商务合作
动脉网APP
可切换为仅中文
AbstractIntegrin adaptor proteins, like tensin-2, are crucial for cell adhesion and signaling. However, the function of tensin-2 beyond localizing to focal adhesions remain poorly understood. We utilized proximity-dependent biotinylation and Strep-tag affinity proteomics to identify interaction partners of tensin-2 in Flp-In 293 T-REx cells.
摘要整合素衔接蛋白,如张力蛋白-2,对细胞粘附和信号传导至关重要。然而,除了定位于粘着斑之外,张力蛋白-2的功能仍然知之甚少。我们利用邻近依赖性生物素化和Strep标签亲和蛋白质组学来鉴定Flp-in 293 T-REx细胞中张力蛋白-2的相互作用伴侣。
Interactomics linked tensin-2 to known focal adhesion proteins and the dystrophin glycoprotein complex, while also uncovering novel interaction with the glycolytic enzyme GAPDH. We demonstrated that Y483-phosphorylation of tensin-2 regulates the glycolytic rate in Flp-In 293 T-REx and MEF cells and found that pY483 tensin-2 is enriched in adhesions in MEF cells.
Interactomics将tensin-2与已知的粘着斑蛋白和肌营养不良蛋白糖蛋白复合物联系起来,同时也揭示了与糖酵解酶GAPDH的新型相互作用。我们证明了张力蛋白-2的Y483磷酸化调节Flp-in 293 T-REx和MEF细胞的糖酵解速率,并发现pY483张力蛋白-2在MEF细胞的粘附中富集。
Our study unveils novel interaction partners for tensin-2 and further solidifies its speculated role in cell energy metabolism. These findings shed fresh insight on the functions of tensin-2, highlighting its potential as a therapeutic target for diseases associated with impaired cell adhesion and metabolism..
我们的研究揭示了张力蛋白-2的新型相互作用伙伴,并进一步巩固了其在细胞能量代谢中的推测作用。这些发现为张力蛋白2的功能提供了新的见解,突出了其作为与细胞粘附和代谢受损相关疾病的治疗靶点的潜力。。
IntroductionIntegrin adaptors, such as tensins, regulate the activation and signaling of integrins, affecting crucial cellular functions such as cell growth, survival and development. Also, integrin regulation often plays a role in disease outcome. For that, understanding the functions of integrin adaptors is of high importance.Tensins are a family of integrin adaptor proteins that are generally considered to interact with integrin cytoplasmic domains in the cell-ECM adhesions1.
引言整合素衔接子,如张力蛋白,调节整合素的激活和信号传导,影响细胞生长,存活和发育等关键细胞功能。此外,整合素调节通常在疾病结果中起作用。为此,了解整合素衔接子的功能非常重要。张力蛋白是整联蛋白衔接蛋白家族,通常被认为与细胞ECM粘附中的整联蛋白细胞质结构域相互作用1。
Tensin-2, also known as C1 domain containing protein with homology to tensin (C1-TEN) or tensin-like C1 domain-containing phosphatase (TENC1), is less studied member of the tensin protein family comprising of four proteins, with tensins 1–3 sharing high homology. Tensins are often collectively categorized as focal adhesion proteins1.
Tensin-2,也称为与张力蛋白(C1-TEN)或张力蛋白样C1结构域磷酸酶(TENC1)同源的C1结构域蛋白,是由四种蛋白质组成的张力蛋白家族中研究较少的成员,张力蛋白1-3具有高度同源性。张力蛋白通常统称为粘着斑蛋白1。
However, individual reports state that tensin-1 and tensin-3 are fibrillar adhesion proteins (tensin-1 located also in focal adhesions), whereas tensin-2 has been considered mostly as focal adhesion protein2,3.In focal adhesions, tensins are believed to connect the integrin tails and actin cytoskeleton via binding to both partners.
。
Tensin-2 PTB domain binds to integrin cytoplasmic domains of β3, β5, β7 and β1A, whereas β2 does not bind tensin-2 PTB4. The SH and PTB domains of tensin-2 are shown to bind receptor tyrosine kinase Axl5 , tumor suppressor proteins DLC16 and DLC27, DISC18, c-MpI9 and tyrosine kinase Syk10 (Fig. 1A).
张力蛋白-2 PTB结构域与β3,β5,β7和β1A的整联蛋白胞质结构域结合,而β2不结合张力蛋白-2 PTB4。显示张力蛋白-2的SH和PTB结构域结合受体酪氨酸激酶Axl5,肿瘤抑制蛋白DLC16和DLC27,DISC18,c-MpI9和酪氨酸激酶Syk10(图1A)。
Since phosphorylation is a common regulator of protein function, we took a look at the known phosphorylation sites catalogued in Phosphosite plus for tensin-211 and observed that Y483 is the most often phosphorylated residue of tensin-2 (Fig. 1B). The phosphorylation of this site has been previously reported to be mediated by Src12 and Axl kin.
由于磷酸化是蛋白质功能的常见调节剂,因此我们研究了在Phosphosite plus中针对张力蛋白211分类的已知磷酸化位点,并观察到Y483是张力蛋白2最常被磷酸化的残基(图1B)。先前已报道该位点的磷酸化是由Src12和Axl-kin介导的。
Table 1 Prediction of subcellular localization for tensin family proteins. Three different prediction algorithms were used. Nucl = Nucleus, Cyto = cytoplasmic, Cyto-nucl = protein which shuttle between the cytosol and nucleus, PM = plasma membrane.Full size tableTensin-2 shows high-to-medium expression levels in specialized tissues, with the highest level of protein expression found in kidneys (Human protein atlas29) (Supplementary Fig. 1B).
表1张力蛋白家族蛋白亚细胞定位的预测。使用了三种不同的预测算法。Nucl=细胞核,细胞质,细胞质,在细胞质和细胞核之间穿梭的蛋白质,质膜。全尺寸tableTensin-2在特定组织中显示出高至中等的表达水平,在肾脏中发现的蛋白质表达水平最高(人类蛋白质图谱29)(补充图1B)。
Gene-disease-association (GDA) score of tensin-2 is highest in nephrotic diseases according to DisGeNET30 (Supplementary Fig. 1C) and tensin-2 gene expression often decreases heavily in tumorous tissues as visible from GEPIA31 (Supplementary Fig. 1D). In line with this, downregulation of tensin-2 has been shown to enhance the tumorigenicity of A549 and HeLa cells32.One phosphorylation site (Y483) was highly enriched and reported in almost 1600 previous studies (Fig. 1B).
根据DisGeNET30(补充图1C),tensin-2的基因-疾病关联(GDA)评分在肾病中最高,并且从GEPIA31(补充图1D)可见,tensin-2基因表达在肿瘤组织中通常严重降低。与此相一致,已显示张力蛋白-2的下调可增强A549和HeLa细胞的致瘤性32。一个磷酸化位点(Y483)高度富集,并在近1600项先前的研究中报道(图1B)。
As these references were investigated more closely, 1576 associations were detected with MS analysis and only one using phospho-specific antibodies and Western blotting33. Closer inspection of the 1576 MS studies revealed that majority of the studies were associated with cancers (Supplementary Fig. 1E), mostly with lung and liver cancer studies (Supplementary Fig. 1F).Tensin-2 proximal interactome reveals associations with proteins from the cytoplasm, plasma membrane, nucleoplasm and focal adhesions in Flp-In 293 T-REx cellsIn order to gain understanding of the location and interaction partners of tensin-2 and the function of Y483 phosphorylation site, we performed a BioID proximal interactions analysis for Flp-In 293 T-REx cells stably expressing tensin-2 WT, phospho-mimicking (Y483E) and phosphorylation-negative (Y483F, Y483A) forms of the tensin-2.
随着这些参考文献的进一步研究,MS分析检测到1576个关联,只有一个使用磷酸特异性抗体和蛋白质印迹33。仔细检查1576项MS研究发现,大多数研究与癌症有关(补充图1E),主要与肺癌和肝癌研究有关(补充图1F)。Tensin-2近端相互作用组揭示了与Flp-in 293 T-REx细胞中细胞质,质膜,核质和粘着斑中蛋白质的关联为了了解Tensin-2的位置和相互作用伴侣以及Y483磷酸化位点的功能,我们对稳定表达Tensin-2 WT,磷酸化模拟(Y483E)和磷酸化阴性(Y483F,Y483A)形式的Flp-in 293 T-REx细胞进行了类生物近端相互作用分析。
BioID reveals .
BioID揭示。
Our study provides important insights into the cellular localization of tensin-2 and molecular mechanisms underlying the regulation of energy metabolism by the adhesion protein tensin-2. The comprehensive analysis of tensin-2 interactors identified novel interaction partners, shedding new light on the diverse functions of this important protein.
我们的研究为张力蛋白-2的细胞定位以及粘附蛋白张力蛋白-2调节能量代谢的分子机制提供了重要见解。对张力蛋白-2相互作用子的综合分析确定了新的相互作用伴侣,为这种重要蛋白质的多种功能提供了新的思路。
Both bioinformatic prediction and immunofluorescence analysis suggests that tensin-2, in addition to cell-ECM adhesions, also localizes into cell nucleus and Y483- phosphorylated form is specifically enriched in focal adhesions in MEF cells. The identification of novel interaction partners for tensin-2 provides new avenues for future research, as we work to unravel the complex regulatory networks that govern cellular processes.While the exact biological role of tensin-2 remains to be fully elucidated, our results opens possibility that the suggested tumor suppressor role of tensin-2 in human cancers32 could be linked to adhesion biology and cell energy metabolism.
生物信息学预测和免疫荧光分析均表明,张力蛋白-2除细胞-ECM粘附外,还定位于细胞核中,Y483磷酸化形式在MEF细胞的粘着斑中特异性富集。随着我们努力解开控制细胞过程的复杂调控网络,张力蛋白-2新型相互作用伙伴的鉴定为未来的研究提供了新的途径。虽然张力蛋白-2的确切生物学作用仍有待完全阐明,但我们的结果揭示了张力蛋白-2在人类癌症中的肿瘤抑制作用可能与粘附生物学和细胞能量代谢有关。
Overall, our study represents a significant advance in our understanding of the link between adhesion biology and energy metabolism, as summarized in Fig. 7.Figure 7Summary of the main findings. Tensin-2 has been shown to promote cell contractility via Rho-mediated mechanism3 and is an actin-binding protein.
总体而言,我们的研究代表了我们对粘附生物学和能量代谢之间联系的理解的重大进步,如图7所示。图7主要发现的总结。已显示张力蛋白-2通过Rho介导的机制3促进细胞收缩,并且是肌动蛋白结合蛋白。
Actin has been further shown to associate with GAPDH and to regulate glycolysis via different mechanisms38. Here we have shown that tensin-2 is associated with GAPDH and controls glycolysis via Y483 phosphorylation and actin dynamics.Full size imageMaterials and methodsPlasmidsFor protein expression plasmid backbone we used the MAC-tag-C44 (Addgene: #108077) where the tags have been embedded in the C-terminus of the bait protein.For tensin-2 constructs we used the .
肌动蛋白已被进一步证明与GAPDH相关,并通过不同的机制调节糖酵解38。在这里,我们已经证明张力蛋白-2与GAPDH相关,并通过Y483磷酸化和肌动蛋白动力学控制糖酵解。全尺寸成像材料和方法对于蛋白质表达质粒骨架,我们使用MAC-tag-C44(Addgene:#108077),其中标签已嵌入诱饵蛋白的C末端。对于tensin-2构建体,我们使用了。
Data availability
数据可用性
The mass spectrometry datasets discussed in this study is available at MassIVE database with dataset ID MSV000091836 (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=46fd29805ffc4843ad3c36db2420d3cc). The RNA-seq data discussed in this study have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number GSE231782 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE231782)..
本研究中讨论的质谱数据集可在MassIVE数据库中获得,数据集ID为MSV000091836(https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=46fd29805ffc4843ad3c36db2420d3cc)。本研究中讨论的RNA-seq数据已保存在NCBI的Gene Expression Omnibus(Edgar等,2002)中,可通过GEO系列登录号GSE231782访问(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE231782)。。
ReferencesLiao, Y.-C. & Lo, S. H. Tensins—Emerging insights into their domain functions, biological roles and disease relevance. J. Cell Sci. 134(4), jcs254029. https://doi.org/10.1242/jcs.254029 (2021).Article
参考文献Liao,Y.-C.&Lo,S.H。Tensins对其域功能,生物学作用和疾病相关性的新见解。J、 细胞科学。134(4),jcs254029。https://doi.org/10.1242/jcs.254029(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zamir, E. et al. Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2(4), 191–196. https://doi.org/10.1038/35008607 (2000).Article
Zamir,E.等人。培养的成纤维细胞中细胞-基质粘附的动力学和分离。自然细胞生物学。2(4),191-196。https://doi.org/10.1038/35008607(2000年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Clark, K. et al. Tensin 2 modulates cell contractility in 3D collagen gels through the RhoGAP DLC1. J. Cell. Biochem. 109(4), 808–817. https://doi.org/10.1002/jcb.22460 (2010).Article
Clark,K。等人。张力蛋白2通过RhoGAP DLC1调节3D胶原凝胶中的细胞收缩性。J、 细胞。生物化学。109(4),808-817。https://doi.org/10.1002/jcb.22460(2010年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Calderwood, D. A. et al. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA 100(5), 2272–2277. https://doi.org/10.1073/pnas.262791999 (2003).Article
Calderwood,D.A。等人。整合素β胞质结构域与磷酸酪氨酸结合结构域的相互作用:整合素信号传导多样性的结构原型。程序。纳特尔。阿卡德。科学。美国100(5),2272-2277。https://doi.org/10.1073/pnas.262791999(2003年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hafizi, S., Alindri, F., Karlsson, R. & Dahlbäck, B. Interaction of Axl receptor tyrosine kinase with C1-TEN, a novel C1 domain-containing protein with homology to tensin. Biochem. Biophys. Res. Commun. 299(5), 793–800. https://doi.org/10.1016/S0006-291X(02)02718-3 (2002).Article
Hafizi,S.,Alindri,F.,Karlsson,R。&Dahlbäck,B。Axl受体酪氨酸激酶与C1-TEN的相互作用,C1-TEN是一种与张力蛋白同源的新型C1结构域蛋白。生物化学。生物物理。公共资源。299(5),793-800。https://doi.org/10.1016/S0006-291X(02)02718-3(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, L. et al. Solution structure of the phosphotyrosine binding (PTB) domain of human Tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. J. Biol. Chem. 287(31), 26104–26114. https://doi.org/10.1074/jbc.M112.360206 (2012).Article .
Chen,L。等人。人Tensin2蛋白的磷酸酪氨酸结合(PTB)结构域与肝癌1(DLC1)肽中缺失的复合物的溶液结构揭示了一种新的肽结合模式。J、 生物。。287(31),26104–26114。https://doi.org/10.1074/jbc.M112.360206(2012年)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kawai, K. et al. START-GAP2/DLC2 is localized in focal adhesions via its N-terminal region. Biochem. Biophys. Res. Commun. 380(4), 736–741. https://doi.org/10.1016/j.bbrc.2009.01.095 (2009).Article
Kawai,K。等人。START-GAP2/DLC2通过其N端区域定位于粘着斑中。生物化学。生物物理。公共资源。380(4),736-741。https://doi.org/10.1016/j.bbrc.2009.01.095(2009年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Goudarzi, S., Smith, L. J. M., Schütz, S. & Hafizi, S. Interaction of DISC1 with the PTB domain of Tensin2. Cell. Mol. Life Sci. CMLS 70(9), 1663–1672. https://doi.org/10.1007/s00018-012-1228-6 (2013).Article
Goudarzi,S.,Smith,L.J.M.,Schütz,S。&Hafizi,S。DISC1与张力蛋白2的PTB结构域的相互作用。细胞。分子生命科学。CMLS 70(9),1663-1672。https://doi.org/10.1007/s00018-012-1228-6(2013年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jung, A. S., Kaushansky, A., MacBeath, G. & Kaushansky, K. Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling. Cell Cycle 10(11), 1838–1844. https://doi.org/10.4161/cc.10.11.15776 (2011).Article
Jung,A.S.,Kaushansky,A.,MacBeath,G。&Kaushansky,K。Tensin2是血小板生成素(TPO)通过促进Akt信号传导诱导细胞增殖的新型介质。细胞周期10(11),1838-1844。https://doi.org/10.4161/cc.10.11.15776(2011年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moon, K. D., Zhang, X., Zhou, Q. & Geahlen, R. L. The protein-tyrosine kinase Syk interacts with the C-terminal region of tensin2. Biochim. Biophys. Acta 1823(2), 199–205. https://doi.org/10.1016/j.bbamcr.2011.10.001 (2012).Article
Moon,K.D.,Zhang,X.,Zhou,Q。&Geahlen,R.L。蛋白酪氨酸激酶Syk与张力蛋白2的C末端区域相互作用。生物化学。生物物理。Acta 1823(2),199-205。https://doi.org/10.1016/j.bbamcr.2011.10.001(2012年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hornbeck, P. V. et al. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 43(Database issue), D512–D520. https://doi.org/10.1093/nar/gku1267 (2015).Article
Hornbeck,P.V.等人,PhosphoSitePlus,2014:突变,PTM和重新校准。核酸研究43(数据库问题),D512-D520。https://doi.org/10.1093/nar/gku1267(2015年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ferrando, I. M. et al. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol. Cell. Proteom. MCP 11(8), 355–369. https://doi.org/10.1074/mcp.M111.015750 (2012).Article
Ferrando,I.M.等人。通过化学互补和磷酸化蛋白质组学鉴定c-Src酪氨酸激酶的靶标。摩尔电池。蛋白质组学。MCP 11(8),355-369。https://doi.org/10.1074/mcp.M111.015750(2012年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cheng, L.-C. et al. AXL phosphorylates and up-regulates TNS2 and its implications in IRS-1-associated metabolism in cancer cells. J. Biomed. Sci. 25(1), 80. https://doi.org/10.1186/s12929-018-0465-x (2018).Article
Cheng,L.-C.等人。AXL磷酸化并上调TNS2及其在癌细胞中与IRS-1相关的代谢中的意义。J、 生物医学。科学。25(1),80。https://doi.org/10.1186/s12929-018-0465-x(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rahikainen, R., Öhman, T., Turkki, P., Varjosalo, M. & Hytönen, V. P. Talin-mediated force transmission and talin rod domain unfolding independently regulate adhesion signalling. J. Cell Sci. 132(7), 226514. https://doi.org/10.1242/jcs.226514 (2019).Article
Rahikainen,R.,Öhman,T.,Turkki,P.,Varjosalo,M。&Hytönen,V.P。塔林介导的力传递和塔林杆结构域展开独立调节粘附信号传导。J、 细胞科学。132(7),226514。https://doi.org/10.1242/jcs.226514(2019年)。文章
Google Scholar
谷歌学者
Mekhdjian, A. H. et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol. Biol. Cell 28(11), 1467–1488. https://doi.org/10.1091/mbc.E16-09-0654 (2017).Article .
Mekhdjian,A.H.等人,《整合素介导的牵引力增强桩蛋白分子缔合和粘附动力学,从而增加肿瘤细胞向三维细胞外基质的侵袭性》。分子生物学。细胞28(11),1467-1488。https://doi.org/10.1091/mbc.E16-09-0654(2017年)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dong, J.-M. et al. Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Sci. Signal. 9(432), rs4. https://doi.org/10.1126/scisignal.aaf3572 (2016).Article
Dong,J.-M.等人。邻近生物素化提供了对纳米级粘着斑分子组成的深入了解。科学。信号。9(432),rs4。https://doi.org/10.1126/scisignal.aaf3572(2016年)。文章
MathSciNet
MathSciNet
PubMed
PubMed
Google Scholar
谷歌学者
Chastney, M. R. et al. Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation. J. Cell Biol. 219(8), e202003038. https://doi.org/10.1083/jcb.202003038 (2020).Article
Chastney,M.R.等人。通过多重邻近生物素化揭示整合素粘附复合物的拓扑特征。J、 细胞生物学。219(8),E20200038。https://doi.org/10.1083/jcb.202003038(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17(12), 1577–1587. https://doi.org/10.1038/ncb3257 (2015).Article
Horton,E.R.等人。共有整合素粘附体的定义及其在粘附复合物组装和拆卸过程中的动力学。自然细胞生物学。17(12),1577-1587年。https://doi.org/10.1038/ncb3257(2015年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Georgiadou, M. et al. AMPK negatively regulates tensin-dependent integrin activity. J. Cell Biol. 216(4), 1107–1121. https://doi.org/10.1083/jcb.201609066 (2017).Article
Georgiadou,M。等人。AMPK负调节张力蛋白依赖性整合素活性。J、 细胞生物学。。https://doi.org/10.1083/jcb.201609066(2017年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cho, A.-R. et al. Deficiency of the tensin2 gene in the ICGN mouse: An animal model for congenital nephrotic syndrome. Mamm. Genome 17(5), 407–416. https://doi.org/10.1007/s00335-005-0167-z (2006).Article
Cho,A.-R.等人。ICGN小鼠中tensin2基因的缺陷:先天性肾病综合征的动物模型。妈妈。基因组17(5),407-416。https://doi.org/10.1007/s00335-005-0167-z(2006年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, E. et al. Cellular phosphatase activity of C1-Ten/Tensin2 is controlled by phosphatidylinositol-3,4,5-triphosphate binding through the C1-Ten/Tensin2 SH2 domain. Cell. Signal. 51, 130–138. https://doi.org/10.1016/j.cellsig.2018.07.009 (2018).Article
Kim,E。等人。C1 Ten/Tensin2的细胞磷酸酶活性受磷脂酰肌醇-3,4,5-三磷酸通过C1 Ten/Tensin2 SH2结构域结合的控制。细胞。信号。51130-138。https://doi.org/10.1016/j.cellsig.2018.07.009(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koh, A. et al. C1-Ten is a protein tyrosine phosphatase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy. Mol. Cell. Biol. 33(8), 1608–1620. https://doi.org/10.1128/MCB.01447-12 (2013).Article
Koh,A。等人C1 Ten是胰岛素受体底物1(IRS-1)的蛋白酪氨酸磷酸酶,调节IRS-1的稳定性和肌肉萎缩。摩尔电池。生物学33(8),1608-1620。https://doi.org/10.1128/MCB.01447-12(2013年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jeong, H. et al. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci. Rep. 7, 17777. https://doi.org/10.1038/s41598-017-18081-8 (2017).Article
Jeong,H。等人。抑制C1 Ten PTPase活性可通过IRS-1和AMPK途径降低胰岛素抵抗。科学。代表717777。https://doi.org/10.1038/s41598-017-18081-8(2017年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, H., Duncan, I. C., Bozorgchami, H. & Lo, S. H. Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proc. Natl. Acad. Sci. 99(2), 733–738. https://doi.org/10.1073/pnas.022518699 (2002).Article
Chen,H.,Duncan,I.C.,Bozorgchami,H。&Lo,S.H。Tensin1和先前未记录的家族成员tensin2积极调节细胞迁移。程序。纳特尔。阿卡德。科学。99(2),733-738。https://doi.org/10.1073/pnas.022518699(2002年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).Article
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W。&Lipman,D.J。基本局部对齐搜索工具。J、 分子生物学。。https://doi.org/10.1016/S0022-2836(05)80360-2(1990)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Horton, P. et al. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35(Web Server issue), W585–W587. https://doi.org/10.1093/nar/gkm259 (2007).Article
Horton,P。等人。WoLF PSORT:蛋白质定位预测因子。Nucleic Acids Res.35(Web服务器问题),W585–W587。https://doi.org/10.1093/nar/gkm259(2007年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, C.-S., Lin, C.-J. & Hwang, J.-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. Publ. Protein Soc. 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604 (2004).Article
Yu,C.-S.,Lin,C.-J.&Hwang,J.-K。通过基于n肽组成的支持向量机预测革兰氏阴性菌蛋白质的亚细胞定位。蛋白质科学。公共。蛋白质Soc.13(5),1402-1406。https://doi.org/10.1110/ps.03479604(2004年)。文章
Google Scholar
谷歌学者
Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50(1), W228–W234. https://doi.org/10.1093/nar/gkac278 (2022).Article
Thumuluri,V.,Almagro Armenteros,J.J.,Johansen,A.R.,Nielsen,H。&Winther,O。DeepLoc 2.0:使用蛋白质语言模型进行多标记亚细胞定位预测。核酸研究50(1),W228–W234。https://doi.org/10.1093/nar/gkac278(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347(6220), 1260419. https://doi.org/10.1126/science.1260419 (2015).Article
Uhlén,M。等人。基于组织的人类蛋白质组图谱。科学347(6220),1260419。https://doi.org/10.1126/science.1260419(2015年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Piñero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48(D1), D845–D855. https://doi.org/10.1093/nar/gkz1021 (2020).Article
Piñero,J.等人。疾病基因组学的DisGeNET知识平台:2019年更新。核酸研究48(D1),D845–D855。https://doi.org/10.1093/nar/gkz1021(2020年)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Tang, Z. et al. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45(1), W98–W102. https://doi.org/10.1093/nar/gkx247 (2017).Article
Tang,Z。等人。GEPIA:用于癌症和正常基因表达谱分析和交互分析的网络服务器。核酸研究45(1),W98–W102。https://doi.org/10.1093/nar/gkx247(2017年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hong, S.-Y. et al. Down-regulation of tensin2 enhances tumorigenicity and is associated with a variety of cancers. Oncotarget 7(25), 38143–38153. https://doi.org/10.18632/oncotarget.9411 (2016).Article
Hong,S.-Y.等人。张力蛋白2的下调增强了致瘤性,并与多种癌症有关。Oncotarget 7(25),38143–38153。https://doi.org/10.18632/oncotarget.9411(2016年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nam, S. H. et al. Noncanonical roles of membranous lysyl-tRNA synthetase in transducing cell-substrate signaling for invasive dissemination of colon cancer spheroids in 3D collagen I gels. Oncotarget 6(25), 21655–21674 (2015).Article
Nam,S.H.等人。膜赖氨酰-tRNA合成酶在转导细胞底物信号传导中的非典型作用,用于3D胶原蛋白I凝胶中结肠癌球体的侵袭性传播。Oncotarget 6(25),21655–21674(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Teo, G. et al. SAINTexpress: Improvements and additional features in Significance Analysis of Interactome software. J. Proteomics 100, 37–43. https://doi.org/10.1016/j.jprot.2013.10.023 (2014).Article
Teo,G。等人。SAINTexpress:Interactome软件显着性分析中的改进和其他功能。J、 蛋白质组学100,37-43。https://doi.org/10.1016/j.jprot.2013.10.023(2014年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Byron, A. et al. Characterisation of a nucleo-adhesome. Nat. Commun. 13, 3053. https://doi.org/10.1038/s41467-022-30556-5 (2022).Article
Byron,A。等人。核粘附体的表征。国家公社。133053年。https://doi.org/10.1038/s41467-022-30556-5(2022年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mellacheruvu, D. et al. The CRAPome: A contaminant repository for affinity purification mass spectrometry data. Nat. Methods 10(8), 730–736. https://doi.org/10.1038/nmeth.2557 (2013).Article
Mellacheruvu,D。等人,《CRAPome:亲和纯化质谱数据的污染物储存库》。自然方法10(8),730-736。https://doi.org/10.1038/nmeth.2557(2013年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Junttila, M. R., Saarinen, S., Schmidt, T., Kast, J. & Westermarck, J. Single-step Strep-tag® purification for the isolation and identification of protein complexes from mammalian cells. PROTEOMICS 5(5), 1199–1203. https://doi.org/10.1002/pmic.200400991 (2005).Article
。蛋白质组学5(5),1199-1203。https://doi.org/10.1002/pmic.200400991(2005年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
DeWane, G., Salvi, A. M. & DeMali, K. A. Fueling the cytoskeleton—Links between cell metabolism and actin remodelling. J. Cell Sci. 134(3), jcs248385. https://doi.org/10.1242/jcs.248385 (2021).Article
DeWane,G.,Salvi,A.M。&DeMali,K.A。促进细胞代谢和肌动蛋白重塑之间的细胞骨架联系。J、 细胞科学。134(3),jcs248385。https://doi.org/10.1242/jcs.248385(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peelman, F. et al. Characterization of the ABCA transporter subfamily: Identification of prokaryotic and eukaryotic members, phylogeny and topology. J. Mol. Biol. 325(2), 259–274. https://doi.org/10.1016/S0022-2836(02)01105-1 (2003).Article
Peelman,F。等人。ABCA转运蛋白亚家族的表征:原核和真核成员的鉴定,系统发育和拓扑结构。J、 分子生物学。325(2),259-274。https://doi.org/10.1016/S0022-2836(02)01105-1(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ursino, G. M. et al. ABCA12 regulates insulin secretion from β-cells. EMBO Rep. 21(3), e48692. https://doi.org/10.15252/embr.201948692 (2020).Article
。EMBO代表21(3),e48692。https://doi.org/10.15252/embr.201948692(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McCleverty, C. J., Lin, D. C. & Liddington, R. C. Structure of the PTB domain of tensin1 and a model for its recruitment to fibrillar adhesions. Protein Sci. Publ. Protein Soc. 16(6), 1223–1229. https://doi.org/10.1110/ps.072798707 (2007).Article
McCleverty,C.J.,Lin,D.C。&Liddington,R.C。tensin1的PTB结构域的结构及其募集到原纤维粘连的模型。蛋白质科学。公共。蛋白质Soc.16(6),1223-1229。https://doi.org/10.1110/ps.072798707(2007年)。文章
Google Scholar
谷歌学者
Zdżalik-Bielecka, D. et al. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc. Natl. Acad. Sci. USA. 118(28), e2024596118. https://doi.org/10.1073/pnas.2024596118 (2021).Article
Zdżalik-Bielecka,D。等人。GAS6-AXL信号通路触发肌动蛋白重塑,从而驱动膜皱褶,巨胞饮作用和癌细胞侵袭。程序。纳特尔。阿卡德。科学。美国118(28),e2024596118。https://doi.org/10.1073/pnas.2024596118(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Park, J. S. et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1 (2020).Article
Park,J.S.等人。通过细胞骨架结构对糖酵解的机械调节。。https://doi.org/10.1038/s41586-020-1998-1(2020年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 9, 1188. https://doi.org/10.1038/s41467-018-03523-2 (2018).Article
Liu,X。等人。AP-MS和BioID兼容的MAC标签可以全面绘制蛋白质相互作用和亚细胞定位。国家公社。91188年。https://doi.org/10.1038/s41467-018-03523-2(2018年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125(2), 327–337. https://doi.org/10.1242/dev.125.2.327 (1998).Article
Xu,W.,Baribault,H。&Adamson,E.D。Vinculin基因敲除导致胚胎发育过程中的心脏和大脑缺陷。发展125(2),327-337。https://doi.org/10.1242/dev.125.2.327(1998年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Choi, H. et al. SAINT: Probabilistic scoring of affinity purification—Mass spectrometry data. Nat. Methods 8(1), 70–73. https://doi.org/10.1038/nmeth.1541 (2011).Article
Choi,H。等人。SAINT:亲和纯化质谱数据的概率评分。。https://doi.org/10.1038/nmeth.1541(2011年)。文章
MathSciNet
MathSciNet
PubMed
PubMed
Google Scholar
谷歌学者
Mellacheruvu, D., Wright, Z., Couzens, A. et al. The CRAPome: A contaminant repository for affinity purification–mass spectrometry data. Nat Methods 10, 730–736. https://doi.org/10.1038/nmeth.2557 (2013).Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S.
Mellacheruvu,D.,Wright,Z.,Couzens,A.等人,《CRAPome:亲和纯化污染物储存库-质谱数据》。Nat方法10730-736。https://doi.org/10.1038/nmeth.2557(2013年)。佩蒂亚,M.,佩蒂亚,G.M.,安东内斯库,C.M.,张,T.C.,门德尔,J.T.,&萨尔茨伯格,S。
L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology 33(3), 290–295. https://doi.org/10.1038/nbt.3122 (2015).E. Meijering, O. Dzyubachyk, I. Smal Methods for Cell and Particle Tracking Methods in Enzymology 504, 183-200 (2012).Download referencesAcknowledgementsThis work was supported by the Maud Kuistila Memorial foundation (Turkki P), Ella and Georg Ehnrooth foundation (Turkki P), Cancer Society Finland (Hytönen VP), Sigrid Juselius Foundation (Hytönen VP) and Academy of Finland (Hytönen VP).
五十、 StringTie能够从RNA-seq读数改进转录组的重建。。https://doi.org/10.1038/nbt.3122(2015年)。E、 Meijering,O。Dzyubachyk,I。酶学中细胞和颗粒跟踪方法的小型方法504183-200(2012)。下载参考文献致谢这项工作得到了Maud Kuistila纪念基金会(Turkki P),Ella和Georg Ehnrooth基金会(Turkki P),芬兰癌症协会(Hytönen VP),Sigrid Juselius基金会(Hytönen VP)和芬兰科学院(Hytönen VP)的支持。
The authors acknowledge the Biocenter Finland and Tampere Imaging Facility (TIF) for the service. Ulla Kiiskinen and Niklas Kähkönen (Tampere University) are acknowledged for technical support.Author informationAuthors and AffiliationsFaculty of Medicine and Health Technology, Tampere University, Tampere, FinlandPaula Turkki, Latifeh Azizi & Vesa P.
作者感谢芬兰生物中心和坦佩雷成像设施(TIF)的服务。Ulla Kiiskinen和Niklas Kähkönen(坦佩雷大学)获得了技术支持。作者信息作者和附属机构坦佩雷大学医学与健康技术学院,坦佩雷,芬兰德拉·保拉·图尔基,拉蒂菲·阿齐兹和维萨·P。
HytönenFimlab Laboratories, Tampere, FinlandPaula Turkki & Vesa P. HytönenInstitute of Biotechnology, University of Helsinki, Helsinki, FinlandIftekhar Chowdhury, Tiina Öhman & Markku VarjosaloAuthorsPaula TurkkiView author publicationsYou can also search for this author in.
HytönenFimlab实验室,坦佩雷,芬兰德保拉·图尔基和维萨·P·Hytönen生物技术研究所,赫尔辛基大学,芬兰德夫特哈尔·乔杜里,蒂娜·奥曼和马克库·瓦尔乔萨洛AuthorsPaula TurkkiView作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarIftekhar ChowdhuryView author publicationsYou can also search for this author in
PubMed Google ScholarIftekhar ChowdhuryView作者出版物您也可以在
PubMed Google ScholarTiina ÖhmanView author publicationsYou can also search for this author in
PubMed Google ScholartininaÖhmanView作者出版物您也可以在
PubMed Google ScholarLatifeh AziziView author publicationsYou can also search for this author in
PubMed Google ScholarLatifeh AziziView作者出版物您也可以在
PubMed Google ScholarMarkku VarjosaloView author publicationsYou can also search for this author in
PubMed Google ScholarMarkku VarjosaloView作者出版物您也可以在
PubMed Google ScholarVesa P. HytönenView author publicationsYou can also search for this author in
PubMed Google ScholarVesa P.HytönenView作者出版物您也可以在
PubMed Google ScholarContributionsThe authors confirm contribution to the paper as follows: Study conception and design: Turkki P, Varjosalo M, Hytönen VP. data collection: Turkki P, Chowdhury I, Öhman T, Azizi L. Analysis and interpretation of results: Turkki P, Chowdhury I, Öhman T, Azizi L.
PubMed谷歌学术贡献作者确认对论文的贡献如下:研究概念和设计:Turkki P,Varjosalo M,Hytönen VP。数据收集:Turkki P,Chowdhury I,Öhman T,Azizi L.结果的分析和解释:Turkki P,Chowdhury I,Öhman T,Azizi L。
Draft manuscript preparation: Turkki P, Hytönen VP. All authors reviewed the results and approved the final version of the manuscript.Corresponding authorCorrespondence to.
草稿准备:Turkki P,Hytönen VP。所有作者都审查了结果并批准了稿件的最终版本。对应作者对应。
Vesa P. Hytönen.Ethics declarations
Vesa P.Hytönen。伦理声明
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figures.Supplementary Information 1.Supplementary Information 2.Supplementary Information 3.Supplementary Information 4.Rights and permissions.
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字。补充信息1。补充信息2。补充信息3。补充信息4。权利和权限。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleTurkki, P., Chowdhury, I., Öhman, T. et al. Tensin-2 interactomics reveals interaction with GAPDH and a phosphorylation-mediated regulatory role in glycolysis.
转载和许可本文引用本文Turkki,P.,Chowdhury,I.,Öhman,T。等人。Tensin-2 interactomics揭示了与GAPDH的相互作用以及磷酸化介导的糖酵解调节作用。
Sci Rep 14, 19862 (2024). https://doi.org/10.1038/s41598-024-65787-7Download citationReceived: 20 April 2023Accepted: 24 June 2024Published: 27 August 2024DOI: https://doi.org/10.1038/s41598-024-65787-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1419862(2024)。https://doi.org/10.1038/s41598-024-65787-7Download引文接收日期:2023年4月20日接收日期:2024年6月24日发布日期:2024年8月27日OI:https://doi.org/10.1038/s41598-024-65787-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。