商务合作
动脉网APP
可切换为仅中文
AbstractPhosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively.
磷酸果糖激酶-1(PFK1)催化糖酵解的限速步骤,使葡萄糖转化为细胞能量。PFK1受到高度调节,以响应细胞不断变化的能量需求。在细菌中,PFK1调节的结构基础是变构的教科书例子;低和高细胞能量的分子信号分别促进活性R态和非活性T态构象之间的转变。
Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state.
然而,关于真核PFK1调控的结构基础知之甚少。在这里,我们通过cryoEM确定了R和T状态下PFK1(PFKL)的人肝同工型的结构,为真核PFK1变构调节机制提供了见识。T态结构揭示了细菌和真核酶之间的构象差异,ATP在多个位点结合的变构抑制机制,以及C末端在稳定T态中的自抑制作用。
We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells..
我们还确定了PFKL细丝的结构,这些结构定义了高阶组装的机制,并证明了这些结构对于细胞中PFKL的高阶组装是必需的。。
IntroductionGlycolysis is an ancient, highly-conserved metabolic pathway for the extraction of energy from sugars. During glycolysis, glucose is metabolized to produce energy in the form of ATP, the essential cofactor NADH, as well as other biosynthetic precursors to support cellular functions. The first committed step of glycolysis is catalyzed by phosphofructokinase-1 (PFK1), which converts fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F1,6BP), consuming one molecule of ATP in the process.
引言糖酵解是一种古老的,高度保守的代谢途径,用于从糖中提取能量。在糖酵解过程中,葡萄糖被代谢产生ATP形式的能量,ATP是必需的辅助因子NADH,以及支持细胞功能的其他生物合成前体。糖酵解的第一步是由磷酸果糖激酶-1(PFK1)催化的,它将果糖6-磷酸(F6P)转化为果糖1,6-二磷酸(F1,6BP),在此过程中消耗一分子ATP。
Given this central role as the gatekeeper of glycolysis, PFK1 is heavily regulated by the energy state of the cell; PFK1 is activated by signals of low cellular energy, such as AMP and ADP, and inhibited by signals of high cellular energy, such as ATP and citrate.The structural basis for PFK1 regulation is best described for the bacterial enzyme1,2,3.
鉴于这种作为糖酵解守门人的核心作用,PFK1受到细胞能量状态的严重调节;PFK1被低细胞能量的信号激活,例如AMP和ADP,并被高细胞能量的信号抑制,例如ATP和柠檬酸盐。PFK1调节的结构基础最好描述为细菌酶1,2,3。
Bacterial PFK1 is a D2-symmetric homotetramer with four active sites, each formed at an interface between two monomers. The enzyme transitions between an active R-state conformation, promoted by binding to F6P and allosteric activators, and an inactive T-state conformation, observed in the absence of F6P and upon binding to allosteric inhibitors.
细菌PFK1是具有四个活性位点的D2对称同四聚体,每个活性位点形成于两个单体之间的界面。该酶在通过与F6P和变构激活剂结合而促进的活性R态构象与在不存在F6P和与变构抑制剂结合时观察到的无活性T态构象之间转变。
The R-state to T-state transition involves a rotation between essentially rigid dimers and rearrangement of active site residues, which together function to disrupt the F6P binding pocket2.The PFK1 catalytic domain architecture is conserved in eukaryotes. However, eukaryotic PFK1 has an additional regulatory domain, which arose from gene duplication, tandem fusion, and evolution of the ancestral prokaryotic catalytic domain4,5,6.
R态到T态的转变涉及基本刚性二聚体之间的旋转和活性位点残基的重排,它们共同起破坏F6P结合口袋2的作用。PFK1催化结构域在真核生物中是保守的。然而,真核生物PFK1具有另外的调节结构域,其产生于基因复制,串联融合和祖先原核催化结构域的进化4,5,6。
The resulting eukaryotic PFK1 monomer corresponds to the bacterial dimer that rotates as an essentially rigid body during the R- to T-state transition. Gen.
所得的真核PFK1单体对应于细菌二聚体,其在R到T状态转变期间作为基本刚体旋转。发电机。
Data availability
数据可用性
Cryo-EM structures and atomic models have been deposited in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB), respectively, with the following accession codes: EMD-43747, PDB: 8W2G (R-state PFKL tetramer); EMD-43749, PDB: 8W2I (R-state PFKL filament); EMD-43748, PDB: 8W2H (T-state PFKL tetramer); EMD-43750, PDB: 8W2J (T-state PFKL filament).
低温电磁结构和原子模型已分别保存在电子显微镜数据库(EMDB)和蛋白质数据库(PDB)中,登录号如下:EMD-43747,PDB:8W2G(R态PFKL四聚体);EMD-43749,PDB:8W2I(R态PFKL灯丝);EMD-43748,PDB:8W2H(T态PFKL四聚体);EMD-43750,PDB:8W2J(T态PFKL灯丝)。
MD simulation input files and final geometries, as well as node degeneracies from network path analysis, are available on Zenodo (https://doi.org/10.5281/zenodo.12168317). The reference structure used in this work is 4XYJ. Source Data are provided as a Source Data file. Source data are provided with this paper..
Zenodo上提供了MD模拟输入文件和最终几何形状,以及网络路径分析中的节点退化(https://doi.org/10.5281/zenodo.12168317)。这项工作中使用的参考结构是4XYJ。源数据作为源数据文件提供。本文提供了源数据。。
ReferencesEvans, P. R., Farrants, G. W. & Lawrence, M. C. Crystallographic structure of allosterically inhibited phosphofructokinase at 7 A resolution. J. Mol. Biol. 191, 713–720 (1986).Article
参考文献Evans,P.R.,Farrants,G.W。和Lawrence,M.C。变构抑制磷酸果糖激酶的晶体结构,分辨率为7 A。J、 分子生物学。191713-720(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schirmer, T. & Evans, P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature 343, 140–145 (1990).Article
Schirmer,T。&Evans,P.R。磷酸果糖激酶变构行为的结构基础。自然343140-145(1990)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Evans, P. R., Farrants, G. W. & Hudson, P. J. Phosphofructokinase: structure and control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 293, 53–62 (1981).Article
Evans,P.R.,Farrants,G.W。和Hudson,P.J。磷酸果糖激酶:结构和控制。菲洛斯。事务处理。R、 社会责任。生物科学学士。293,53-62(1981)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Poorman, R. A., Randolph, A., Kemp, R. G. & Heinrikson, R. L. Evolution of phosphofructokinase—gene duplication and creation of new effector sites. Nature 309, 467–469 (1984).Article
Poorman,R.A.,Randolph,A.,Kemp,R.G。&Heinrikson,R.L。磷酸果糖激酶基因复制的进化和新效应位点的产生。《自然》309467-469(1984)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kemp, R. G. & Gunasekera, D. Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase. Biochemistry 41, 9426–9430 (2002).Article
Kemp,R.G。和Gunasekera,D。哺乳动物磷酸果糖-1-激酶变构配体位点的进化。生物化学419426-9430(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Banaszak, K. et al. The crystal structures of eukaryotic phosphofructokinases from baker’s yeast and rabbit skeletal muscle. J. Mol. Biol. 407, 284–297 (2011).Article
Banaszak,K。等人。来自面包酵母和兔骨骼肌的真核磷酸果糖激酶的晶体结构。J、 分子生物学。407284-297(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Webb, B. A. et al. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 523, 111–114 (2015).Article
Webb,B.A.等人。人磷酸果糖激酶-1的结构和癌症相关突变的原子基础。自然523111-114(2015)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kloos, M., Brüser, A., Kirchberger, J., Schöneberg, T. & Sträter, N. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochem. J. 469, 421–432 (2015).Article
Kloos,M.,Brüser,A.,Kirchberger,J.,Schöneberg,T。&Sträter,N。人血小板磷酸果糖激酶-1的晶体结构锁定在活化构象中。生物化学。J、 。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zancan, P., Marinho-Carvalho, M. M., Faber-Barata, J., Dellias, J. M. M. & Sola-Penna, M. ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. IUBMB Life 60, 526–533 (2008).Article
Zancan,P.,Marinho Carvalho,M.M.,Faber-Barata,J.,Dellias,J.M.M。&Sola-Penna,M。ATP和果糖-2,6-二磷酸通过改变其四级结构来调节骨骼肌6-磷酸果糖-1-激酶。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hesterberg, L. K. & Lee, J. C. Self-association of rabbit muscle phosphofructokinase: effects of ligands. Biochemistry 21, 216–222 (1982).Article
Hesterberg,L.K。&Lee,J.C。兔肌肉磷酸果糖激酶的自缔合:配体的作用。生物化学21216-222(1982)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Costa Leite, T., Da Silva, D., Guimarães Coelho, R., Zancan, P. & Sola-Penna, M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem. J. 408, 123–130 (2007).Article
Costa Leite,T.,Da Silva,D.,Guimarães Coelho,R.,Zancan,P。&Sola Penna,M。乳酸有利于骨骼肌6-磷酸果糖-1-激酶四聚体的解离,从而下调酶和肌肉糖酵解。生物化学。J、 408123-130(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hicks, K. G. et al. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science 379, 996–1003 (2023).Article
Hicks,K.G.等人。碳水化合物代谢的蛋白质-代谢物相互作用组学揭示了乳酸脱氢酶的调节。科学37996-1003(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yi, W. et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975–980 (2012).Article
Yi,W。等人。磷酸果糖激酶1糖基化调节细胞生长和代谢。科学337975-980(2012)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).Article
Zhao,S.等人。通过蛋白质赖氨酸乙酰化调节细胞代谢。科学3271000–1004(2010)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mahrenholz, A. M., Lan, L. & Mansour, T. E. Phosphorylation of heart phosphofructokinase by Ca2+ calmodulin protein kinase. Biochem. Biophys. Res. Commun. 174, 1255–1259 (1991).Article
Mahrenholz,A.M.,Lan,L。&Mansour,T.E。通过Ca2+钙调蛋白蛋白激酶磷酸化心脏磷酸果糖激酶。生物化学。生物物理。公共资源。1741255-1259(1991)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, J.-H. et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat. Commun. 8, 949 (2017).Article
Lee,J.-H.等人。通过AKT稳定磷酸果糖激酶1血小板同种型促进肿瘤发生。国家公社。8949(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fernandes, P. M., Kinkead, J., McNae, I., Michels, P. A. M. & Walkinshaw, M. D. Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochem. J. 477, 4425–4441 (2020).Article
Fernandes,P.M.,Kinkead,J.,McNae,I.,Michels,P.A.M。和Walkinshaw,M.D。三种人类磷酸果糖激酶之间的生化和转录水平差异显示每种同种型对特定代谢生态位的优化。生物化学。J、 4774425–4441(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Webb, B. A., Dosey, A. M., Wittmann, T., Kollman, J. M. & Barber, D. L. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J. Cell Biol. 216, 2305–2313 (2017).Article
Webb,B.A.,Dosey,A.M.,Wittmann,T.,Kollman,J.M。和Barber,D.L。糖酵解酶磷酸果糖激酶-1组装成细丝。J、 细胞生物学。2162305-2313(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amara, N. et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell 184, 4480–4494.e15 (2021).Article
Amara,N。等人。PFKL的选择性激活抑制吞噬氧化爆发。细胞1844480–4494.e15(2021)。文章
MathSciNet
MathSciNet
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rizzo, S. C. & Eckel, R. E. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. Am. J. Physiol. 211, 429–436 (1966).Article
Rizzo,S.C.&Eckel,R.E.通过无机磷酸盐和硫酸盐控制人红细胞中的糖酵解。。211429-436(1966)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mosser, R., Reddy, M. C. M., Bruning, J. B., Sacchettini, J. C. & Reinhart, G. D. Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase. Biochemistry 52, 5421–5429 (2013).Article
。生物化学525421-5429(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jin, M. et al. Glycolytic enzymes coalesce in G bodies under hypoxic stress. Cell Rep. 20, 895–908 (2017).Article
Jin,M。等人。糖酵解酶在低氧应激下在G体内聚结。Cell Rep.20895–908(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adams, A. G., Bulusu, R. K. M., Mukhitov, N., Mendoza-Cortes, J. L. & Roper, M. G. Online measurement of glucose consumption from HepG2 cells using an integrated bioreactor and enzymatic assay. Anal. Chem. 91, 5184–5190 (2019).Article
Adams,A.G.,Bulusu,R.K.M.,Mukhitov,N.,Mendoza Cortes,J.L。&Roper,M.G。使用集成生物反应器和酶测定法在线测量HepG2细胞的葡萄糖消耗。。。915184-5190(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santamaria, B., Estevez, A. M., Martinez-Costa, O. H. & Aragon, J. J. Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme. The case of dictyostelium discoideum phosphofructokinase. J. Biol. Chem. 277, 1210–1216 (2002).Article
Santamaria,B.,Estevez,A.M.,Martinez-Costa,O.H。&Aragon,J.J。从非变构酶开始产生变构磷酸果糖激酶。盘基网柄菌磷酸果糖激酶的情况。J、 生物。。2771210-1216(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).Article
Huang,J。等人。CHARMM36m:折叠和本质无序蛋白质的改进力场。自然方法14,71-73(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yao, X.-Q. et al. Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins. Biophys. J. 110, 427a (2016).Article
Yao,X.-Q.等人。异源三聚体G蛋白α亚基中的动态偶联和变构网络。生物物理。J、 110427A(2016)。文章
ADS
广告
Google Scholar
谷歌学者
Yugi, K. et al. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep. 8, 1171–1183 (2014).Article
Yugi,K.等人。从磷酸化蛋白质组和代谢组数据重建胰岛素信号流。Cell Rep.81171–1183(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lynch, E. M., Kollman, J. M. & Webb, B. A. Filament formation by metabolic enzymes—A new twist on regulation. Curr. Opin. Cell Biol. 66, 28–33 (2020).Article
Lynch,E.M.,Kollman,J.M。和Webb,B.A。代谢酶形成细丝-调节的新扭曲。货币。奥平。细胞生物学。66,28-33(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simonet, J. C., Burrell, A. L., Kollman, J. M. & Peterson, J. R. Freedom of assembly: metabolic enzymes come together. Mol. Biol. Cell 31, 1201–1205 (2020).Article
Simonet,J.C.,Burrell,A.L.,Kollman,J.M。和Peterson,J.R。组装自由:代谢酶聚集在一起。。细胞311201-1205(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hvorecny, K. L. & Kollman, J. M. Greater than the sum of parts: mechanisms of metabolic regulation by enzyme filaments. Curr. Opin. Struct. Biol. 79, 102530 (2023).Article
Hvorecyn,K.L。&Kollman,J.M。大于部分之和:酶丝的代谢调节机制。货币。奥平。结构。生物学79102530(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).Article
Garcia-Seisdedos,H.,Empereur-Mot,C.,Elad,N。&Levy,E.D。蛋白质在超分子自组装的边缘进化。自然548244-247(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seisdedos, H. G., Levin, T., Shapira, G., Freud, S. & Levy, E. D. Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells. Proc. Natl Acad. Sci. USA 119 https://doi.org/10.1073/pnas.2101117119 (2022).Lynch, E. M. & Kollman, J.
Seisdedos,H.G.,Levin,T.,Shapira,G.,Freud,S。&Levy,E.D。突变文库揭示了负设计屏蔽蛋白质免受超分子自组装和细胞中重新定位的影响。程序。国家科学院。科学。美国119https://doi.org/10.1073/pnas.2101117119(2022年)。林奇,E.M。和科尔曼,J。
M. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat. Struct. Mol. Biol. 27, 42–48 (2020).Article .
M、 耦合的结构转变能够高度协同调节人CTPS2细丝。自然结构。。27,42-48(2020)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017).Article
Lynch,E.M。等人。人CTP合酶丝结构揭示了活性酶构象。自然结构。。24507-514(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barry, R. M. et al. Large-scale filament formation inhibits the activity of CTP synthetase. eLife 3, e03638 (2014).Article
Barry,R.M.等人。大规模的细丝形成抑制了CTP合成酶的活性。eLife 3,e03638(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stoddard, P. R. et al. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. Science 367, 1039–1042 (2020).Article
Stoddard,P.R。等人。肌动蛋白ATP酶家族中的聚合调节酵母中的己糖激酶活性。。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hunkeler, M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470–474 (2018).Article
Hunkeler,M。等人。调节人乙酰辅酶A羧化酶的结构基础。自然558470-474(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pony, P., Rapisarda, C., Terradot, L., Marza, E. & Fronzes, R. Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation. Nat. Commun. 11, 1426 (2020).Article
Pony,P.,Rapisarda,C.,Terradot,L.,Marza,E。&Fronzes,R。细菌双功能醇/醛脱氢酶AdhE的成丝对于底物通道和酶调节至关重要。国家公社。111426(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, G. et al. Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. Commun. Biol. 3, 298 (2020).Article
Kim,G。等人。醛醇脱氢酶经历结构转变以形成用于底物通道的延伸螺旋体。Commun公司。生物学3298(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, H.-H. et al. Filamentation modulates allosteric regulation of PRPS. eLife 11, e79552 (2022).Article
Hu,H.-H.等人。丝状化调节PrP的变构调节。eLife 11,e79552(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burrell, A. L. et al. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat. Struct. Mol. Biol. 29, 47–58 (2022).Article
Burrell,A.L。等人。IMPDH1视网膜变体控制细丝结构以调节变构调节。自然结构。。29,47-58(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnson, M. C. & Kollman, J. M. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife 9, e53243 (2020).Article
Johnson,M.C。&Kollman,J.M。Cryo-EM结构证明人IMPDH2细丝组装调节变构调节。eLife 9,e53243(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hvorecny, K. L., Hargett, K., Quispe, J. D. & Kollman, J. M. Human PRPS1 filaments stabilize allosteric sites to regulate activity. Nat. Struct. Mol. Biol. 30, 391–402 (2023).Article
Hvorecyn,K.L.,Hargett,K.,Quispe,J.D。和Kollman,J.M。人PRPS1细丝稳定变构位点以调节活性。自然结构。。30391-402(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90, 278–291 (2016).Article
Jang,S。等人。糖酵解酶在能量应激下定位于突触以支持突触功能。神经元90278-291(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kohnhorst, C. L. et al. Identification of a multienzyme complex for glucose metabolism in living cells. J. Biol. Chem. 292, 9191–9203 (2017).Article
Kohnhorst,C.L.等人。鉴定活细胞中葡萄糖代谢的多酶复合物。J、 生物。。29291911-9203(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brüser, A., Kirchberger, J., Kloos, M., Sträter, N. & Schöneberg, T. Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. J. Biol. Chem. 287, 17546–17553 (2012).Article
Brüser,A.,Kirchberger,J.,Kloos,M.,Sträter,N。&Schöneberg,T。哺乳动物肌肉6-磷酸果糖激酶中腺嘌呤核苷酸结合位点的功能连接。J、 生物。。28717546-17553(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).Article
Suloway,C.等人,《自动分子显微镜:新的Leginon系统》。J、 结构。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).Article
Vallat,R.Pingouin:Python中的统计数据。J、 开源软件。31026(2018)。文章
ADS
广告
Google Scholar
谷歌学者
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article
Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).Article
Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。D、 生物。晶体学。66213-221(2010)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. Struct. Biol. 74, 519–530 (2018).Article
Croll,T.I.ISOLDE:一个物理真实的环境,用于将模型构建成低分辨率电子密度图。晶体学报D.结构。生物学74519-530(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article
Pettersen,E.F.等人,《UCSF Chimera——探索性研究和分析的可视化系统》。J、 计算机。。251605-1612(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).Article
Young,G.等人。单个生物大分子的定量质量成像。科学360423-427(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Voronkova, M. A. et al. Cancer-associated somatic mutations in human phosphofructokinase-1 reveal a critical electrostatic interaction for allosteric regulation of enzyme activity. Biochem. J. 480, 1411–1427 (2023).Article
Voronkova,M.A。等人。人类磷酸果糖激酶-1中与癌症相关的体细胞突变揭示了变构调节酶活性的关键静电相互作用。生物化学。J、 4801411-1427(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
The PyMOL molecular graphics system, Version 2.5.4 Schrödinger, LLC. https://www.pymol.org/ (2022).Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).Article
PyMOL分子图形系统,版本2.5.4 Schrödinger,LLC。https://www.pymol.org/(2022年)。Abraham,M.J.等人,《GROMACS:通过从笔记本电脑到超级计算机的多级并行进行高性能分子模拟》。SoftwareX 1-2、19-25(2015)。文章
ADS
广告
Google Scholar
谷歌学者
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).Article
Jo,S.,Kim,T.,Iyer,V.G.&Im,W.CHARMM-GUI:一种基于web的CHARMM.J.Comput图形用户界面。。291859-1865(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, S. et al. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 38, 1879–1886 (2017).Article
Kim,S.等人。CHARMM-GUI配体读取器和建模器,用于产生小分子的CHARMM力场。J、 计算机。。381879-1886(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).Article
Vanommeslaeghe,K.等人,《CHARMM一般力场:与CHARMM全原子加性生物力场相容的类药物分子的力场》。J、 计算机。。31671-690(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Feenstra, K. A., Hess, B. & Berendsen, H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
Jorgensen,W.L.,Chandrasekhar,J.,Madura,J.D.,Impey,R.W。&Klein,M.L。模拟液态水的简单势函数的比较。J、 化学。物理。79926-935(1983)。Feenstra,K.A.,Hess,B。&Berendsen,H.J.C。提高富氢系统大时间尺度分子动力学模拟的效率。
J. Comput. Chem. 20, 786–798 (1999).Article .
J、 计算机。。20786-798(1999)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).Article
Darden,T.,York,D。&Pedersen,L。粒子网格Ewald:大系统中Ewald和的N·log(N)方法。J、 化学。物理。9810089-10092(1993)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).Article
Hockney,R.W.,Goel,S.P。和Eastwood,J.W。安静的高分辨率等离子体计算机模型。J、 计算机。物理。14148-158(1974)。文章
ADS
广告
Google Scholar
谷歌学者
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).Article
Hess,B.,Bekker,H.,Berendsen,H.J.C.&Fraaije,J.G.E.M.LINCS:用于分子模拟的线性约束求解器。J、 计算机。。181463-1472(1997)。文章
CAS
中科院
Google Scholar
谷歌学者
Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).Article
Miyamoto,S.&Kollman,P.A。Settle:刚性水模型的摇动和嘎嘎声算法的分析版本。J、 计算机。。13952-962(1992)。文章
CAS
中科院
Google Scholar
谷歌学者
Berendsen, H. J. C., van Postma, J., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).Article
Berendsen,H.J.C.,van Postma,J.,van Gunsteren,W.F.,DiNola,A。&Haak,J.R。与外部浴耦合的分子动力学。J、 化学。物理。813684-3690(1984)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article
Bussi,G.,Donadio,D。和Parrinello,M。通过速度重标度进行规范采样。J、 化学。物理。126014101(2007)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).Article
Parrinello,M。&Rahman,A。单晶中的多晶型转变:一种新的分子动力学方法。J、 应用。物理。527182-7190(1981)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).Article
Michaud Agrawal,N.,Denning,E.J.,Woolf,T.B。&Beckstein,O。MDAnalysis:用于分析分子动力学模拟的工具包。J、 计算机。。322319-2327(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grant, B. J., Skjaerven, L. & Yao, X.-Q. The Bio3D packages for structural bioinformatics. Protein Sci. 30, 20–30 (2021).Article
Grant,B.J.,Skjaerven,L。和Yao,X.-Q。用于结构生物信息学的Bio3D软件包。蛋白质科学。30,20-30(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27–8.Article
Humphrey,W.,Dalke,A。和Schulten,K。VMD:视觉分子动力学。J、 分子图。14,33-38(1996)。27-8.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe are grateful to the Arnold and Mabel Beckman Cryo-EM Center at the University of Washington for the use of electron microscopes. This work was supported by the National Institutes of Health (1R35GM149542 and S10OD023476 to J.M.K.). S.T. was supported by the Czech Science Foundation (grant no.
下载参考文献致谢我们感谢华盛顿大学阿诺德和梅布尔·贝克曼冷冻电镜中心使用电子显微镜。这项工作得到了美国国立卫生研究院的支持(J.M.K.的1R35GM149542和S10OD023476)。S、 T.得到了捷克科学基金会的支持(批准号:。
23-06437S). B.A.W was supported by West Virginia University Start-up funding and Visual Sciences CoBRE project leader funding (P20GM144230). The authors would like to thank Ms. Katelyn Frock for her technical assistance.Author informationAuthors and AffiliationsDepartment of Biochemistry, University of Washington, Seattle, WA, USAEric M.
。B、 A.W得到了西弗吉尼亚大学创业基金和视觉科学CoBRE项目领导基金(P20GM144230)的支持。作者要感谢Katelyn Frock女士的技术援助。作者信息作者和附属机构华盛顿大学生物化学系,华盛顿州西雅图,USAEric M。
Lynch, Lauren Salay & Justin M. KollmanDepartment of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USAHeather Hansen, Madison Cooper & Bradley A. WebbDepartment of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech RepublicStepan TimrAuthorsEric M.
林奇(Lynch),劳伦·萨利(Lauren Salay)和贾斯汀·科尔曼(Justin M.KollmanDepartment of Biochemistry and Molecular Medicine),西弗吉尼亚大学(West Virginia University),莫根敦(Morgantown),威斯康星州(WV),美国希瑟·汉森(USAHeather Hansen),麦迪逊·库珀(Madison Cooper)和布拉德利(Bradley A.Webb)计算化学系,捷克共和国布拉。
LynchView author publicationsYou can also search for this author in.
LynchView作者出版物您也可以在中搜索此作者。
PubMed Google ScholarHeather HansenView author publicationsYou can also search for this author in
PubMed Google ScholarHeatherHansenview作者出版物您也可以在
PubMed Google ScholarLauren SalayView author publicationsYou can also search for this author in
PubMed Google ScholarLauren SalayView作者出版物您也可以在
PubMed Google ScholarMadison CooperView author publicationsYou can also search for this author in
PubMed Google ScholarMadison CooperView作者出版物您也可以在
PubMed Google ScholarStepan TimrView author publicationsYou can also search for this author in
PubMed Google ScholarStepan TimrView作者出版物您也可以在
PubMed Google ScholarJustin M. KollmanView author publicationsYou can also search for this author in
PubMed Google ScholarJustin M.KollmanView作者出版物您也可以在
PubMed Google ScholarBradley A. WebbView author publicationsYou can also search for this author in
PubMed Google ScholarBradley A.WebbView作者出版物您也可以在
PubMed Google ScholarContributionsE.M.L., H.H., L.S., M.C., S.T., and B.A.W. performed experiments and analyzed data. E.M.L, L.S., S.T., B.A.W., and J.M.K. prepared and edited the manuscript. S.T., B.A.W., and J.M.K. supervised the work.Corresponding authorsCorrespondence to
PubMed谷歌学术贡献。M、 L.,H.H.,L.S.,M.C.,S.T。和B.A.W.进行了实验并分析了数据。E、 M.L,L.S.,S.T.,B.A.W。和J.M.K.准备并编辑了手稿。S、 T.,B.A.W。和J.M.K.监督了这项工作。通讯作者通讯
Justin M. Kollman or Bradley A. Webb.Ethics declarations
贾斯汀·M·科尔曼或布拉德利·A·韦伯。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Lauren Albrecht and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢劳伦·阿尔布雷希特(LaurenAlbrecht)和其他匿名审稿人对这项工作的同行评审所做的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleLynch, E.M., Hansen, H., Salay, L. et al. Structural basis for allosteric regulation of human phosphofructokinase-1.
转载和许可本文引用本文Lynch,E.M.,Hansen,H.,Salay,L。等人。人类磷酸果糖激酶-1变构调节的结构基础。
Nat Commun 15, 7323 (2024). https://doi.org/10.1038/s41467-024-51808-6Download citationReceived: 28 March 2024Accepted: 19 August 2024Published: 25 August 2024DOI: https://doi.org/10.1038/s41467-024-51808-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》157323(2024)。https://doi.org/10.1038/s41467-024-51808-6Download引文接收日期:2024年3月28日接受日期:2024年8月19日发布日期:2024年8月25日OI:https://doi.org/10.1038/s41467-024-51808-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。