畸变。肛门生物化学。2019年;411:2809–16.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378:2376–85.Article
Brock PR,Maibach R,Childs M,Rajput K,Roebuck D,Sullivan MJ等。硫代硫酸钠预防顺铂引起的听力损失。英格兰医学杂志2018;378:2376–85.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pasch A, Schaffner T, Huynh-Do U, Frey BM, Frey FJ, Farese S. Sodium thiosulfate prevents vascular calcifications in uremic rats. Kidney Int. 2008;74:1444–53.Article
Pasch A,Schaffner T,Huynh Do U,Frey BM,Frey FJ,Farese S.硫代硫酸钠可预防尿毒症大鼠的血管钙化。肾脏国际2008;74:1444–53.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marutani E, Yamada M, Ida T, Tokuda K, Ikeda K, Kai S, et al. Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc. 2015;4:e002125. https://doi.org/10.1161/JAHA.115.002125.Article
Marutani E,Yamada M,Ida T,Tokuda K,Ikeda K,Kai S等。硫代硫酸盐介导硫化氢对神经元缺血的细胞保护作用。J Am心脏协会2015;4: e002125。https://doi.org/10.1161/JAHA.115.002125.Article
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paul BD, Snyder SH. H2S signaling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol. 2012;13:499–507.Article
Paul BD,Snyder SH。通过蛋白质磺水合作用及其以外的H2S信号传导。Nat Rev Mol细胞生物学。2012年;13: 499-507.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Peleli M, Zampas P, Papapetropoulos A. Hydrogen sulfide and the kidney: physiological roles, contribution to pathophysiology, and therapeutic potential. Antioxid Redox Signal. 2022;36:220–43.Article
Peleli M,Zampas P,Papapetropoulos A.硫化氢和肾脏:生理作用,对病理生理学的贡献和治疗潜力。抗氧化氧化还原信号。2022年;36:220–43.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng J, et al. S-sulfhydration of SIRT3 by hydrogen sulfide attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Antioxid Redox Signal. 2019;31:1302–19.Article
Yuan Y,Zhu L,Li L,Liu J,Chen Y,Cheng J,et al。硫化氢对SIRT3的S-硫化作用可减轻顺铂诱导的急性肾损伤中的线粒体功能障碍。抗氧化氧化还原信号。2019年;31:1302–19.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-kappaB and STAT3. Redox Biol. 2021;38:101813.Article
Sun HJ,Xiong SP,Cao X,Cao L,Zhu MY,Wu ZY等。多硫化物介导的SIRT1硫化通过抑制p65 NF-κB和STAT3的磷酸化和乙酰化来预防糖尿病肾病。氧化还原生物。2021年;38:101813.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mathur A, Sims HF, Gopalakrishnan D, Gibson B, Rinaldo P, Vockley J, et al. Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Circulation. 1999;99:1337–43.Article
Mathur A,Sims HF,Gopalakrishnan D,Gibson B,Rinaldo P,Vockley J等。超长链酰基辅酶A脱氢酶缺乏症引起小儿心肌病和猝死的分子异质性。流通。1999年;99:1337–43.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bithi N, Link C, Henderson YO, Kim S, Yang J, Li L, et al. Dietary restriction transforms the mammalian protein persulfidome in a tissue-specific and cystathionine gamma-lyase-dependent manner. Nat Commun. 2021;12:1745.Article
Bithi N,Link C,Henderson YO,Kim S,Yang J,Li L等。饮食限制以组织特异性和胱硫醚γ裂解酶依赖性方式转化哺乳动物蛋白亚硫醚。纳特公社。2021年;12: 第1745条
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man LS, et al. The attenuation of diabetic nephropathy by annexin a1 via regulation of lipid metabolism through the AMPK/PPARα/CPT1b pathway. Diabetes. 2021;70:2192–203.Article
Wu L,Liu C,Chang DY,Zhan R,Zhao M,Man LS等。膜联蛋白a1通过AMPK/PPARα/CPT1b途径调节脂质代谢来减轻糖尿病肾病。糖尿病。2021年;70:2192–203.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Picard M, White K, Turnbull DM. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J Appl Physiol. 2013;114:161–71.Article
Picard M,White K,Turnbull DM。骨骼肌中的线粒体形态,拓扑结构和膜相互作用:定量三维电子显微镜研究。J应用生理学。2013年;114:161-71.文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao Q, et al. Hydrogen sulfide alleviates liver injury through the S-sulfhydrated-Kelch-like ECH-associated protein 1/nuclear erythroid 2-related factor 2/low-density lipoprotein receptor-related protein 1 pathway. Hepatology. 2021;73:282–302.Article .
Zhao S,Song T,Gu Y,Zhang Y,Cao S,Miao Q等。硫化氢通过S-巯基化Kelch样ECH相关蛋白1/核红细胞2相关因子2/低密度脂蛋白受体相关蛋白1途径减轻肝损伤。肝病学。2021年;73:282-302。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu Y, Zhang H, Fan C, Liu F, Li S, Li J, et al. Potential role of BCL2 in lipid metabolism and synaptic dysfunction of age-related hearing loss. Neurobiol Dis. 2023;187:106320.Article
刘Y,张H,范C,刘F,李S,李J,等。BCL2在年龄相关性听力损失的脂质代谢和突触功能障碍中的潜在作用。神经生物学疾病。2023年;187:106320.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Basu SS, Mesaros C, Gelhaus SL, Blair IA. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme a and its thioesters. Anal Chem. 2011;83:1363–9.Article
。肛门化学。2011年;83:1363-9.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesFundingThis study was supported by the National Natural Science Foundation of China (82170736, 81970629, 82370716), and the Natural Science Foundation of Zhejiang Province (LHDMY23H070002).Author informationAuthors and AffiliationsInstitute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, ChinaJia Xiu Zhang, Pei Pei Chen, Xue Qi Li, Liang Li, Qin Yi Wu, Gui Hua Wang & Kun Ling MaDepartment of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, ChinaPei Pei Chen & Kun Ling MaCentre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, ChinaXiong Zhong RuanAuthorsJia Xiu ZhangView author publicationsYou can also search for this author in.
下载参考文献资助本研究得到了国家自然科学基金(821707368197062982370716)和浙江省自然科学基金(LHDMY23H070002)的支持。作者信息作者和附属机构南京东南大学医学院中大医院肾脏病研究所张家秀,陈培培,薛启立,梁丽,秦一武,王桂华和昆陵医学院第二附属医院肾脏病学系,浙江大学医学院,杭州,中国培培培陈和昆陵脂质研究中心,重庆医科大学教育部传染病分子生物学重点实验室,重庆,中国熊中软作者张家秀作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarPei Pei ChenView author publicationsYou can also search for this author in
PubMed Google ScholarPei Pei ChenView作者出版物您也可以在
PubMed Google ScholarXue Qi LiView author publicationsYou can also search for this author in
PubMed Google ScholarXue Qi LiView作者出版物您也可以在
PubMed Google ScholarLiang LiView author publicationsYou can also search for this author in
PubMed谷歌学术Liang LiView作者出版物您也可以在
PubMed Google ScholarQin Yi WuView author publicationsYou can also search for this author in
PubMed Google ScholarQin Yi WuView作者出版物您也可以在
PubMed Google ScholarGui Hua WangView author publicationsYou can also search for this author in
PubMed Google ScholarGui Hua WangView作者出版物您也可以在
PubMed Google ScholarXiong Zhong RuanView author publicationsYou can also search for this author in
PubMed Google ScholarXiong Zhong RuanView作者出版物您也可以在
PubMed Google ScholarKun Ling MaView author publicationsYou can also search for this author in
PubMed Google ScholarKun Ling MaView作者出版物您也可以在
PubMed Google ScholarContributionsKLM and JXZ performed the study concept and design; PPC, JXZ, and XQL performed the experiments. The data were analyzed by LL, GHW, QYW; JXZ, KLM, and XZR drafted and revised the manuscript. KLM and XZR have verified the underlying data. All authors had access to the data, reviewed the manuscript, and approved the final version for submission.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献SKLM和JXZ进行了研究概念和设计;PPC,JXZ和XQL进行了实验。数据由LL,GHW,QYW分析;JXZ,KLM和XZR起草并修订了手稿。KLM和XZR已经验证了基础数据。所有作者都可以访问数据,审阅稿件,并批准提交最终版本。对应作者对应。
Kun Ling Ma.Ethics declarations
马昆玲。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Ethics approval and consent to participate
道德批准和同意参与
Animal studies were approved by the Animal Care and Use Committee of Southeast University (Approval No. 20210227025). All human studies were performed with informed patient consent and were approved from the Biomedical Ethics Committee of Zhong Da Hospital, Southeast University (Approval Number: 2019ZDSYLL057-P01).
动物研究得到东南大学动物护理和使用委员会的批准(批准号20210227025)。所有人体研究均在患者知情同意的情况下进行,并获得东南大学中大医院生物医学伦理委员会的批准(批准号:2019ZDSYLL057-P01)。
All methods were carried out in accordance with relevant guidelines and regulations..
所有方法均按照相关指南和规定进行。。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplemental MaterialOriginal Images of Representative Western blot imagesRights and permissionsSpringer Nature or its licensor (e.g.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料代表性蛋白质印迹图像的原始图像权利和许可Pringer Nature或其许可人(例如。
a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleZhang, J.X., Chen, P.P., Li, X.Q.
协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Zhang,J.X.,Chen,P.P.,Li,X.Q。
et al. Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease..
硫代硫酸盐硫转移酶的缺乏介导了糖尿病肾病中肾小管线粒体脂肪酸氧化的功能障碍。。
Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01365-8Download citationReceived: 10 February 2024Revised: 11 August 2024Accepted: 14 August 2024Published: 22 August 2024DOI: https://doi.org/10.1038/s41418-024-01365-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
细胞死亡不同(2024)。https://doi.org/10.1038/s41418-024-01365-8Downloadhttps://doi.org/10.1038/s41418-024-01365-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供