EN
登录

Cell Death & Disease:由circCOPA编码的一种新蛋白抑制胶质母细胞瘤细胞的恶性表型,并通过破坏NONO-SFPQ复合物增加其对替莫唑胺的敏感性

Cell Death & Disease:A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO–SFPQ complex

Nature 等信源发布 2024-08-25 15:45

可切换为仅中文


AbstractGlioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies. However, the impact of circRNA-encoded proteins on GBM sensitivity to temozolomide remains unknown.

摘要胶质母细胞瘤(GBM)是一种原发性恶性脑肿瘤。替莫唑胺耐药是GBM治疗的主要障碍。由环状RNA(circRNA)编码的蛋白质可以调节多种肿瘤化学疗法的敏感性。然而,circRNA编码的蛋白质对GBM对替莫唑胺敏感性的影响仍然未知。

Herein, we discover a circRNA (circCOPA) through the circRNA microarray profile in GBM samples, which can encode a novel 99 amino acid protein (COPA-99aa) through its internal ribosome entry site. Functionally, circCOPA overexpression in GBM cells inhibits cell proliferation, migration, and invasion in vitro and growth in vivo.

在此,我们通过GBM样品中的circRNA微阵列谱发现了circRNA(circCOPA),它可以通过其内部核糖体进入位点编码新的99个氨基酸的蛋白质(COPA-99aa)。在功能上,GBM细胞中的circCOPA过表达抑制体外细胞增殖,迁移和侵袭以及体内生长。

Rather than itself, circCOPA mainly functions as a suppressive effector by encoding COPA-99aa. Moreover, we reveal that circCOPA is downregulated in GBM tissues and high expression of circCOPA is related to a better prognosis in GBM patients. Mechanistically, a heteromer of SFPQ and NONO is required for double-strand DNA break repair.

circCOPA主要通过编码COPA-99aa而不是其本身起抑制效应子的作用。此外,我们发现circCOPA在GBM组织中下调,circCOPA的高表达与GBM患者更好的预后有关。从机理上讲,双链DNA断裂修复需要SFPQ和NONO的异聚体。

COPA-99aa disrupts the dimerization of NONO and SFPQ by separately binding with the NONO and SFPQ proteins, thus resulting in the inhibition of proliferation or invasion and the increase of temozolomide-induced DNA damage in GBM cells. Collectively, our data suggest that circCOPA mainly contributes to inhibiting the GBM malignant phenotype through its encoded COPA-99aa and that COPA-99aa increases temozolomide-induced DNA damage by interfering with the dimerization of NONO and SFPQ.

COPA-99aa通过分别与NONO和SFPQ蛋白结合来破坏NONO和SFPQ的二聚化,从而导致GBM细胞增殖或侵袭的抑制以及替莫唑胺诱导的DNA损伤的增加。总的来说,我们的数据表明,circCOPA主要通过其编码的COPA-99aa来抑制GBM恶性表型,而COPA-99aa通过干扰NONO和SFPQ的二聚化来增加替莫唑胺诱导的DNA损伤。

Restoring circCOPA or COPA-99aa may increase the sensitivity of patients to temozolomide..

恢复circCOPA或COPA-99aa可能会增加患者对替莫唑胺的敏感性。。

IntroductionGBM ranks as the most prevalent form of primary malignant brain tumor [1], accounting for approximately 75% of all malignant tumors of the central nervous system [2]. Currently, the treatment of GBM primarily involves surgery combined with radiotherapy, temozolomide (TMZ) chemotherapy, immunotherapy and tumor-treating fields (TTFields) [3,4,5].

引言GBM是原发性恶性脑肿瘤最常见的形式,约占中枢神经系统所有恶性肿瘤的75%[2]。目前,GBM的治疗主要包括手术联合放疗,替莫唑胺(TMZ)化疗,免疫治疗和肿瘤治疗领域(TTFields)[3,4,5]。

Unfortunately, patients with GBM have a dismal prognosis.Circular RNAs (circRNAs) are a class of single-stranded noncoding RNAs with covalent closed-loop structures [6]. They are considered as diagnostic markers and therapeutic targets for many types of tumors, including GBM [7, 8]. An increasing number of studies have shown that aberrantly expressed circRNAs play important roles in the occurrence and progression of GBM [7].

不幸的是,GBM患者预后不佳。环状RNA(circRNA)是一类具有共价闭环结构的单链非编码RNA。它们被认为是许多类型肿瘤的诊断标志物和治疗靶点,包括GBM[7,8]。越来越多的研究表明,异常表达的circRNA在GBM的发生和发展中起着重要作用。

For instance, circRNAs can disrupt glycolysis and promote the MDA5-mediated immune response by binding with TKFC proteins, thus suppressing the progression of glioma [9]. By functioning as miRNA sponges, circRNAs can promote glioma tumorigenesis [10]. Importantly, through internal ribosome entry sites (IRESs), N6-methyladenosine modifications or infinite open reading frames, circRNAs can encode unique peptides/proteins.

例如,circRNA可以通过与TKFC蛋白结合来破坏糖酵解并促进MDA5介导的免疫应答,从而抑制胶质瘤的进展。通过作为miRNA海绵的功能,circRNA可以促进神经胶质瘤的肿瘤发生。重要的是,通过内部核糖体进入位点(IREs),N6-甲基腺苷修饰或无限开放阅读框,circRNA可以编码独特的肽/蛋白质。

The impact of circRNA-encoded proteins/peptides on the malignant phenotype of GBM has received widespread attention [11, 12]. CircRNAs are increasingly recognized as potential targets for the treatment of various diseases, including GBM [13,14,15].TMZ presents the primary chemotherapy drug for GBM treatment and causes cytotoxicity by causing DNA double-strand break (DSB) [16].

circRNA编码的蛋白质/肽对GBM恶性表型的影响受到了广泛关注[11,12]。circRNA越来越被认为是治疗各种疾病的潜在靶点,包括GBM[13,14,15]。TMZ是GBM治疗的主要化疗药物,通过引起DNA双链断裂(DSB)引起细胞毒性。

The response of DNA damage repair can reverse the damage and lead to TMZ chemotherapeutic resistance [17]. Many studies have reported that the NONO–SFPQ complex is a heterodimer [18, 19] and is involved in DN.

DNA损伤修复的反应可以逆转损伤并导致TMZ化疗耐药(17)。许多研究报道,NONO-SFPQ复合物是异二聚体[18,19],与DN有关。

Data availability

数据可用性

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

本研究中使用和/或分析的数据集可根据合理要求从通讯作者处获得。

ReferencesLowe SR, Kunigelis K, Vogelbaum MA. Leveraging the neurosurgical operating room for therapeutic development in NeuroOncology. Adv drug Deliv Rev. 2022;186:114337.Article

参考文献Lowe SR,Kunigelis K,Vogelbaum MA。利用神经外科手术室进行神经肿瘤学的治疗发展。Adv drug Deliv版本2022;186:114337.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–51.Article

Louis DN,Perry A,Wesseling P,Brat DJ,Cree IA,Figarella Branger D等。2021年WHO中枢神经系统肿瘤分类:总结。神经肿瘤学。2021年;23:1231–51.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McFaline-Figueroa JR, Lee EQ. Brain Tumors. Am J Med. 2018;131:874–82.Article

McFaline Figueroa JR,Lee EQ。脑肿瘤。美国医学杂志2018;131:874-82.文章

PubMed

PubMed

Google Scholar

谷歌学者

Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.Article

Stupp R,Taillibert S,Kanner A,Read W,Steinberg D,Lhermitte B等。肿瘤治疗场加维持替莫唑胺与单独维持替莫唑胺对胶质母细胞瘤患者生存的影响:一项随机临床试验。杰玛。2017年;318:2306–16.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Long S, Huang G, Ouyang M, Xiao K, Zhou H, Hou A, et al. Epigenetically modified AP-2α by DNA methyltransferase facilitates glioma immune evasion by upregulating PD-L1 expression. Cell Death Dis. 2023;14:365.Article

Long S,Huang G,Ouyang M,Xiao K,Zhou H,Hou A等。DNA甲基转移酶表观遗传修饰的AP-2α通过上调PD-L1表达促进胶质瘤免疫逃避。细胞死亡Dis。2023年;14: 第365条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guan L, Hao Q, Shi F, Gao B, Wang M, Zhou X, et al. Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis. 2023;14:132.Article

。细胞死亡Dis。2023年;14: 132、条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peng D, Luo L, Zhang X, Wei C, Zhang Z, Han L. CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother. 2022;151:113150.Article

Peng D,Luo L,Zhang X,Wei C,Zhang Z,Han L.CircRNA:胶质瘤进展中的新兴明星。Biomed Pharmacother。2022年;151:113150.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.e813.Article

Vo JN,Cieslik M,Zhang Y,Shukla S,Xiao L,Zhang Y等。环状RNA在癌症中的前景。细胞。2019年;176:869–81.e813.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mu M, Niu W, Chu F, Dong Q, Hu S, Niu C. CircSOBP suppresses the progression of glioma by disrupting glycolysis and promoting the MDA5-mediated immune response. iScience. 2023;26:107897.Article

Mu M,Niu W,Chu F,Dong Q,Hu S,Niu C.CircSOBP通过破坏糖酵解和促进MDA5介导的免疫应答来抑制胶质瘤的进展。iScience。2023年;26:107897.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13:596.Article

。细胞死亡Dis。2022年;13: 第596条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91.Article

高X,夏X,李F,张M,周H,吴X等。环状RNA编码的致癌基因钙粘蛋白变体通过激活EGFR-STAT3信号传导促进胶质母细胞瘤的致瘤性。Nat细胞生物学。2021年;23:278–91.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhong J, Wu X, Gao Y, Chen J, Zhang M, Zhou H, et al. Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun. 2023;14:4467.Article

钟J,吴X,高Y,陈J,张M,周H等。环状RNA编码的MET变体促进胶质母细胞瘤肿瘤发生。纳特公社。2023年;14: 4467条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185:2016–34.Article

刘CX,陈LL。环状RNA:表征,细胞作用和应用。细胞。2022年;185:2016–34.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022;185:1728–44.e1716.Article

曲丽,易Z,沈Y,林L,陈F,徐Y,等。针对SARS-CoV-2和新兴变体的环状RNA疫苗。细胞。2022年;185:1728–44.e1716.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ruan X, Liu Y, Wang P, Liu L, Ma T, Xue Y, et al. RBMS3-induced circHECTD1 encoded a novel protein to suppress the vasculogenic mimicry formation in glioblastoma multiforme. Cell Death Dis. 2023;14:745.Article

阮X,刘Y,王P,刘L,马T,薛Y等。RBMS3诱导的circHECTD1编码一种新蛋白,可抑制多形性胶质母细胞瘤的血管生成拟态形成。细胞死亡Dis。2023年;14: 第745条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen Y, Mu Y, Guan Q, Li C, Zhang Y, Xu Y, et al. RPL22L1, a novel candidate oncogene promotes temozolomide resistance by activating STAT3 in glioblastoma. Cell Death Dis. 2023;14:757.Article

Chen Y,Mu Y,Guan Q,Li C,Zhang Y,Xu Y,et al。RPL22L1是一种新的候选癌基因,通过激活胶质母细胞瘤中的STAT3来促进替莫唑胺耐药。细胞死亡Dis。2023年;14: 第757条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maugeri-Saccà M, Bartucci M, De Maria R. DNA damage repair pathways in cancer stem cells. Mol Cancer Ther. 2012;11:1627–36.Article

Maugeri SaccàM,Bartucci M,De Maria R.癌症干细胞中的DNA损伤修复途径。摩尔癌症治疗。2012年;11: 1627-36.条

PubMed

PubMed

Google Scholar

谷歌学者

Zhang WW, Zhang LX, Busch RK, Farrés J, Busch H. Purification and characterization of a DNA-binding heterodimer of 52 and 100 kDa from HeLa cells. Biochem J. 1993;290:267–72.Article

Zhang WW,Zhang LX,Busch RK,Farrés J,Busch H.从HeLa细胞中纯化和表征52和100 kDa的DNA结合异二聚体。生物化学J.1993;290:267–72.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schell B, Legrand P, Fribourg S. Crystal structure of SFPQ-NONO heterodimer. Biochimie. 2022;198:1–7.Article

Schell B,Legrand P,Fribourg S.SFPQ-NONO异二聚体的晶体结构。生物化学。2022年;198:1-7.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fu W, Ren H, Shou J, Liao Q, Li L, Shi Y, et al. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair. Basic Res Cardiol. 2022;117:10.Article

Fu W,Ren H,Shou J,Liao Q,Li L,Shi Y等。NPPA-AS1的缺失通过稳定SFPQ-NONO异聚体诱导的DNA修复来促进心脏再生。。2022年;117:10.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qiu M, Zhang N, Yao S, Zhou H, Chen X, Jia Y, et al. DNMT3A-mediated high expression of circ_0057504 promotes benzo[a]pyrene-induced DNA damage via the NONO-SFPQ complex in human bronchial epithelial cells. Environ Int. 2022;170:107627.Article

邱M,张N,姚S,周H,陈X,贾Y等。DNMT3A介导的circ\u 0057504的高表达通过人支气管上皮细胞中的NONO-SFPQ复合物促进苯并[a]芘诱导的DNA损伤。环境国际2022;170:107627.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

de Silva HC, Lin MZ, Phillips L, Martin JL, Baxter RC. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci. 2019;76:2015–30.Article

德席尔瓦HC,林MZ,菲利普斯L,马丁JL,巴克斯特RC。IGFBP-3在三阴性乳腺癌中PARP依赖性DNA损伤修复中与NONO和SFPQ相互作用。细胞分子生命科学。2019年;76:2015–30.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li S, Li Z, Shu FJ, Xiong H, Phillips AC, Dynan WS. Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Nucleic Acids Res. 2014;42:9771–80.Article

Li S,Li Z,Shu FJ,Xiong H,Phillips AC,Dynan WS。NONO基因敲除小鼠胚胎成纤维细胞中的双链断裂修复缺陷和PSPC1旁系同源物的自发上调补偿。核酸Res.2014;42:9771–80.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee M, Sadowska A, Bekere I, Ho D, Gully BS, Lu Y, et al. The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res. 2015;43:3826–40.Article

Lee M,Sadowska A,Bekere I,Ho D,Gully BS,Lu Y等。人SFPQ的结构揭示了一种卷曲螺旋介导的聚合物,对于基因调控中的功能聚集至关重要。核酸研究2015;43:3826–40.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Laurenzi T, Palazzolo L, Taiana E, Saporiti S, Ben Mariem O, Guerrini U, et al. Molecular modelling of NONO and SFPQ dimerization process and RNA recognition mechanism. Int J Mol Sci. 2022;23:7626.Article

Laurenzi T,Palazzolo L,Taiana E,Saporiti S,Ben-Mariem O,Guerrini U等。NONO和SFPQ二聚化过程的分子建模和RNA识别机制。国际分子科学杂志。2022年;23:7626.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Passon DM, Lee M, Rackham O, Stanley WA, Sadowska A, Filipovska A, et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci USA 2012;109:4846–50.Article

Passon DM,Lee M,Rackham O,Stanley WA,Sadowska A,Filipovska A等。人NONO和副斑蛋白组分1异二聚体的结构及其在亚核体形成中的作用分析。美国国家科学院院刊2012;109:4846–50.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou X, Wang R, Li X, Yu L, Hua D, Sun C, et al. Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B. J Clin Investig. 2019;129:676–93.Article

Zhou X,Wang R,Li X,Yu L,Hua D,Sun C等。剪接因子SRSF1通过MYO1B的致癌剪接转换促进胶质瘤发生。J临床研究。2019年;129:676-93.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li Y, Chen J, Chen Z, Xu X, Weng J, Zhang Y, et al. CircGLIS3 promotes high-grade glioma invasion via modulating ezrin phosphorylation. Front Cell Dev Biol. 2021;9:663207.Article

Li Y,Chen J,Chen Z,Xu X,Weng J,Zhang Y等。CircGLIS3通过调节ezrin磷酸化促进高级胶质瘤侵袭。前细胞开发生物学。2021年;9: 663207条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16:899–905.Article

Liu M,Wang Q,Shen J,Yang BB,Ding X.Circbank:具有标准命名法的circRNA综合数据库。RNA生物学。2019年;16: 899-905.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 2016;6:34985.Article

Chen X,Han P,Zhou T,Guo X,Song X,Li Y.circRNADb:具有蛋白质编码注释的人类环状RNA的综合数据库。Sci代表2016;6:

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, et al. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res. 2021;49:D236–42.Article

黄W,凌Y,张S,夏Q,曹R,范X等。TransCirc:基于多组学证据的可翻译环状RNA的交互式数据库。核酸研究2021;49:D236-42.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wei C, Zhang X, Peng D, Zhang X, Guo H, Lu Y, et al. LncRNA HOXA11-AS promotes glioma malignant phenotypes and reduces its sensitivity to ROS via Tpl2-MEK1/2-ERK1/2 pathway. Cell Death Dis. 2022;13:942.Article

Wei C,Zhang X,Peng D,Zhang X,Guo H,Lu Y等。LncRNA HOXA11-AS通过Tpl2-MEK1/2-ERK1/2途径促进胶质瘤恶性表型并降低其对ROS的敏感性。细胞死亡Dis。2022年;13: 第942条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhong J, Yang X, Chen J, He K, Gao X, Wu X, et al. Circular EZH2-encoded EZH2-92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nat Commun. 2022;13:4795.Article

Zhong J,Yang X,Chen J,He K,Gao X,Wu X等。环状EZH2编码的EZH2-92aa通过抑制表面NKG2D配体介导胶质母细胞瘤的免疫逃避。纳特公社。2022年;13: 第4795条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, et al. Structured elements drive extensive circular RNA translation. Mol Cell. 2021;81:4300–18.e4313.Article

Chen CK,Cheng R,Demeter J,Chen J,Weingarten Gabbay S,Jiang L等。结构元件驱动广泛的环状RNA翻译。摩尔细胞。2021年;81:4300–18.e4313.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol. 2019;11:911–9.Article

Yang Y,Wang Z.IRES介导的不依赖帽的翻译,这是通向隐藏蛋白质组的途径。J摩尔细胞生物学。2019年;11: 911–9.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37:1805–14.Article

Zhang M,Huang N,Yang X,Luo J,Yan S,Xiao F等。由SHPRH基因的圆形编码的新型蛋白质抑制胶质瘤的发生。。2018年;37:1805–14.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen LL, Bindereif A, Bozzoni I, Chang HY, Matera AG, Gorospe M, et al. A guide to naming eukaryotic circular RNAs. Nat cell Biol. 2023;25:1–5.Article

Chen LL,Bindereif A,Bozzoni I,Chang HY,Matera AG,Gorospe M等。真核环状RNA命名指南。Nat细胞生物学。2023年;25:1–5.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 2019;18:131.Article

夏X,李X,李F,吴X,张M,周H,等。由环状AKT3 RNA编码的新型肿瘤抑制蛋白通过与活性磷酸肌醇依赖性激酶-1竞争来抑制胶质母细胞瘤的致瘤性。摩尔癌症。2019年;18: 131、条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaafar L, Li Z, Li S, Dynan WS. SFPQ•NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining. Nucleic Acids Res. 2017;45:1848–59.Article

Jaafar L,Li Z,Li S,Dynan WS。SFPQ•NONO和XLF分别和共同起作用,通过规范的非同源末端连接促进DNA双链断裂修复。核酸研究2017;45:1848-59.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rajesh C, Baker DK, Pierce AJ, Pittman DL. The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Res. 2011;39:132–45.Article

。剪接因子相关蛋白SFPQ/PSF与RAD51D相互作用,是同源性定向修复和姐妹染色单体凝聚力所必需的。核酸Res.2011;39:132–45.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang X, Han M, Wang S, Sun Y, Zhao W, Xue Z, et al. Targeting the splicing factor NONO inhibits GBM progression through GPX1 intron retention. Theranostics. 2022;12:5451–69.Article

。治疗学。2022年;12: 5451-69.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei Y, Luo H, Yee PP, Zhang L, Liu Z, Zheng H, et al. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci. 2021;8:e2102653.Article

Wei Y,Luo H,Yee PP,Zhang L,Liu Z,Zheng H等。副斑蛋白NONO促进细胞核中TAZ相分离,从而驱动致癌转录程序。高级科学。2021年;8: e2102653.条款

Google Scholar

谷歌学者

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.Article

。英国医学杂志2005;352:987–96.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clinic. 2020;70:299–312.Article

。CA癌症J诊所。2020年;70:299–312.文章

Google Scholar

谷歌学者

Jiang T, Nam DH, Ram Z, Poon WS, Wang J, Boldbaatar D, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.Article

Jiang T,Nam DH,Ram Z,Poon WS,Wang J,Boldbaatar D等。成人弥漫性胶质瘤治疗的临床实践指南。癌症Lett。2021年;499:60–72.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu D, Huang CJ, Tucker HO. Established and evolving roles of the multifunctional Non-POU domain-containing octamer-binding protein (NonO) and splicing factor proline- and glutamine-rich (SFPQ). J Dev Biol. 2024;12:3.Article

余D,黄CJ,胡塔克。含有多功能非POU结构域的八聚体结合蛋白(NonO)和富含脯氨酸和谷氨酰胺的剪接因子(SFPQ)的建立和发展作用。J Dev Biol。2024年;12: 3、条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Petti E, Buemi V, Zappone A, Schillaci O, Broccia PV, Dinami R, et al. SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nat Commun. 2019;10:1001.Article

Petti E,Buemi V,Zappone A,Schillaci O,Broccia PV,Dinami R等。SFPQ和NONO抑制RNA:DNA杂交相关的端粒不稳定性。纳特公社。2019年;10: 第1001条

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krietsch J, Caron MC, Gagné JP, Ethier C, Vignard J, Vincent M, et al. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res. 2012;40:10287–301.Article

Krietsch J,Caron MC,GagnéJP,Ethier C,Vignard J,Vincent M等。PARP激活调节DNA双链断裂对DNA损伤反应中的RNA结合蛋白NONO。核酸Res.2012;40:10287–301.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lone BA, Siraj F, Sharma I, Verma S, Karna SKL, Ahmad F, et al. Non-POU domain-containing octomer-binding (NONO) protein expression and stability promotes the tumorigenicity and activation of Akt/MAPK/β-catenin pathways in human breast cancer cells. Cell Commun Signal. 2023;21:157.Article .

Lone BA,Siraj F,Sharma I,Verma S,Karna SKL,Ahmad F等。含有非POU结构域的八聚体结合(NONO)蛋白表达和稳定性促进人乳腺癌细胞中Akt/MAPK/β-连环蛋白途径的致瘤性和活化。细胞通讯信号。2023年;21:157。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng Z, Lu C, Wang H, Wang N, Cui S, Yu C, et al. Long noncoding RNA LHFPL3-AS2 suppresses metastasis of non-small cell lung cancer by interacting with SFPQ to regulate TXNIP expression. Cancer Lett. 2022;531:1–13.Article

Cheng Z,Lu C,Wang H,Wang N,Cui S,Yu C,et al。长非编码RNA LHFPL3-AS2通过与SFPQ相互作用调节TXNIP表达来抑制非小细胞肺癌的转移。癌症Lett。2022年;531:1–13.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yarosh CA, Iacona JR, Lutz CS, Lynch KW. PSF: nuclear busy-body or nuclear facilitator? Wiley Interdiscip Rev RNA. 2015;6:351–67.Article

Yarosh CA,Iacona JR,Lutz CS,Lynch KW。PSF:核繁忙机构还是核促进者?Wiley Interdiscip Rev RNA。2015;6: 351-67.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to thank American Journal Experts (AJE) for the paper revision support.FundingThe project was supported by grants (Nos. 81773187, 82273493) from National Natural Science Foundation of China. The project was sponsored by Tianjin Health Research Project (TJWJ2023ZD001) and the Natural Science Foundation of Henan Province for Excellent Young Scholars (No.

下载参考文献致谢我们要感谢美国期刊专家(AJE)对论文修订的支持。资助该项目得到了国家自然科学基金资助(编号8177318782273493)。该项目由天津市健康研究项目(TJWJ2023ZD001)和河南省优秀青年自然科学基金(No。

232300421057).Author informationAuthor notesThese authors contributed equally: Dazhao Peng, Cheng Wei, Boyuan Jing.Authors and AffiliationsTianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, ChinaDazhao Peng, Cheng Wei, Boyuan Jing, Runze Yu & Lei HanDepartment of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, ChinaZhenyu ZhangAuthorsDazhao PengView author publicationsYou can also search for this author in.

232300421057)。作者信息作者注意到这些作者做出了同样的贡献:彭大钊,程伟,景伯元。作者和附属机构天津神经病学研究所,教育部和天津市中枢神经系统后神经损伤,神经修复和再生重点实验室,天津医科大学总医院,天津,中国天津彭大钊,程伟,景伯元,余润泽和雷手郑州大学第一附属医院神经外科,河南郑州,张振宇作者彭大钊作者出版物您也可以在中搜索作者。

PubMed Google ScholarCheng WeiView author publicationsYou can also search for this author in

PubMed Google ScholarCheng WeiView作者出版物您也可以在

PubMed Google ScholarBoyuan JingView author publicationsYou can also search for this author in

PubMed Google ScholarBoyuan JingView作者出版物您也可以在

PubMed Google ScholarRunze YuView author publicationsYou can also search for this author in

PubMed Google ScholarRunze YuView作者出版物您也可以在

PubMed Google ScholarZhenyu ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张振宇查看作者出版物您也可以在

PubMed Google ScholarLei HanView author publicationsYou can also search for this author in

PubMed Google ScholarLei HanView作者出版物您也可以在

PubMed Google ScholarContributionsDP, CW, and BJ contributed equally to this study and made substantial contributions to conception and design, performing experiments, acquisition of data, and interpretation of data. RY was mainly responsible for drafting the article and editing the data.

PubMed谷歌学术贡献SDP,CW和BJ对这项研究做出了同样的贡献,并为概念和设计,进行实验,获取数据和解释数据做出了重大贡献。RY主要负责起草文章和编辑数据。

LH and ZZ had given final approval of the version to be published. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

LH和ZZ最终批准了即将发布的版本。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Zhenyu Zhang or Lei Han.Ethics declarations

张振宇或韩磊。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics approval and consent to participate

道德批准和同意参与

This study was approved by the Human Scientific Ethics Committee of the First Affiliated Hospital of Zhengzhou University, and written informed consent was obtained from all patients.

本研究经郑州大学第一附属医院人类科学伦理委员会批准,并获得所有患者的书面知情同意书。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Edited by Giovanni BlandinoSupplementary informationSupplementary materialsSupplementary Table 1Supplementary Table 2Original western blotsRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。由Giovanni Blandinos编辑补充信息补充材料补充表1补充表2原始蛋白质印迹权利和权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articlePeng, D., Wei, C., Jing, B. et al. A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO–SFPQ complex.

转载和许可本文引用本文Peng,D.,Wei,C.,Jing,B。等人。由circCOPA编码的新型蛋白质通过破坏NONO-SFPQ复合物抑制胶质母细胞瘤细胞的恶性表型并增加其对替莫唑胺的敏感性。

Cell Death Dis 15, 616 (2024). https://doi.org/10.1038/s41419-024-07010-zDownload citationReceived: 24 April 2024Revised: 10 August 2024Accepted: 16 August 2024Published: 25 August 2024DOI: https://doi.org/10.1038/s41419-024-07010-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

细胞死亡Dis 15616(2024)。https://doi.org/10.1038/s41419-024-07010-zDownload引文收到日期:2024年4月24日修订日期:2024年8月10日接受日期:2024年8月16日发布日期:2024年8月25日OI:https://doi.org/10.1038/s41419-024-07010-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

CNS cancerNon-coding RNAs

中枢神经系统癌症非编码RNA