EN
登录

土壤健康与欧洲更高的初级生产力有关

Soil health is associated with higher primary productivity across Europe

Nature 等信源发布 2024-08-27 19:18

可切换为仅中文


AbstractSoil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands.

。然而,人们对土壤健康是否与环境梯度和土地利用类型的初级生产力有关仍然知之甚少。为了解决这一差距,我们进行了一项泛欧实地研究,包括来自27个国家的588个地点,以调查三种主要土地利用类型(林地,草地和农田)的土壤健康与初级生产力之间的联系。

We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity.

我们发现林地的平均土壤健康(基于土壤性质,生物多样性和植物疾病控制的综合指数)比草地高31.4%,比农田高76.1%。在大陆范围内,土壤健康与农田和草地生产力呈正相关,而气候最能解释林地生产力。

Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens.

在微生物多样性指标中,我们观察到酸杆菌,厚壁菌门和变形杆菌的丰富度与初级生产力之间存在正相关。在微生物功能群中,我们发现农田和草地的初级生产力与固氮细菌和菌根真菌呈正相关,与植物病原体呈负相关。

Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types..

总之,我们的研究结果指出了土壤生物多样性和土壤健康对于维持不同土地利用类型的初级生产力的重要性。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间更多订阅本期刊每年收到12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元更多了解更多购买本文在SpringerLink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Geographic distribution across the European continent of the 588 locations used in this study.Fig. 2: Relationship between soil health and primary productivity.Fig. 3: Relative importance of main predictors (top ten) for primary productivity.Fig. 4: SEM describing direct and indirect effects of climate, edaphic factors and soil biodiversity on primary productivity across different land-use types..

图1:本研究中使用的588个地点在欧洲大陆的地理分布。。图3:初级生产力的主要预测因子(前十)的相对重要性。图4:SEM描述了气候、土壤因素和土壤生物多样性对不同土地利用类型初级生产力的直接和间接影响。。

Data availability

数据可用性

The raw data (DNA sequences) used in this study can be found in the SRA database under BioProject ID PRJNA952168. A dataset including detailed information on each individual sampling site used in this study (n = 588) is available at https://doi.org/10.6084/m9.figshare.26272657 (ref. 77).

本研究中使用的原始数据(DNA序列)可以在SRA数据库中的BioProject ID PRJNA952168下找到。包括本研究中使用的每个单独采样点的详细信息的数据集(n=588)可在https://doi.org/10.6084/m9.figshare.26272657(参考文献77)。

Code availability

代码可用性

R scripts designed for data analyses and figure production are available at https://github.com/fromerob/Romero-et-al-2024-Soil-Health.git.

设计用于数据分析和图形生成的R脚本可在https://github.com/fromerob/Romero-et-al-2024-Soil-Health.git.

ReferencesLehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).Article

参考文献Lehmann,J.,Bossio,D.A.,Kögel Knabner,I。&Rillig,M.C。土壤健康的概念和未来前景。Nat.Rev.地球环境。1544-553(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12, 574–580 (2022).Article

Qiao,L.等人。土壤质量既增加了作物产量,又提高了对气候变化的适应能力。纳特·克莱姆。更改12574–580(2022)。文章

Google Scholar

谷歌学者

Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).Article

Bünemann,E.K.等人,《土壤质量-批判性评论》。土壤生物学。生物化学。120105-125(2018)。文章

Google Scholar

谷歌学者

Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. 21, 6–20 (2023).Article

。自然修订版微生物学。21,6-20(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).Article

Rawls,W.J.,Pachepsky,Y.A.,Ritchie,J.C.,Sobecki,T.M。和Bloodworth,H。土壤有机碳对土壤水分保持的影响。Geoderma 116,61–76(2003)。文章

CAS

中科院

Google Scholar

谷歌学者

Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).Article

Maron,J.L.,Marler,M.,Klironomos,J.N。和Cleveland,C.C。土壤真菌病原体和植物多样性与生产力之间的关系。Ecol公司。利特。14,36-41(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tilak, K. V. B. R. et al. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89, 136–150 (2005).CAS

Tilak,K.V.B.R.等人。植物生长和土壤健康支持细菌的多样性。Curr。科学。89136-150(2005)。中科院

Google Scholar

谷歌学者

Toda, M., Walder, F. & van der Heijden, M. G. A. Organic management and soil health promote nutrient use efficiency. J. Sustain. Agric. Environ. 2, 215–224 (2023).Shah, A. N. et al. Soil compaction effects on soil health and crop productivity: an overview. Environ. Sci. Pollut. Res. 24, 10056–10067 (2017).Article .

Toda,M.,Walder,F。&van der Heijden,M.G.A。有机管理和土壤健康促进养分利用效率。J、 维持。农业。。2215-224(2023)。Shah,A.N.等人。土壤压实对土壤健康和作物生产力的影响:概述。。科学。污染。第2410056-10067号决议(2017年)。文章。

Google Scholar

谷歌学者

Kibblewhite, M. G., Ritz, K. & Swift, M. J. Soil health in agricultural systems. Philos. Trans. R. Soc. B 363, 685–701 (2008).Article

Kibblewhite,M.G.,Ritz,K。和Swift,M.J。农业系统中的土壤健康。菲洛斯。事务处理。R、 Soc.B 363685–701(2008)。文章

CAS

中科院

Google Scholar

谷歌学者

Panagos, P. et al. Soil priorities in the European Union. Geoderma Reg. 29, e00510 (2022).Article

Panagos,P.等人,《欧盟的土壤优先事项》。Geoderma Reg.29,e00510(2022)。文章

Google Scholar

谷歌学者

Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: a critical review of current methodologies and a proposed new approach. Sci. Total Environ. 648, 1484–1491 (2019).Article

Rinot,O.,Levy,G.J.,Steinberger,Y.,Svoray,T。&Eshel,G。土壤健康评估:对当前方法和拟议新方法的批判性审查。科学。总环境。6481484-1491(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article

Fernández-Martínez,M.等人,《养分有效性作为全球森林碳平衡的关键调节因子》。纳特·克莱姆。更改4471–476(2014)。文章

Google Scholar

谷歌学者

Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: a review. Energy Ecol. Environ. 2, 236–249 (2017).Article

Krishna,M.P。&Mohan,M。森林生态系统中的凋落物分解:综述。能源经济。。2236-249(2017)。文章

Google Scholar

谷歌学者

Wang, J. et al. Vegetation type controls root turnover in global grasslands. Glob. Ecol. Biogeogr. 28, 442–455 (2019).Article

Wang,J.等人。植被类型控制着全球草原的根系更新。全球。Ecol公司。生物地理学。28442-455(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article

Gill,R.A。&Jackson,R.B。陆地生态系统根系周转的全球模式。新植物醇。147,13-31(2000)。文章

Google Scholar

谷歌学者

Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).Article

Labouyrie,M.等人,《欧洲土壤微生物多样性模式》。国家公社。143311(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kindler, R. et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob. Change Biol. 17, 1167–1185 (2011).Article

Kindler,R.等人。土壤中溶解碳的淋溶是生态系统净碳平衡的关键组成部分。全球。改变生物。171167-1185(2011)。文章

Google Scholar

谷歌学者

Nouri, A., Lukas, S., Singh, S., Singh, S. & Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 28, 4736–4749 (2022).Article

Nouri,A.,Lukas,S.,Singh,S.,Singh,S。&Machado,S。覆盖作物何时减少硝酸盐的浸出?全球荟萃分析。全球。改变生物。284736-4749(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Bauer, J. T., Kleczewski, N. M., Bever, J. D., Clay, K. & Reynolds, H. L. Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi and the productivity and structure of prairie grassland communities. Oecologia 170, 1089–1098 (2012).Article

Bauer,J.T.,Kleczewski,N.M.,Bever,J.D.,Clay,K。&Reynolds,H.L。固氮细菌,丛枝菌根真菌和草原草原群落的生产力和结构。Oecologia 1701089-1098(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present and the future. New Phytol. 205, 1406–1423 (2015).Article

van der Heijden,M.G.A.,Martin,F.M.,Selosse,M.A.&Sanders,I.R。菌根生态学和进化:过去,现在和未来。新植物醇。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gujre, N., Soni, A., Rangan, L., Tsang, D. C. W. & Mitra, S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review. Environ. Pollut. 268, 115549 (2021).Article

Gujre,N.,Soni,A.,Rangan,L.,Tsang,D.C.W。和Mitra,S。利用生物炭和丛枝菌根真菌可持续改善土壤健康:综述。。污染。268115549(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liang, Y., Pan, F., He, X., Chen, X. & Su, Y. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ. Sci. Pollut. Res. 23, 18482–18491 (2016).Article

。。科学。污染。第2318482-18491号决议(2016年)。文章

CAS

中科院

Google Scholar

谷歌学者

Guerra, C. A. et al. Tracking, targeting and conserving soil biodiversity. Science 371, 239–241 (2021).Article

Guerra,C.A.等人,《追踪、定位和保护土壤生物多样性》。科学371239-241(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Heintz-Buschart, A. et al. Microbial diversity–ecosystem function relationships across environmental gradients. Res. Ideas Outcomes 6, e52217 (2020).Article

Heintz-Buschart,A.等人,《微生物多样性-跨环境梯度的生态系统功能关系》。Res.Ideas成果6,e52217(2020)。文章

Google Scholar

谷歌学者

Couto, W. in Handbook of Agricultural Productivity (ed. Rechcigl, M.) 71–84 (CRC Press, 2018).Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol.

Couto,W.《农业生产力手册》(编辑:Rechcigl,M.)71-84(CRC出版社,2018)。Banerjee,S.等人的网络分析揭示了可耕地土壤中有机质分解过程中细菌和真菌群落之间的功能冗余和关键分类群。土壤生物学。

Biochem. 97, 188–198 (2016).Article .

生物化学。97188-198(2016)。文章。

CAS

中科院

Google Scholar

谷歌学者

Kielak, A. M., Cipriano, M. A. P. & Kuramae, E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 198, 987–993 (2016).Article

Kielak,A.M.,Cipriano,M.A.P。和Kuramae,E.E。来自第1分部的酸杆菌菌株作为植物生长促进细菌。微生物。198987-993(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sikorski, J. et al. The evolution of ecological diversity in Acidobacteria. Front. Microbiol. 13, 78 (2022).Article

。微生物。13,78(2022)。文章

Google Scholar

谷歌学者

Fan, K. et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15, 550–561 (2021).Article

Fan,K.等人。在40年的施肥实验中,关键石头系统型的生物多样性决定了作物产量。ISME J.15550–561(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).Article

《拥抱未知:解开土壤微生物群的复杂性》。自然修订版微生物学。15579-590(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hashmi, I., Bindschedler, S. & Junier, P. in Beneficial Microbes in Agro-Ecology (eds Amaresan, N. et al.) 363–396 (Academic Press, 2020); https://doi.org/10.1016/B978-0-12-823414-3.00018-6van de Vossenberg, B. T. L. H., Prodhomme, C., Vossen, J. H. & van der Lee, T. A. J. Synchytrium endobioticum, the potato wart disease pathogen.

Hashmi,I.,Bindschedler,S。&Junier,P。《农业生态学中的有益微生物》(eds Amaresan,N。et al。)363-396(Academic Press,2020);https://doi.org/10.1016/B978-0-12-823414-3.00018-6van。

Mol. Plant Pathol. 23, 461–474 (2022).Article .

分子植物病理学。23461-474(2022)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).Article

Yang,Y.,Tilman,D.,Furey,G。&Lehman,C。通过恢复草地生物多样性加速了土壤碳固存。国家公社。10718(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).Article

Lange,M。等人。植物多样性增加了土壤微生物活性和土壤碳储量。国家公社。66707(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity–ecosystem functioning experiments. Proc. R. Soc. B 287, 20202063 (2020).Article

Xu,S.等人。物种丰富度促进生态系统碳储存:来自生物多样性-生态系统功能实验的证据。程序。R、 Soc.B 287202063(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Osburn, E. D., Yang, G., Rillig, M. C. & Strickland, M. S. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Commun. 3, 66 (2023).Article

Osburn,E.D.,Yang,G.,Rillig,M.C。和Strickland,M.S。评估细菌多样性在人为压力下支持土壤生态系统功能的作用。ISME社区。3,66(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).Article

Anthony,M.A.等人。林木生长与欧洲各地的菌根真菌组成和功能有关。ISME J.161327–1336(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krause, A. et al. Quantifying the impacts of land cover change on gross primary productivity globally. Sci. Rep. 12, 18398 (2022).Article

Krause,A.等人,《量化土地覆盖变化对全球初级生产力总量的影响》。科学。众议员1218398(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Collalti, A. et al. Forest production efficiency increases with growth temperature. Nat. Commun. 11, 5322 (2020).Article

Collalti,A。等人。森林生产效率随着生长温度的升高而增加。国家公社。115322(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morin, X. et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8, 5627 (2018).Article

Morin,X。等人。森林生产力对气候变化的长期响应主要是由树种组成的变化驱动的。科学。代表85627(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walder, F. et al. Synergism between production and soil health through crop diversification, organic amendments and crop protection in wheat-based systems. J. Appl. Ecol. 60, 2091–2104 (2023).Article

Walder,F.等人,《通过小麦系统中的作物多样化、有机改良和作物保护,生产与土壤健康之间的协同作用》。J、 应用。Ecol公司。602091-2104(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Delgado-Baquerizo, M. et al. Microbial richness and composition independently drive soil multifunctionality. Funct. Ecol. 31, 2330–2343 (2017).Article

Delgado Baquerizo,M.等人。微生物丰富度和组成独立驱动土壤多功能性。。Ecol公司。312330-2343(2017)。文章

Google Scholar

谷歌学者

Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).Article

气候变化和农田管理损害了土壤的完整性和多功能性。Commun公司。地球环境。4394(2023)。文章

Google Scholar

谷歌学者

Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92, 1303–1313 (2011).Article

Wagg,C.,Jansa,J.,Stadler,M.,Schmid,B。&van der Heijden,M.G.A。菌根真菌的特性和多样性缓解了植物间的竞争。生态学921303-1313(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article

van der Heijden,M.G.A.等人。菌根真菌多样性决定了植物多样性,生态系统变异性和生产力。《自然》396,69-72(1998)。文章

Google Scholar

谷歌学者

Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).Article

土壤微生物组指标可以预测作物对大规模接种丛枝菌根真菌的生长反应。自然微生物。82277-2289(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).Article

Orgiazzi,A.,Ballabio,C.,Panagos,P.,Jones,A。&Fernández-Ugalde,O。LUCAS Soil,欧洲最大的可扩展土壤数据集:综述。欧洲土壤科学杂志。。文章

Google Scholar

谷歌学者

Orgiazzi, A. et al. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).Article

Orgiazzi,A.等人,《卢卡斯土壤生物多样性和卢卡斯土壤农药,研究和政策制定的新工具》。欧洲土壤科学杂志。73,e13299(2022)。文章

Google Scholar

谷歌学者

Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).Article

。程序。国家科学院。科学。美国1084516-4522(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article

Parada,A.E.,Needham,D.M。和Fuhrman,J.A。每个基础都很重要:用模拟群落,时间序列和全球现场样本评估海洋微生物组的小亚基rRNA引物。。微生物。181403-1414(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tedersoo, L. & Anslan, S. Towards PacBio‐based pan‐eukaryote metabarcoding using full‐length ITS sequences. Environ. Microbiol Rep. 11, 659–668 (2019).Article

Tedersoo,L。&Anslan,S。使用全长ITS序列进行基于PacBio的泛真核生物元条形码。。Microbiol Rep.11659–668(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Özkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome 10, 176 (2022).Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).Article

Özkurt,E。等人。LotuS2:用于扩增子测序分析的超快且高度准确的工具。微生物组10176(2022)。Magoč,T。&Salzberg,S.L。FLASH:快速调整短读数的长度以改善基因组组装。生物信息学272957–2963(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article

Edgar,R.C.UPARSE:来自微生物扩增子读数的高度准确的OTU序列。自然方法10996-998(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pertea, G. fqtrim: v0. 9.4 release. Zenodo https://doi.org/10.5281/zenodo.20552 (2015).Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).Article

Pertea,G。fqtrim:v0。9.4发布。泽诺多https://doi.org/10.5281/zenodo.20552。Cole,J.R.等人,《核糖体数据库项目:高通量rRNA分析的数据和工具》。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).Article

Tedersoo,L.等人。全球土壤真菌群落联盟数据集,用于促进真菌多样性研究。真菌潜水员。111573-588(2021)。文章

Google Scholar

谷歌学者

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).Article

Camacho,C。等。BLAST+:体系结构和应用。BMC生物信息。10421(2009)。Nilsson,R.H.等人,《真菌分子鉴定联合数据库:处理黑暗分类群和平行分类学分类》。核酸研究47,D259-D264(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).Article

Louca,S.,Parfrey,L.W。&Doebeli,M。全球海洋微生物组中的解耦功能和分类学。科学3531272-1277(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article

Põlme,S。等人。FungalTraits:真菌和类似真菌的stramenopiles的用户友好性状数据库。真菌潜水员。105,1-16(2020)。文章

Google Scholar

谷歌学者

Liu, S. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6, 900–909 (2022).Article

Liu,S.等人。土壤真菌功能群内的系统型多样性驱动生态系统的稳定性。自然生态。进化。6900–909(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ballabio, C. et al. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 355, 113912 (2019).Article

Ballabio,C.等人。使用高斯过程回归在欧洲范围内绘制卢卡斯表土化学性质图。Geoderma 355113912(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, L. C. et al. Large‐scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).Article

Smith,L.C.等人,《欧洲土壤微生物特性与有机碳之间关系的大规模驱动因素》。全球。Ecol公司。生物地理学。302070–2083(2021)。文章

Google Scholar

谷歌学者

Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Article

Delgado Baquerizo,M.等人。微生物多样性驱动陆地生态系统的多功能性。国家公社。710541(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).Article

Fan,K.等人。土壤生物多样性支持城市绿地中多种生态系统功能的传递。自然生态。进化。7113-126(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Running, S. W., Nemani, R., Glassy, J. M. & Thornton, P. E. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17). Algorithm Theoretical Basis Document (Univ. Montana,1999); www.umt.edu/numerical-terradynamic-simulation-group/files/modis/atbd_mod17_v21.pdfBallabio, C., Panagos, P.

Running,S.W.,Nemani,R.,Glassy,J.M。&Thornton,P.E。MODIS每日光合作用(PSN)和年度净初级生产力(NPP)产品(MOD17)。算法理论基础文件(蒙大拿大学,1999);www.umt.edu/numerical-terradynamic-simulation-group/files/modis/atbd\u mod17\u v21.pdfBallabio,C.,帕纳戈斯,P。

& Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261, 110–123 (2016).Article .

&Monatanarella,L。使用LUCAS数据库绘制欧洲尺度的表土物理性质图。Geoderma 261110–123(2016)。文章。

Google Scholar

谷歌学者

Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article

Delgado Baquerizo,M.等人。土壤生物多样性的多种因素驱动着整个生物群落的生态系统功能。自然生态。进化。4210-220(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).Article

Rillig,M.C.等人。增加压力源的数量会减少全球土壤生态系统的服务。纳特·克莱姆。更改13478–483(2023)。文章

Google Scholar

谷歌学者

Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).Article

Cutler,D.R.等人,《生态学分类的随机森林》。生态学882783-2792(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Eisenhauer, N., Bowker, M. A., Grace, J. B. & Powell, J. R. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58, 65–72 (2015).Article

Eisenhauer,N.,Bowker,M.A.,Grace,J.B。&Powell,J.R。从模式到因果理解:土壤生态学中的结构方程建模(SEM)。土壤生物学58,65-72(2015)。文章

Google Scholar

谷歌学者

Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R package version 0.84. GitHub https://github.com/taiyun/corrplot (2017).Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 1. CRAN http://CRAN.R-project.org/package=rfPermute (2016).Lefcheck, J., Byrnes, J.

Wei,T。&Simko,V。corrplot:相关矩阵的可视化。R包版本0.84。GitHubhttps://github.com/taiyun/corrplot(2017年)。Archer,E。rfPermute:估计随机森林重要性度量的置换p值。R包版本1。起重机http://CRAN.R-project.org/package=rfPermute(2016年)。。

& Grace, J. piecewiseSEM: piecewise structural equation modeling. R package version 2.1.2. CRAN https://cloud.r-project.org/web/packages/piecewiseSEM/piecewiseSEM.pdf (2020).Romero, F. Soil health is associated with higher primary productivity across Europe. figshare https://doi.org/10.6084/m9.figshare.26272657.v1 (2024).Download referencesAcknowledgementsM.G.A.v.d.H.

&Grace,J。piecewiseSEM:分段结构方程建模。R包版本2.1.2。起重机https://cloud.r-project.org/web/packages/piecewiseSEM/piecewiseSEM.pdf(2020年)。Romero,F。土壤健康与整个欧洲较高的初级生产力有关。figshare公司https://doi.org/10.6084/m9.figshare.26272657.v1。。G、 A.v.d.H。

and F.R. acknowledge funding from the Swiss National Science Foundation through grant no. 310030-188799 and from the European Union Horizon 2020 research and innovation programme under grant agreement no. 862695 EJP SOIL-MINOTAUR. We also acknowledge J. Muñoz-Liesa for support with figure production.

F.R.感谢瑞士国家科学基金会通过310030-188799号拨款以及欧盟地平线2020研究与创新计划根据862695号EJP SOIL-MINOTAUR号拨款协议提供的资金。我们还感谢J.Muñoz Liesa对数字制作的支持。

N.E. acknowledges funding by the Deutsche Forschungsgemeinschaft DFG (German Centre for Integrative Biodiversity Research, FZT118; and Gottfried Wilhelm Leibniz Prize, Ei 862/29-1; Ei 862/31-1). M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033.

N、 E.感谢德国科学基金会DFG(德国综合生物多样性研究中心,FZT118;以及戈特弗里德·威廉·莱布尼茨奖,Ei 862/29-1;Ei 862/31-1)的资助。M、 D.-B.感谢TED2021-130908B-C41/AEI/10.13039/501100011033/NextGenerationEU/PRTR以及西班牙科学与创新部对MCIN/AEI/10.13039/501100011033资助的I++D++I项目PID2020-115813RA-I00的支持。

The LUCAS survey is coordinated by Unit E4 of the Statistical Office of the European Union (EUROSTAT). The LUCAS soil sample collection is supported by the Directorate‐General Environment, Directorate‐General Agriculture and Rural Development and Directorate‐General Climate Action of the European Commission.

LUCAS调查由欧盟统计局(EUROSTAT)E4部门协调。卢卡斯土壤样本采集得到了欧盟委员会环境总局、农业和农村发展总局以及气候行动总局的支持。

M.L. works under the fram.

M、 L.在fram下工作。

PubMed Google ScholarMaëva LabouyrieView author publicationsYou can also search for this author in

PubMed Google ScholarMaëva LabouyReview作者出版物您也可以在

PubMed Google ScholarAlberto OrgiazziView author publicationsYou can also search for this author in

PubMed Google ScholarAlberto OrgiazziView作者出版物您也可以在

PubMed Google ScholarCristiano BallabioView author publicationsYou can also search for this author in

PubMed Google ScholarCristiano BallabioView作者出版物您也可以在

PubMed Google ScholarPanos PanagosView author publicationsYou can also search for this author in

PubMed Google ScholarPanos PanagosView作者出版物您也可以在

PubMed Google ScholarArwyn JonesView author publicationsYou can also search for this author in

PubMed Google ScholararwynJonesview作者出版物您也可以在

PubMed Google ScholarLeho TedersooView author publicationsYou can also search for this author in

PubMed谷歌学术Leho Tedersoo查看作者出版物您也可以在

PubMed Google ScholarMohammad BahramView author publicationsYou can also search for this author in

PubMed Google Scholarmahammad BahramView作者出版物您也可以在

PubMed Google ScholarCarlos A. GuerraView author publicationsYou can also search for this author in

PubMed Google ScholarCarlos A.GuerraView作者出版物您也可以在

PubMed Google ScholarNico EisenhauerView author publicationsYou can also search for this author in

PubMed Google ScholarNico EisenhauerView作者出版物您也可以在

PubMed Google ScholarDongxue TaoView author publicationsYou can also search for this author in

PubMed Google ScholarDongxue TaoView作者出版物您也可以在

PubMed Google ScholarManuel Delgado-BaquerizoView author publicationsYou can also search for this author in

PubMed Google ScholarManuel Delgado BaquerizoView作者出版物您也可以在

PubMed Google ScholarPablo García-PalaciosView author publicationsYou can also search for this author in

PubMed Google ScholarMarcel G. A. van der HeijdenView author publicationsYou can also search for this author in

PubMed Google ScholarMarcel G.A.van der HeijdenView作者出版物您也可以在

PubMed Google ScholarContributionsM.G.A.v.d.H. and F.R. conceptualised and designed the study. A.O., P.P. and A.J. initiated the LUCAS survey. M.L., L.T. and M.B. generated or processed the sequencing data. F.R., M.L., D.T. and C.B. conducted statistical analyses (investigation and visualization).

。G、 A.v.d.H.和F.R.概念化并设计了这项研究。A、 O.,P.P.和A.J.发起了卢卡斯调查。M、 L.,L.T.和M.B.生成或处理了测序数据。F、 R.,M.L.,D.T.和C.B.进行了统计分析(调查和可视化)。

C.B. calculated primary productivity values for each site. M.G.A.v.d.H., A.O., P.P. and A.J. handled project administration. F.R. and M.G.A.v.d.H. wrote the original draft. F.R., M.L., A.O., C.B., P.P., A.J., L.T., M.B., C.A.G., N.E., D.T., M.D.-B., P.G.-P. and M.G.A.v.d.H. contributed to reviewing and editing of the final manuscript.Corresponding authorsCorrespondence to.

C、 B.计算每个地点的初级生产力值。M、 G.A.v.d.H.,A.O.,P.P.和A.J.负责项目管理。F、 R.和M.G.A.v.d.H.撰写了原始草案。F、 R.,M.L.,A.O.,C.B.,P.P.,A.J.,L.T.,M.B.,C.A.G.,N.E.,D.T.,M.D.-B.,P.G.-P.和M.G.A.v.D.H.为最终稿件的审查和编辑做出了贡献。通讯作者通讯。

Ferran Romero or Marcel G. A. van der Heijden.Ethics declarations

费兰·罗梅罗或马塞尔·G·A·范德海登。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Ecology & Evolution thanks James Grace, Rasmus Kjøller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

自然生态与进化感谢詹姆斯·格雷斯(JamesGrace)、拉斯姆斯·科勒(RasmusKjøller)和另一位匿名审稿人(s)为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationSupplementary Figs. 1–4 and Tables 1–5.Reporting SummarySupplementary DataDataset with information on individual sampling sites.Rights and permissionsSpringer Nature or its licensor (e.g.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充图1-4和表1-5。报告摘要补充数据集,包含各个采样点的信息。权利和许可原告性质或其许可人(例如。

a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleRomero, F., Labouyrie, M., Orgiazzi, A.

协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Romero,F.,Labouyrie,M.,Orgiazzi,A。

et al. Soil health is associated with higher primary productivity across Europe..

土壤健康与整个欧洲较高的初级生产力有关。。

Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02511-8Download citationReceived: 30 January 2024Accepted: 19 July 2024Published: 27 August 2024DOI: https://doi.org/10.1038/s41559-024-02511-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Ecol Evol(2024)。https://doi.org/10.1038/s41559-024-02511-8Downloadhttps://doi.org/10.1038/s41559-024-02511-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供