EN
登录

基于理化分析的新型人源化VHH合成文库的研制

Development of novel humanized VHH synthetic libraries based on physicochemical analyses

Nature 等信源发布 2024-08-22 00:41

可切换为仅中文


AbstractDue to the high affinity and specificity of antibodies toward antigens, various antibody-based applications have been developed. Recently, variable antigen-binding domains of heavy-chain antibodies (VHH) have become an attractive alternative to conventional fragment antibodies due to their unique molecular characteristics.

摘要由于抗体对抗原的高亲和力和特异性,已经开发了各种基于抗体的应用。最近,重链抗体(VHH)的可变抗原结合结构域由于其独特的分子特征而成为常规片段抗体的有吸引力的替代品。

As an antibody-generating strategy, synthetic VHH libraries (including humanized VHH libraries) have been developed using distinct strategies to constrain the diversity of amino acid sequences. In this study, we designed and constructed several novel synthetic humanized VHH libraries based on biophysical analyses conducted using the complementarity determining region-grafting method and comprehensive sequence analyses of VHHs deposited in the protein data bank.

作为抗体产生策略,已经使用不同的策略开发了合成VHH文库(包括人源化VHH文库)以限制氨基酸序列的多样性。在这项研究中,我们基于使用互补决定区移植方法进行的生物物理分析和蛋白质数据库中保存的VHH的综合序列分析,设计并构建了几种新型合成人源化VHH文库。

We obtained VHHs from the libraries, and hit clones exhibited considerable thermal stability. We also found that VHHs from distinct libraries tended to have different epitopes. Based on our results, we propose a strategy for generating humanized VHHs with distinct epitopes toward various antigens by utilizing our library combinations..

我们从文库中获得了VHH,命中克隆表现出相当大的热稳定性。我们还发现来自不同文库的VHH倾向于具有不同的表位。基于我们的结果,我们提出了一种策略,通过利用我们的文库组合产生针对各种抗原具有不同表位的人源化VHH。。

IntroductionAn antibody recognizes a unique target molecule called an antigen. Due to the high affinity and specificity of antibodies toward antigens, various antibody-based applications have been developed in the biotechnological and medical fields, such as detection reagents for the target molecule, diagnostic tools, and antibody-based drugs for human therapy.

引言抗体识别称为抗原的独特靶分子。由于抗体对抗原的高亲和力和特异性,已经在生物技术和医学领域开发了各种基于抗体的应用,例如用于靶分子的检测试剂,诊断工具和用于人类治疗的基于抗体的药物。

Antibody-based proteins have become an important class of biologic therapeutics1. Currently, nearly 1200 antibody therapeutics are in clinical studies, and ~ 175 therapeutics are in regulatory review or have been approved2.In 1993, functional antibodies devoid of light chains and composed of only the heavy chain were discovered in the serum of Camelus dromedarius3.

基于抗体的蛋白质已成为一类重要的生物疗法1。目前,近1200种抗体疗法正在进行临床研究,约175种疗法正在进行监管审查或已获得批准2。1993年,在骆驼血清中发现了不含轻链且仅由重链组成的功能性抗体3。

The antibodies, referred to as heavy-chain antibodies (HCAbs), are unique because they lack the entire light chain and the first heavy chain constant region. The variable antigen-binding domain of a HCAb, referred to as the variable domain of the heavy-chain antibody (VHH), is generally functional as a single domain despite its small size of only 15 kDa4,5.

被称为重链抗体(HCAbs)的抗体是独特的,因为它们缺乏整个轻链和第一个重链恒定区。HCAb的可变抗原结合结构域,称为重链抗体(VHH)的可变结构域,尽管其尺寸仅为15 kDa4,5,但通常作为单个结构域起作用。

While conventional antibodies tend to form a flat surface or a groove as a paratope, the convex paratopes of VHHs have a smaller antigen-binding interface. Thus, VHHs tend to bind to concave-shaped epitopes, such as enzyme catalytic sites6,7,8. VHHs are easily produced by bacterial expression systems due to their small size and single domain, and their production cost is much lower than that of immunoglobulin G.

虽然常规抗体倾向于形成平坦的表面或凹槽作为互补位,但VHH的凸互补位具有较小的抗原结合界面。因此,VHH倾向于结合凹形表位,例如酶催化位点6,7,8。VHH由于其小尺寸和单结构域而易于由细菌表达系统产生,并且其生产成本远低于免疫球蛋白G。

In addition, the small size of VHHs leads to rapid extravasation followed by deep-tissue penetration and rapid blood clearance. Based on these characteristics, VHHs are an attractive alternative to antigen-binding fragments from conventional antibodies (e.g., Fabs and scFvs) in biotechnolog.

此外,VHH的小尺寸导致快速外渗,然后是深层组织渗透和快速血液清除。基于这些特征,VHH是生物技术中常规抗体(例如Fabs和scFv)的抗原结合片段的有吸引力的替代品。

Data availability

数据可用性

All the structural data used in this study are available in Protein Data Bank (https://www.rcsb.org/) and all the data generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

这项研究中使用的所有结构数据都可以在蛋白质数据库中找到(https://www.rcsb.org/)在本研究期间生成和/或分析的所有数据均可在合理要求下从通讯作者处获得。

ReferencesGoulet, D. R. & Atkins, W. M. Considerations for the design of antibody-based therapeutics. J. Pharm. Sci. 109, 74–103 (2020).Article

参考文献Goulet,D.R。&Atkins,W.M。基于抗体的治疗剂设计的考虑因素。J、 药物科学。109,74-103(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kaplon, H., Crescioli, S., Chenoweth, A., Visweswaraiah, J. & Reichert, J. M. Antibodies to watch in 2023. MAbs 15, 410 (2023).Article

卡普隆(Kaplon,H.),克雷西奥利(Crescioli,S.),切诺维斯(Chenoweth),维斯韦拉亚(Visweswaraiah),J。和赖切特(Reichert),J。M。抗体将于2023年观看。单克隆抗体15410(2023)。文章

Google Scholar

谷歌学者

Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).Article

Hamers-Casterman,C.等人。不含轻链的天然抗体。自然363446-448(1993)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).Article

。年。生物化学评论。82775-797(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muyldermans, S. A guide to: Generation and design of nanobodies. FEBS J. 288, 2084–2102 (2021).Article

Muyldermans,S。指南:纳米体的产生和设计。FEBS J.2882084–2102(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

De Genst, E. et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U.S.A. 103, 4586–4591 (2006).Article

De Genst,E.等人。单峰骆驼重链抗体优先识别裂隙的分子基础。程序。纳特尔。阿卡德。科学。U、 S.A.1034586–4591(2006)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zavrtanik, U., Lukan, J., Loris, R., Lah, J. & Hadži, S. Structural basis of epitope recognition by heavy-chain camelid antibodies. J. Mol. Biol. 430, 4369–4386 (2018).Article

Zavrtanik,U.,Lukan,J.,Loris,R.,Lah,J。&Hadži,S。重链骆驼抗体识别表位的结构基础。J、 分子生物学。4304369-4386(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muyldermans, S. Applications of nanobodies. Annu. Rev. Anim. Biosci. 9, 401–421 (2021).Article

Muyldermans,S。纳米体的应用。年。阿尼姆牧师。生物科学。9401-421(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jovčevska, I. & Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs 34, 11–26 (2019).Article

Jovčevska,I。&Muyldermans,S。纳米体的治疗潜力。生物药物34,11-26(2019)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmermann, I. et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife 7, 34317 (2018).Article

Zimmermann,I。等人。用于膜蛋白构象捕获的合成单结构域抗体。Elife 734317(2018)。文章

Google Scholar

谷歌学者

Sevy, A. M. et al. Structure- and sequence-based design of synthetic single-domain antibody libraries. Protein Eng. Des. Sel. 33, 1–13 (2020).Article

Sevy,A.M.等人。基于结构和序列的合成单域抗体文库设计。蛋白质工程设计。选择。33,1-13(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Jin, B. K., Odongo, S., Radwanska, M. & Magez, S. Nanobodies: A review of generation, diagnostics and therapeutics. Int. J. Mol. Sci. 24, 5994 (2023).Article

。Int.J.Mol.Sci。245994(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsumoto, K. & Takeuchi, T. Next-generation anti-TNFα agents: The example of ozoralizumab. BioDrugs 38, 341–351 (2024).Article

Tsumoto,K。&Takeuchi,T。下一代抗TNFα药物:奥佐拉珠单抗的例子。生物药物38341-351(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vincke, C. et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273–3284 (2009).Article

Vincke,C.等人。骆驼单结构域抗体人源化的一般策略和通用人源化纳米体支架的鉴定。J、 生物。化学。2843273–3284(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Murakami, T. et al. Construction of a humanized artificial VHH library reproducing structural features of camelid VHHs for therapeutics. Antibodies 11, 10 (2022).Article

Murakami,T。等人。构建人源化人工VHH文库,再现骆驼VHH的结构特征,用于治疗。抗体11,10(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moutel, S. et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 5, 16228 (2016).Article

Moutel,S。等人。NaLi-H1:人源化纳米体的通用合成文库,提供高功能抗体和体内。Elife 516228(2016)。文章

Google Scholar

谷歌学者

Schneider, C., Raybould, M. I. J. & Deane, C. M. SAbDab in the age of biotherapeutics: Updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 50, D1368–D1372 (2022).Article

Schneider,C.,Raybould,M.I.J.&Deane,C.M.SAbDab在生物治疗学时代:更新包括纳米体结构跟踪器SAbDab nano。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dunbar, J. et al. SAbDab: The structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).Article

Dunbar,J。等人。SAbDab:结构抗体数据库。核酸研究42,D1140–D1146(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mitchell, L. S. & Colwell, L. J. Comparative analysis of nanobody sequence and structure data. Proteins Struct. Funct. Bioinform. 86, 697–706 (2018).Article

Mitchell,L.S。&Colwell,L.J。纳米体序列和结构数据的比较分析。蛋白质结构。函数。生物信息。86697-706(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Schmitz, K. R., Bagchi, A., Roovers, R. C., Van Bergen En Henegouwen, P. M. P. & Ferguson, K. M. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure 21, 1214–1224 (2013).Article

Schmitz,K.R.,Bagchi,A.,Roovers,R.C.,Van Bergen En Henegouwen,P.M.P。&Ferguson,K.M。纳米体/VHH结构域EGFR抑制机制的结构评估。结构211214-1224(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roovers, R. C. et al. Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol. Immunother. 56, 303–317 (2007).Article

Roovers,R.C.等人。通过拮抗性抗EGFR纳米体有效抑制EGFR信号传导和肿瘤生长。癌症免疫。免疫疗法。56303-317(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duggan, S. Caplacizumab: First global approval. Drugs 78, 1639–1642 (2018).Article

Duggan,S.Caplacizumab:首次全球批准。药物781639-1642(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kerschbaumer, A. et al. Efficacy of pharmacological treatment in rheumatoid arthritis: A systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 79, 744–759 (2020).Article

Kerschbaumer,A.等人,《类风湿性关节炎药物治疗的疗效:一项系统文献研究,为2019年更新EULAR类风湿性关节炎管理建议提供信息。安。瑞姆。Dis。79744-759(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, H. T. et al. High-resolution structure of the vWF A1 domain in complex with caplacizumab, the first nanobody-based medicine for treating acquired TTP. Biochem. Biophys. Res. Commun. 567, 49–55 (2021).Article

Lee,H.T.等人。vWF A1结构域与caplacizumab复合的高分辨率结构,caplacizumab是第一种用于治疗获得性TTP的基于纳米体的药物。生物化学。生物物理。公共资源。567、49-55(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kuroda, D. & Tsumoto, K. Structural classification of CDR-H3 in single-domain VHH antibodies. Methods Mol. Biol. 2552, 61–79 (2023).Article

Kuroda,D。&Tsumoto,K。单域VHH抗体中CDR-H3的结构分类。方法分子生物学。2552、61-79(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kinoshita, S. et al. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci. 31, e4450 (2022).Article

Kinoshita,S.等人。VHH中热稳定性和亲和力的分子基础:框架区域的贡献及其对CDR3构象的影响。蛋白质科学。31,e4450(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maenaka, K. et al. A stable phage-display system using a phagemid vector: Phage display of hen egg-white lysozyme (HEL), Escherichia coli alkaline, phosphatase, and anti-HEL monoclonal antibody, HyHEL10. Biochem. Biophys. Res. Commun. 218, 682–687 (1996).Article

Maenaka,K。等人。使用噬菌粒载体的稳定噬菌体展示系统:鸡蛋清溶菌酶(HEL),大肠杆菌碱性,磷酸酶和抗HEL单克隆抗体HyHEL10的噬菌体展示。生物化学。生物物理。公共资源。218682-687(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, M., Bianchi, M. E., Coleman, T. R., Tracey, K. J. & Al-Abed, Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol. Med. 24, 1–9 (2018).

He,M.,Bianchi,M.E.,Coleman,T.R.,Tracey,K.J。&Al Abed,Y。通过表面等离子体共振探索HMGB1/TLR4/MD-2复合物的生物学功能机制。分子医学24,1-9(2018)。

Google Scholar

谷歌学者

Fleetwood, F. et al. Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Sci. Rep. 4, 1–14 (2014).Article

Fleetwood,F。等人。使用双paratopic Affibody分子同时靶向VEGFR2上的两个配体结合位点可显着提高亲和力。科学。代表4,1-14(2014)。文章

Google Scholar

谷歌学者

Sircar, A., Sanni, K. A., Shi, J. & Gray, J. J. Analysis and modeling of the variable region of camelid single-domain antibodies. J. Immunol. 186, 6357–6367 (2011).Article

Sircar,A.,Sanni,K.A.,Shi,J。&Gray,J.J。骆驼单结构域抗体可变区的分析和建模。J、 免疫。1866357–6367(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hairul Bahara, N. H., Chin, S. T., Choong, Y. S. & Lim, T. S. Construction of a semisynthetic human VH single-domain antibody library and selection of domain antibodies against α-crystalline of mycobacterium tuberculosis. J. Biomol. Screen. 21, 35–43 (2016).Article

Hairul Bahara,N.H.,Chin,S.T.,Choong,Y.S。&Lim,T.S。半合成人VH单结构域抗体文库的构建和抗结核分枝杆菌α-晶体结构域抗体的选择。J、 生物摩尔。屏幕。21,35-43(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article

Fu,L.,Niu,B.,Zhu,Z.,Wu,S。&Li,W。CD-HIT:加速聚类下一代测序数据。生物信息学283150-3152(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article

Li,W。&Godzik,A。Cd hit:用于聚类和比较大量蛋白质或核苷酸序列的快速程序。生物信息学221658-1659(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dunbar, J. & Deane, C. M. ANARCI: Antigen receptor numbering and receptor classification. Bioinformatics 32, 298–300 (2016).Article

Dunbar,J。&Deane,C.M。ANARCI:抗原受体编号和受体分类。生物信息学32298-300(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Valenciano-Bellido, S. et al. Targeting hemoglobin receptors IsdH and IsdB of Staphylococcus aureus with a single VHH antibody inhibits bacterial growth. J. Biol. Chem. 299, 104927 (2023).Article

Valenciano Bellido,S.等人用单一VHH抗体靶向金黄色葡萄球菌的血红蛋白受体IsdH和IsdB抑制细菌生长。J、 生物。化学。299104927(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, C. M. Y., Iorno, N., Sierro, F. & Christ, D. Selection of human antibody fragments by phage display. Nat. Protoc. 2, 3001–3008 (2007).Article

Lee,C.M.Y.,Iorno,N.,Sierro,F。&Christ,D。通过噬菌体展示选择人抗体片段。自然协议。23001-3008(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was funded in part by the Japan Society for the Promotion of Science (Grant Nos. 21H05090 to M.N.; 19H05766 and 20H02531 to K.T.), the JST-Mirai Program (Grant No. JP MJMI21G6 to M.N.), the JST-CREST Program (Grant No. JP MJCR20H8 to K.T.), and the Japan Agency for Medical Research and Development (Grant Nos.

下载参考文献致谢这项工作部分由日本科学促进会(M.N.批准号21H05090;K.T.批准号19H05766和20H02531),JST Mirai计划(M.N.批准号JP MJMI21G6),JST-CREST计划(K.T.批准号JP MJCR20H8)和日本医学研究与发展机构(批准号:。

JP 18ak0101100 and 19am0401010to M.N., 20mk0101170 to K.T.).Author informationAuthor notesThese authors contributed equally: Makoto Nakakido and Seisho Kinoshita.Authors and AffiliationsDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, JapanMakoto Nakakido, Seisho Kinoshita & Kouhei TsumotoDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, JapanMakoto Nakakido & Kouhei TsumotoLaboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanKouhei TsumotoAuthorsMakoto NakakidoView author publicationsYou can also search for this author in.

JP 18ak0101100和19AM0401010至M.N.,20mk0101170至K.T.)。作者信息作者注意到这些作者做出了同样的贡献:Makoto Nakakido和Seisho Kinoshita。作者和附属机构东京大学工程学院生物工程系,东京,东京,东京,东京大学,东京,东京大学,东京,东京,东京大学,东京,东京大学,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京,东京。

PubMed Google ScholarSeisho KinoshitaView author publicationsYou can also search for this author in

PubMed Google ScholarSeisho KinoshitaView作者出版物您也可以在

PubMed Google ScholarKouhei TsumotoView author publicationsYou can also search for this author in

PubMed Google ScholarKouhei TsumotoView作者出版物您也可以在

PubMed Google ScholarContributionsM.N. and K.T. conceptualized and administrated the research. S.K. conducted experiments and analyzed data. M.N. wrote the main manuscript and S.K. prepared figures. All authors reviewed the manuscript.Corresponding authorsCorrespondence to

PubMed谷歌学术贡献。N、 K.T.对这项研究进行了概念化和管理。S、 K.进行了实验并分析了数据。M、 N.撰写了主要手稿,S.K.准备了数字。所有作者都审阅了手稿。通讯作者通讯

Makoto Nakakido or Kouhei Tsumoto.Ethics declarations

Makoto Nakakido或Kouhei Tsumoto。道德宣言

Competing interests

相互竞争的利益

We declare that we filed a patent regarding the synthetic libraries described in this paper. The applicant is our institute, The University of Tokyo, and inventors are; Makoto Nakakido, Seisho Kinoshita, and Kouhei Tsumoto. Application number is JP2024-095995 and status of application is pending.

我们声明,我们已就本文所述的合成文库申请了专利。申请人是我们的研究所东京大学,发明人是;Makoto Nakakido,Seisho Kinoshita和Kouhei Tsumoto。申请号为JP2024-095995,申请状态待定。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figures.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleNakakido, M., Kinoshita, S. & Tsumoto, K. Development of novel humanized VHH synthetic libraries based on physicochemical analyses.

转载和许可本文引用本文Nakakido,M.,Kinoshita,S。&Tsumoto,K。基于物理化学分析开发新型人源化VHH合成文库。

Sci Rep 14, 19533 (2024). https://doi.org/10.1038/s41598-024-70513-4Download citationReceived: 14 February 2024Accepted: 19 August 2024Published: 22 August 2024DOI: https://doi.org/10.1038/s41598-024-70513-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1419533(2024)。https://doi.org/10.1038/s41598-024-70513-4Downloadhttps://doi.org/10.1038/s41598-024-70513-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。