商务合作
动脉网APP
可切换为仅中文
AbstractThe gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain.
摘要gasdermins是一类成孔蛋白,最近成为pyroptosis的执行者,pyroptosis是一种由先天免疫系统诱导的细胞死亡的裂解形式,可根除感染或恶性细胞。哺乳动物gasdermin包含细胞毒性N末端结构域,柔性接头和C末端阻遏物结构域。
Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer.
接头中的蛋白水解切割释放细胞毒性结构域,从而使其形成β-桶状膜孔。质膜中gasdermin孔的形成最终导致电化学梯度的丧失,细胞死亡和膜破裂。在这里,我们回顾了最近的工作,通过揭示其激活机制,调节及其在自身免疫,宿主防御和癌症中的作用,扩展了我们对哺乳动物gasdermin生物学和功能的理解。
We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction..
我们进一步强调了真菌和细菌gasdermin孔的形成,指出了细胞死亡诱导的保守机制。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Regulation of GSDMD pore formation by processing and palmitoylation in inflammasome-activated cells.Fig. 2: Gasdermin activation upon apoptosis induction.Fig. 3: Cleavage-independent mechanisms for gasdermin activation in different systems.
图1:通过在炎性体激活的细胞中加工和棕榈酰化来调节GSDMD孔形成。图2:凋亡诱导后的Gasdermin激活。图3:不同系统中gasdermin激活的不依赖切割的机制。
ReferencesKayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).Article
参考文献Kayagaki,N。等人。Caspase-11切割gasdermin D以获得非典型炎性体信号传导。《自然》526666-671(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).Article
Shi,J。等人。炎性半胱天冬酶对GSDMD的切割决定了pyroptotic细胞死亡。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015).Article
Gasdermin D是pyroptosis的执行者,是白细胞介素-1β分泌所必需的。Cell Res.251285–1298(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sato, H. et al. A new mutation Rim3 resembling Reden is mapped close to retinoic acid receptor alpha (Rara) gene on mouse chromosome 11. Mamm. Genome 9, 20–25 (1998).Article
Sato,H。等人。一个类似Reden的新突变Rim3被定位在小鼠11号染色体上的视黄酸受体α(Rara)基因附近。妈妈。基因组9,20-25(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saeki, N., Kuwahara, Y., Sasaki, H., Satoh, H. & Shiroishi, T. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome 11, 718–724 (2000).Article
Saeki,N.,Kuwahara,Y.,Sasaki,H.,Satoh,H。&Shiroishi,T。Gasdermin(Gsdm)定位于小鼠11号染色体,主要在上消化道表达,但在人胃癌细胞中被显着抑制。妈妈。基因组11718-724(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).Article
Broz,P.,Pelegrín,P。&Shao,F。gasdermins,一种执行细胞死亡和炎症的蛋白质家族。国家免疫修订版。20143-157(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).Article
丁,J。等人。gasdermin家族的成孔活性和结构自抑制。自然535111-116(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).Article
Aglietti,R.A。等人,在pyroptosis期间由caspase-11引发的GsdmD p30在膜中形成孔。程序。国家科学院。科学。美国1137858–7863(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).Article
Sborgi,L。等人。GSDMD膜孔形成构成了pyroptotic细胞死亡的机制。EMBO J.351766–1778(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).Article
Liu,X。等人。炎性体激活的gasdermin D通过形成膜孔引起pyroptosis。自然535153-158(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, G. et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature 630, 437–446 (2024).Article
Du,G。等人。ROS依赖性S-棕榈酰化激活裂解和完整的gasdermin D。Nature 630437-446(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, Y. et al. Cleavage-independent activation of ancient eukaryotic gasdermins and structural mechanisms. Science 384, eadm9190 (2024).Zhou, B. et al. Full-length GSDME mediates pyroptosis independent from cleavage. Nat. Cell. Biol. https://doi.org/10.1038/s41556-024-01463-2 (2024).Cookson, B.
Li,Y.等人。古代真核生物gasdermin的不依赖切割的激活和结构机制。科学384,eadm9190(2024)。Zhou,B。等人。全长GSDME介导不依赖于卵裂的pyroptosis。自然细胞。生物。https://doi.org/10.1038/s41556-024-01463-2(2024年)。库克森,B。
T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).Article .
T、 &Brennan,M.A。促炎性程序性细胞死亡。趋势微生物。9113-114(2001)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).Article
巨噬细胞通过酸依赖性过程对炭疽致死毒素敏感。J、 生物。化学。2617123-7126(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).Article
Zychlinsky,A.,Prevost,M.C。&Sansonetti,P.J。福氏志贺菌诱导感染巨噬细胞凋亡。自然358167-169(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hilbi, H., Chen, Y., Thirumalai, K. & Zychlinsky, A. The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect. Immun. 65, 5165–5170 (1997).Article
Hilbi,H.,Chen,Y.,Thirumalai,K。&Zychlinsky,A。白细胞介素1β转化酶caspase 1在福氏志贺菌诱导的人单核细胞衍生巨噬细胞凋亡过程中被激活。感染。免疫。655165-5170(1997)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).Article
Broz,P。&Dixit,V.M。炎性体:组装,调节和信号传导的机制。国家免疫修订版。16407-420(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Broz, P. Unconventional protein secretion by gasdermin pores. Semin. Immunol. 69, 101811 (2023).Article
Broz,P。gasdermin孔的非常规蛋白质分泌。塞米。免疫。69101811(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
De Schutter, E. et al. Punching holes in cellular membranes: biology and evolution of gasdermins. Trends Cell Biol. 31, 500–513 (2021).Article
De Schutter,E.等人,《在细胞膜上打孔:gasdermins的生物学和进化》。趋势细胞生物学。31500–513(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pruenster, M. et al. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat. Immunol. 24, 2021–2031 (2023).Article
E-选择素介导的快速NLRP3炎性体激活通过瞬时gasdermin D孔形成调节嗜中性粒细胞释放S100A8/S100A9。自然免疫。2021年至2031年(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, K. W. et al. RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signaling. Proc. Natl Acad. Sci. USA 118, e2101189118 (2021).Article
Chen,K。W。等人。RIPK1在病原体阻断先天免疫信号传导后激活巨噬细胞和中性粒细胞中不同的gasdermin。程序。国家科学院。科学。美国118,e2101189118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Traughber, C. A. et al. Myeloid-cell-specific role of Gasdermin D in promoting lung cancer progression in mice. iScience 26, 106076 (2023).Article
Traughber,C.A。等人。Gasdermin D在促进小鼠肺癌进展中的骨髓细胞特异性作用。iScience 26106076(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).Article
Gong,T.,Liu,L.,Jiang,W。&Zhou,R。无菌炎症和炎性疾病中的DAMP感应受体。国家免疫修订版。20,95-112(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).Article
阮,J.,夏,S.,刘,X.,利伯曼,J。&Wu,H。gasdermin A3膜孔的低温EM结构。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mulvihill, E. et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321 (2018).Article
Mulvihill,E.等人,《人类gasdermin-D形成膜孔的机制》。EMBO J.37,e98321(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mari, S. A. et al. Gasdermin-A3 pore formation propagates along variable pathways. Nat. Commun. 13, 2609 (2022).Article
Mari,S.A.等人Gasdermin-A3孔的形成沿着不同的途径传播。国家公社。132609(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kappelhoff, S. et al. Structure and regulation of GSDMD pores at the plasma membrane of pyroptotic cells. Preprint at bioRxiv https://doi.org/10.1101/2023.10.24.563742 (2023).Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).Article .
Kappelhoff,S.等人。促凋亡细胞质膜上GSDMD孔的结构和调节。bioRxiv预印本https://doi.org/10.1101/2023.10.24.563742(2023年)。Xia,S。等人。Gasdermin D孔结构揭示了成熟白细胞介素-1的优先释放。自然593607-611(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Z. et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49.e4 (2019).Article
Liu,Z.等人。全长鼠和人gasdermin D的晶体结构揭示了自抑制,脂质结合和寡聚化的机制。豁免51,43-49.e4(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuang, S. et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc. Natl Acad. Sci. USA 114, 10642–10647 (2017).Article
Kuang,S。等人。GSDMD的结构洞察揭示了细胞pyroptosis中GSDMD自抑制的基础。程序。国家科学院。科学。美国11410642–10647(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).Article
Rogers,C。等人。Gasdermin孔透化线粒体,在细胞凋亡和炎性体激活过程中增强caspase-3的激活。国家公社。101689(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).Article
Chen,K.W.等人。非典型炎性体信号传导引发gasdermin D依赖性中性粒细胞胞外陷阱。科学。免疫。3,eaar6676(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Olsen, R. J. & Musser, J. M. Molecular pathogenesis of necrotizing fasciitis. Annu Rev. Pathol. 5, 1–31 (2010).Article
Olsen,R.J。&Musser,J.M。坏死性筋膜炎的分子发病机制。年度修订Pathol。5,1-31(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).Article
LaRock,D.L。等人,A组链球菌在角质形成细胞中诱导GSDMA依赖性pyroptosis。自然605527-531(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).Article
Deng,W。等人。链球菌热原外毒素B切割GSDMA并引发pyroptosis。自然602496-502(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Billman, Z. P. et al. Caspase-1 activates gasdermin A in non-mammals. eLife 12, RP92362 (2024).Article
Billman,Z.P.等人,Caspase-1在非哺乳动物中激活gasdermin A。eLife 12,RP92362(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oltra, S. S. et al. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 30, 1366–1381 (2023).Article
Oltra,S.S.等人。不同的GSDMB蛋白同工型和蛋白酶切割过程差异控制癌细胞中的pyroptotic细胞死亡和线粒体损伤。细胞死亡不同。301366-1381(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kong, Q. et al. Alternative splicing of GSDMB modulates killer lymphocyte-triggered pyroptosis. Sci. Immunol. 8, eadg3196 (2023).Article
Kong,Q。等人。GSDMB的可变剪接调节杀伤淋巴细胞触发的pyroptosis。科学。免疫。8,eadg3196(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhong, X. et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature 616, 598–605 (2023).Article
Zhong,X。等人。调节GSDMB成孔活性的结构机制。自然616598-605(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, C. et al. Structural basis for GSDMB pore formation and its targeting by IpaH7.8. Nature 616, 590–597 (2023).Article
Wang,C.等人。GSDMB孔形成的结构基础及其通过IpaH7.8靶向。自然616590-597(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e18 (2021).Article
Hansen,J.M.等人。GSDMB的致病性泛素化抑制NK细胞的杀菌功能。细胞1843178–3191.e18(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X. et al. Apoptotic caspase-7 activation inhibits non-canonical pyroptosis by GSDMB cleavage. Cell Death Differ. 30, 2120–2134 (2023).Article
Li,X。等人。凋亡的半胱天冬酶-7激活通过GSDMB切割抑制非经典的pyroptosis。细胞死亡不同。302120-2134(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).Article
Hou,J。等人。PD-L1介导的gasdermin C表达将癌细胞中的细胞凋亡转变为pyroptosis并促进肿瘤坏死。。221264-1275(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J.-Y. et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31, 980–997 (2021).Article
Zhang,J.-Y.等人。代谢物α-KG通过死亡受体6激活的半胱天冬酶-8诱导GSDMC依赖性pyroptosis。Cell Res.31980–997(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955.e20 (2020).Article
Wang,K。等人。在pyroptosis中通过自动加工的半胱天冬酶靶向GSDMD的结构机制。细胞180941-955.e20(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Z. et al. Caspase-1 engages full-length gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53, 106–114.e5 (2020).Article
Liu,Z。等人,Caspase-1通过介导Caspase募集和底物切割的两个不同界面与全长gasdermin D结合。免疫力53106–114.e5(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).Article
Vince,J.E。等人。凋亡蛋白抑制剂限制RIP3激酶依赖性白细胞介素-1激活。豁免36215-227(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385–7390 (2014).Article
Philip,N.H.等人,Caspase-8介导Caspase-1加工和先天免疫防御,以响应细菌对NF-κB和MAPK信号传导的阻断。程序。国家科学院。科学。美国1117385-7390(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weng, D. et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl Acad. Sci. USA 111, 7391–7396 (2014).Article
Weng,D。等人。半胱天冬酶-8和RIP激酶调节细菌诱导的先天免疫反应和细胞死亡。程序。国家科学院。科学。美国1117391-7396(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).Article
Orning,P。等人。TAK1的病原体阻断触发gasdermin D的caspase-8依赖性切割和细胞死亡。科学3621064-1069(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).Article
Sarhan,J。等人。在耶尔森菌感染期间,Caspase-8诱导gasdermin D的裂解以引起pyroptosis。程序。国家科学院。科学。美国115,E10888–E10897(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, K. W. et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 38, e101638 (2019).Article
Chen,K.W。等人。外源性和内源性细胞凋亡激活pannexin-1以驱动NLRP3炎性体组装。EMBO J.38,e101638(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Muendlein, H. I. et al. ZBP1 promotes LPS-induced cell death and IL-1β release via RHIM-mediated interactions with RIPK1. Nat. Commun. 12, 86 (2021).Article
Muendlein,H.I.等人ZBP1通过RHIM介导的与RIPK1的相互作用促进LPS诱导的细胞死亡和IL-1β释放。国家公社。12,86(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, eabc3465 (2020).Article
Demarco,B。等人。依赖Caspase-8的gasdermin D裂解促进抗菌防御,但赋予对TNF诱导的致死率的敏感性。科学。《eabc3465(2020)》第6期。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nataraj, N. M., Herrmann, B., Shin, S. & Brodsky, I. E. Blockade of IKK signaling induces RIPK1-independent apoptosis in human cells. Preprint at bioRxiv https://doi.org/10.1101/2023.06.20.545781 (2023).Spinner, J. L. et al. Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system.
Nataraj,N.M.,Herrmann,B.,Shin,S。&Brodsky,即阻断IKK信号传导诱导人细胞中不依赖RIPK1的细胞凋亡。bioRxiv预印本https://doi.org/10.1101/2023.06.20.545781(2023年)。。
PLoS One 5, e9279 (2010).Article .
PLoS One 5,e9279(2010)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).Article
Rogers,C。等人。凋亡过程中caspase-3对DFNA5的切割介导了继发性坏死/pyroptotic细胞死亡的进展。国家公社。814128(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514.e4 (2017).Article
。细胞化学。生物学24507-514.e4(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lei, X. et al. Enterovirus 71 inhibits pyroptosis through cleavage of gasdermin D. J. Virol. 91, e01069-17 (2017).Article
Lei,X。等人肠道病毒71通过切割gasdermin D.J.Virol来抑制pyroptosis。91,e01069-17(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, G. et al. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 298, 101480 (2022).Article
。化学。298101480(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chai, Q. et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science 378, eabq0132 (2022).Article
Chai,Q。等人。一种细菌磷脂磷酸酶通过劫持泛素来抑制宿主pyroptosis。科学378,eabq0132(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e10 (2021).Article
Luchetti,G。等人。志贺菌泛素连接酶IpaH7.8靶向gasdermin D降解,以防止pyroptosis并使感染成为可能。细胞宿主微生物291521-1530.e10(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 22, 2924–2936 (2018).Article
。Cell Rep.222924–2936(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).Article
Sollberger,G。等人Gasdermin D在中性粒细胞胞外陷阱的产生中起着至关重要的作用。科学。免疫。3,eaar6689(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Burgener, S. S. et al. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep. 27, 3646–3656.e5 (2019).Article
Serpinb1和Serpinb6抑制组织蛋白酶G可防止中性粒细胞和单核细胞的程序性坏死,并减少GSDMD驱动的炎症。Cell Rep.273646–3656.e5(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chauhan, D. et al. GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis. EMBO Rep. 23, e54277 (2022).Article
。EMBO代表23,e54277(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amara, N. et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell 184, 4480–4494.e15 (2021).Article
Amara,N。等人。PFKL的选择性激活抑制吞噬氧化爆发。细胞1844480–4494.e15(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e7 (2019).Article
Ning,X。等人。凋亡的半胱天冬酶通过切割cGAS,MAVS和IRF3来抑制I型干扰素的产生。分子细胞74,19-31.e7(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).Article
Rongvaux,A。等人。凋亡的半胱天冬酶阻止线粒体DNA诱导I型干扰素。细胞1591563-1577(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).Article
White,M.J。等人。凋亡半胱天冬酶抑制mtDNA诱导的STING介导的I型IFN产生。细胞1591549-1562(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).Article
Wang,Y。等人。化疗药物通过caspase-3裂解gasdermin诱导pyroptosis。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Orzalli, M. H. et al. Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity 54, 1447–1462.e5 (2021).Article
Orzalli,M.H。等人。病毒介导的抗凋亡Bcl-2家族成员失活促进屏障上皮细胞中Gasdermin-E依赖性pyroptosis。免疫力541447–1462.e5(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, G., Huang, C., Chen, J., Chen, B. & Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep. 35, 109265 (2021).Article
Tan,G.,Huang,C.,Chen,J.,Chen,B。&Zhi,F。Gasdermin-E介导的pyroptosis通过促进肠道炎症参与克罗恩病的发病机制。Cell Rep.35109265(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Neel, D. V. et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron 111, 1222–1240.e9 (2023).Article
Neel,D.V.等人Gasdermin-E介导轴突中的线粒体损伤和神经变性。神经元1111222-1240.e9(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, F. et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death. Nat. Commun. 15, 386 (2024).Article
Ma,F。等人。Gasdermin E通过控制中性粒细胞死亡模式来决定炎症反应。国家公社。15386(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yow, S. J., Rosli, S. N., Hutchinson, P. E. & Chen, K. W. Differential signalling requirements for RIPK1-dependent pyroptosis in neutrophils and macrophages. Cell Death Dis. 15, 479 (2024).Article
Yow,S.J.,Rosli,S.N.,Hutchinson,P.E。&Chen,K.W。中性粒细胞和巨噬细胞中RIPK1依赖性pyroptosis的差异信号传导要求。细胞死亡Dis。15479(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Op de Beeck, K. et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur. J. Hum. Genet. 19, 965–973 (2011).Article
DFNA5基因负责听力损失并参与癌症,编码一种新的凋亡诱导蛋白。Eur.J.Hum.Genet。19965-973(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Masuda, Y. et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J. Hum. Genet. 51, 652–664 (2006).Article
Masuda,Y.等人。听力障碍基因DFNA5在p53介导的细胞对DNA损伤的反应中的潜在作用。J、 嗯,Genet。51652-664(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Akino, K. et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98, 88–95 (2007).Article
Akino,K。等人。鉴定DFNA5作为胃癌表观遗传失活的靶标。癌症科学。98,88-95(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).Article
Zhang,Z。等人。Gasdermin E通过激活抗肿瘤免疫来抑制肿瘤生长。自然579415-420(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y. et al. Gasdermin E–mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).Article
Liu,Y。等人。CAR T细胞引起的Gasdermin E介导的靶细胞pyroptosis触发细胞因子释放综合征。科学。免疫。5,eaax7969(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hiller, S. & Broz, P. Active membrane rupture spurs a range of cell deaths. Nature 591, 36–37 (2021).Article
Hiller,S。&Broz,P。主动膜破裂会刺激一系列细胞死亡。自然591,36-37(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).Article
Kayagaki,N。等人。NINJ1在溶解性细胞死亡过程中介导质膜破裂。自然591131-136(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Latz, E. The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28–33 (2010).Article
Latz,E。炎性体:激活和功能的机制。货币。奥平。免疫。22,28-33(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rühl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. 45, 2927–2936 (2015).Article
Rühl,S。&Broz,P。Caspase-11通过促进K+流出激活经典的NLRP3炎性体。欧洲免疫学杂志。452927-2936(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Banerjee, I. et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49, 413–426.e5 (2018).Article
Gasdermin D通过破坏离子稳态来抑制I型干扰素对胞质DNA的反应。免疫力49413-426.e5(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santa Cruz Garcia, A. B., Schnur, K. P., Malik, A. B. & Mo, G. C. H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun. 13, 52 (2022).Article
Santa Cruz-Garcia,A.B.,Schnur,K.P.,Malik,A.B。&Mo,G.C.H。Gasdermin D孔由局部磷酸肌醇电路动态调节。国家公社。13,52(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).Article
Chen,K.W.等人。在急性沙门氏菌攻击期间,中性粒细胞NLRC4炎性体选择性地促进IL-1β成熟而不发生pyroptosis。Cell Rep.8570–582(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Karmakar, M. et al. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J. Immunol. 194, 1763–1775 (2015).Article
Karmakar,M。等人。由溶血素诱导的中性粒细胞IL-1β加工由NLRP3/ASC炎性体和半胱天冬酶-1激活介导,并且依赖于K+流出。J、 免疫。1941763-1775(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).Article
。国家公社。112212(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santoni, K. et al. Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLoS Pathog. 18, e1010305 (2022).Article
Santoni,K。等人。Caspase-1驱动的中性粒细胞pyroptosis及其在宿主对铜绿假单胞菌易感性中的作用。PLoS Pathog。18,e1010305(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).Article
Evavold,C.L.等人。成孔蛋白gasdermin D调节活巨噬细胞分泌白细胞介素-1。免疫力48,35-44.e6(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chao, Y.-Y. et al. Human TH17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation. Nat. Immunol. 24, 295–308 (2023).Article
Chao,Y.-Y.等人。人TH17细胞与gasdermin E孔结合,在NLRP3炎性体激活时释放IL-1α。自然免疫。24295-308(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heilig, R. et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).Article
Heilig,R。等人。Gasdermin-D孔充当小鼠IL-1β分泌的导管。欧洲免疫学杂志。48584-592(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).Article
Thornberry,N.A。等人。单核细胞中白细胞介素-1β的加工需要一种新型异二聚体半胱氨酸蛋白酶。自然356768-774(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for Gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).Article
Monteleone,M。等人。白细胞介素-1β的成熟触发其重新定位到质膜上以进行Gasdermin-D依赖性和非依赖性分泌。Cell Rep.241425–1433(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, W. et al. Allergen protease-activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion. Nat. Immunol. 23, 1021–1030 (2022).Article
Chen,W。等人。过敏原蛋白酶激活的应激颗粒组装和gasdermin D片段化控制白细胞介素-33的分泌。自然免疫。231021-1030(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, M. et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity 55, 623–638.e5 (2022).Article
Zhao,M。等人。上皮STAT6 O-GlcNAcylation依赖于簇状细胞增生和Gasdermin C驱动协同的抗蠕虫警报反应。免疫55623-638.e5(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manzanares-Meza, L. D. et al. IL-36γ is secreted through an unconventional pathway using the Gasdermin D and P2X7R membrane pores. Front. Immunol. 13, 979749 (2022).Article
Manzanares-Meza,L.D.等人,IL-36γ通过使用Gasdermin D和P2X7R膜孔的非常规途径分泌。正面。免疫。13979749(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006).Article
Fink,S.L。&Cookson,B.T。在pyroptosis期间Caspase-1依赖性孔形成导致感染的宿主巨噬细胞的渗透溶解。细胞。微生物。81812-1825(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).Article
Gallucci,S。&Matzinger,P。危险信号:免疫系统的SOS。货币。奥平。免疫。13114-119(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023).Article
Degen,M.等人。细胞死亡中NINJ1介导的质膜破裂的结构基础。自然6181065-1071(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dondelinger, Y. et al. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis. 14, 755 (2023).Article
Dondelinger,Y。等人。NINJ1在调节性坏死期间被细胞肿胀激活以调节质膜通透性。细胞死亡Dis。14755(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramos, S., Hartenian, E., Santos, J. C., Walch, P. & Broz, P. NINJ1 induces plasma membrane rupture and release of damage-associated molecular pattern molecules during ferroptosis. EMBO J. 43, 1164–1186 (2024).Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury.
Ramos,S.,Hartenian,E.,Santos,J.C.,Walch,P。&Broz,P。NINJ1在ferroptosis期间诱导质膜破裂和损伤相关分子模式分子的释放。。Kayagaki,N。等人用NINJ1抗体抑制膜破裂可限制组织损伤。
Nature 618, 1072–1077 (2023).Article .
自然6181072-1077(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, M. W. et al. Deficiency of Ninjurin1 attenuates LPS/D-galactosamine-induced acute liver failure by reducing TNF-α-induced apoptosis in hepatocytes. J. Cell. Mol. Med. 26, 5122–5134 (2022).Article
Kim,M.W.等人,Ninjurin1的缺乏通过减少TNF-α诱导的肝细胞凋亡来减轻LPS/D-半乳糖胺诱导的急性肝衰竭。J、 细胞。分子医学265122-5134(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Borges, J. P. et al. Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death. eLife 11, e78609 (2022).Article
Borges,J.P。等人。甘氨酸抑制NINJ1膜聚集以抑制细胞死亡中的质膜破裂。eLife 11,e78609(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231.e23 (2022).Article
Weindel,C.G。等人。线粒体ROS通过gasdermin D介导的坏死性凋亡促进感染易感性。细胞1853214–3231.e23(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miao, R. et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 56, 2523–2541.e8 (2023).Article
Miao,R。等人。线粒体内膜和外膜的Gasdermin D透化加速并增强了pyroptosis。免疫力562523–2541.e8(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, Z. et al. The lysosomal Rag-Ragulator complex licenses RIPK1 and caspase-8-mediated pyroptosis by Yersinia. Science 372, eabg0269 (2021).Article
Zheng,Z。等人。溶酶体Rag Ragulator复合物通过耶尔森菌许可RIPK1和半胱天冬酶-8介导的pyroptosis。科学372,eabg0269(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. et al. Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci. Immunol. 7, eabk2092 (2022).Article
Zhang,J。等人。上皮Gasdermin D通过驱动粘液层形成来塑造宿主-微生物界面。科学。免疫。7,eabk2092(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, M. et al. Gasdermin D maintains bone mass by rewiring the endo-lysosomal pathway of osteoclastic bone resorption. Dev. Cell 57, 2365–2380.e8 (2022).Article
Li,M。等人。Gasdermin D通过重新连接破骨细胞骨吸收的内溶酶体途径来维持骨量。开发单元572365-2380.e8(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uehara, D. T. et al. Identification of a biallelic missense variant in gasdermin D (c.823G > C, p.Asp275His) in a patient of atypical Gorham–Stout disease in a consanguineous family. JBMR Plus 7, e10784 (2023).Article
Uehara,D.T.等人在一个近亲家庭的非典型戈勒姆-斯多特病患者中鉴定了gasdermin D(c.823G > c,p.Asp275His)中的双等位基因错义变体。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rana, N. et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 185, 283–298.e17 (2022).Article
Rana,N。等人,GSDMB在IBD中增加,并独立于pyroptosis调节上皮恢复/修复。细胞185283-298.e17(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Defourny, J. et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc. Natl Acad. Sci. USA 116, 8010–8017 (2019).Article
Deforny,J。等人。Pejvakin介导的pexophagy保护听觉毛细胞免受噪声引起的损伤。程序。国家科学院。科学。美国1168010-8017(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kayagaki, N. et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917 (2019).Article
Kayagaki,N。等人。IRF2转录诱导GSDMD表达用于pyroptosis。科学。信号。12,eaax4917(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Benaoudia, S. et al. A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep. 20, e48235 (2019).Article
Benaoudia,S。等人。全基因组筛选将IRF2鉴定为人类细胞中半胱天冬酶-4的关键调节剂。EMBO Rep.20,e48235(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bourdonnay, E. & Henry, T. Transcriptional and epigenetic regulation of gasdermins. J. Mol. Biol. 434, 167253 (2022).Article
Bourdonnay,E。&Henry,T。gasdermins的转录和表观遗传调控。J、 分子生物学。434167253(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Evavold, C. L. et al. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 184, 4495–4511.e19 (2021).Article
Evavold,C.L.等人。通过Ragulator-Rag-mTORC1途径控制gasdermin D寡聚化和pyroptosis。细胞1844495-4511.e19(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Devant, P. et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep. 42, 112008 (2023).Article
Devant,P。等人。Gasdermin D成孔活性对氧化还原敏感。细胞代表42112008(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Balasubramanian, A. et al. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci. Immunol. 9, eadn1452 (2024).Article
Balasubramanian,A。等人。gasdermin D的棕榈酰化指导其在pyroptosis期间的膜移位和孔形成。科学。免疫。9,eadn1452(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hu, L. et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 11, 281 (2020).Article
Hu,L。等人。化疗诱导的pyroptosis由BAK/BAX-caspase-3-GSDME途径介导,并被2-溴代棕榈酸酯抑制。细胞死亡Dis。11281(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).Article
Johnson,A.G.等人,细菌gasdermins揭示了一种古老的细胞死亡机制。科学375221-225(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhuang, Z., Gu, J., Li, B. O. & Yang, L. Inhibition of gasdermin D palmitoylation by disulfiram is crucial for the treatment of myocardial infarction. Transl. Res. 264, 66–75 (2024).Article
Zhuang,Z.,Gu,J.,Li,B.O。&Yang,L。双硫仑抑制gasdermin D棕榈酰化对于治疗心肌梗塞至关重要。。第264、66-75号决议(2024年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021).Article
Bambouskova,M。等人衣康酸赋予对晚期NLRP3炎性体激活的耐受性。Cell Rep.34108756(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Y., Pu, D., Huang, J., Zhang, Y. & Yin, H. Protein phosphatase 1 regulates phosphorylation of gasdermin D and pyroptosis. Chem. Commun. 58, 11965–11968 (2022).Article
Li,Y.,Pu,D.,Huang,J.,Zhang,Y。&Yin,H。蛋白磷酸酶1调节gasdermin D的磷酸化和pyroptosis。化学。Commun公司。5811965-11968(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Chu, X. et al. Gasdermin D-mediated pyroptosis is regulated by AMPK-mediated phosphorylation in tumor cells. Cell Death Dis. 14, 469 (2023).Article
Chu,X。等人。Gasdermin D介导的pyroptosis受肿瘤细胞中AMPK介导的磷酸化调节。细胞死亡Dis。14469(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, Y. et al. E3 ubiquitin ligase SYVN1 is a key positive regulator for GSDMD-mediated pyroptosis. Cell Death Dis. 13, 106 (2022).Article
。细胞死亡Dis。13106(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santamaria, A. et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell Proteom. 10, M110.004457 (2011).Article
Santamaria,A。等人。早期有丝分裂纺锤体的Plk1依赖性磷酸化蛋白质组。分子细胞蛋白质组学。10,M110.004457(2011)。文章
Google Scholar
谷歌学者
Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).Article
Humphries,F。等人。琥珀酸使gasdermin D失活并阻断pyroptosis。科学3691633-1637(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).Article
Hu,J。J。等人。FDA批准的双硫仑通过阻断gasdermin D孔形成来抑制pyroptosis。自然免疫。21736-745(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).Article
Rühl,S。等人,ESCRT依赖性膜修复负调节GSDMD激活下游的pyroptosis。科学362956-960(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nozaki, K. et al. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature 606, 960–967 (2022).Article
Nozaki,K。等人。Caspase-7激活ASM以修复gasdermin和穿孔素毛孔。自然606960-967(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Olmos, Y. & Carlton, J. G. The ESCRT machinery: new roles at new holes. Curr. Opin. Cell Biol. 38, 1–11 (2016).Article
Olmos,Y.&Carlton,J.G。ESCRT机器:新孔的新角色。货币。奥平。细胞生物学。38,1-11(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stefani, C. et al. LITAF protects against pore-forming protein-induced cell death by promoting membrane repair. Sci. Immunol. 9, eabq6541 (2024).Article
Stefani,C。等人。LITAF通过促进膜修复来防止成孔蛋白诱导的细胞死亡。科学。免疫。9,eabq6541(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).Article
来自细胞毒性淋巴细胞的颗粒酶A切割GSDMB以触发靶细胞中的pyroptosis。科学368,eaaz7548(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).Article
Martinon,F.,Burns,K。&Tschopp,J。炎性体:触发炎性半胱天冬酶活化和proILβ加工的分子平台。分子细胞10417-426(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barnett, K. C., Li, S., Liang, K. & Ting, J. P.-Y. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).Article
Barnett,K.C.,Li,S.,Liang,K.&Ting,J.P.-Y。炎性体的360°视图:激活,细胞死亡和疾病的机制。细胞1862288-2312(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).Article
Kayagaki,N。等人。非经典炎性体激活靶向caspase-11。自然479117-121(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.
Kayagaki,N。等人。不依赖于TLR4的细胞内LPS的非典型炎性体激活。科学3411246-1249(2013)。Hagar,J.A.,Powell,D.A.,Aachoui,Y.,Ernst,R.K。&Miao,E.A。细胞质LPS激活caspase-11:在TLR4非依赖性内毒素休克中的意义。
Science 341, 1250–1253 (2013).Article .
科学3411250-1253(2013)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santos, J. C. et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11, 3276 (2020).Article
Santos,J.C。等人。人GBP1与LPS结合,在胞质细菌上启动caspase-4激活平台的组装。Nat。Commun。113276(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wandel, M. P. et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21, 880–891 (2020).Article
Wandel,M.P.等人,鸟苷酸结合蛋白将胞质细菌转化为caspase-4信号平台。自然免疫。21880-891(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Devant, P. & Kagan, J. C. Molecular mechanisms of gasdermin D pore-forming activity. Nat. Immunol. 24, 1064–1075 (2023).Article
Devant,P。&Kagan,J.C。gasdermin D成孔活性的分子机制。自然免疫。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
DeYoung, B. J. & Innes, R. W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243–1249 (2006).Article
DeYoung,B.J。&Innes,R.W。植物NBS-LRR蛋白在病原体感应和宿主防御中的作用。自然免疫。71243-1249(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, S., Zhou, Z., Sun, Y., Zhang, T. & Sun, L. Coral gasdermin triggers pyroptosis. Sci. Immunol. 5, eabd2591 (2020).Article
Jiang,S.,Zhou,Z.,Sun,Y.,Zhang,T。&Sun,L。Coral gasdermin引发pyroptosis。科学。免疫。5,eabd2591(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Daskalov, A. Emergence of the fungal immune system. iScience 26, 106793 (2023).Article
Daskalov,A。真菌免疫系统的出现。iScience 26106793(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daskalov, A., Mitchell, P. S., Sandstrom, A., Vance, R. E. & Glass, N. L. Molecular characterization of a fungal gasdermin-like protein. Proc. Natl Acad. Sci. USA 117, 18600–18607 (2020).Article
Daskalov,A.,Mitchell,P.S.,Sandstrom,A.,Vance,R.E。&Glass,N.L。真菌gasdermin样蛋白的分子表征。程序。国家科学院。科学。美国11718600–18607(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clavé, C. et al. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc. Natl Acad. Sci. USA 119, e2109418119 (2022).Article
Clavé,C。等人。真菌gasdermin样蛋白受蛋白水解切割控制。程序。国家科学院。科学。美国119,e2109418119(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsK.W.C. is supported by a Singapore National Medical Research Council (MOH-000652-00) and Singapore Ministry of Eduction tier 2 grant (MOE-000343-00). P.B. was supported by Swiss National Science Foundation project grants (310030B_198005, 310030B_219286).Author informationAuthors and AffiliationsImmunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SingaporeKaiwen W.
下载referencesAcknowledgementsK。W、 C.得到新加坡国家医学研究委员会(MOH-000652-00)和新加坡教育部二级拨款(MOE-000343-00)的支持。P、 B.得到了瑞士国家科学基金会项目资助(310030B\U 198005、310030B\U 219286)的支持。作者信息作者和附属机构新加坡国立大学Yong Loo Lin医学院微生物学和免疫学系免疫学转化研究计划,新加坡开文W。
ChenImmunology Programme, Life Sciences Institute, National University of Singapore, Singapore, SingaporeKaiwen W. ChenDepartment of Immunobiology, University of Lausanne, Lausanne, SwitzerlandPetr BrozAuthorsKaiwen W. ChenView author publicationsYou can also search for this author in.
ChenImmunology Program,新加坡国立大学生命科学研究所,新加坡Kaiwen W.Chen瑞士洛桑洛桑大学免疫生物学系BrozAuthorsKaiwen W.ChenView作者出版物您也可以在中搜索该作者。
PubMed Google ScholarPetr BrozView author publicationsYou can also search for this author in
PubMed谷歌奖学金Petr Broz查看作者出版物您也可以在
PubMed Google ScholarContributionsK.W.C. and P.B. conceived and wrote the text.Corresponding authorsCorrespondence to
PubMed谷歌学术贡献SK。W、 C.和P.B.构思并撰写了文本。通讯作者通讯
Kaiwen W. Chen or Petr Broz.Ethics declarations
陈凯文(Kaiwen W.Chen)或彼得·布罗兹(Petr Broz)。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Cell Biology thanks Kengo Nozaki and Jianbin Ruan for their contribution to the peer review of this work.
自然细胞生物学感谢野崎健吾和阮建斌为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleChen, K.W., Broz, P.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Chen,K.W.,Broz,P。
Gasdermins as evolutionarily conserved executors of inflammation and cell death..
Gasdermins是炎症和细胞死亡的进化保守执行者。。
Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01474-zDownload citationReceived: 01 February 2024Accepted: 04 July 2024Published: 26 August 2024DOI: https://doi.org/10.1038/s41556-024-01474-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Cell Biol(2024)。https://doi.org/10.1038/s41556-024-01474-zDownload引文接收日期:2024年2月1日接受日期:2024年7月4日发布日期:2024年8月26日OI:https://doi.org/10.1038/s41556-024-01474-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供