EN
登录

Nature Communications:多基因组谱系追踪预测癌症进化的转录、表观遗传和遗传决定因素

Nature Communications:Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution

Nature 等信源发布 2024-09-01 21:47

可切换为仅中文


AbstractCancer is a highly heterogeneous disease, where phenotypically distinct subpopulations coexist and can be primed to different fates. Both genetic and epigenetic factors may drive cancer evolution, however little is known about whether and how such a process is pre-encoded in cancer clones. Using single-cell multi-omic lineage tracing and phenotypic assays, we investigate the predictive features of either tumour initiation or drug tolerance within the same cancer population.

摘要癌症是一种高度异质性的疾病,表型不同的亚群共存,并可能导致不同的命运。遗传和表观遗传因素都可能驱动癌症的进化,但是对于这种过程是否以及如何在癌症克隆中预先编码知之甚少。使用单细胞多组谱系追踪和表型分析,我们研究了同一癌症人群中肿瘤起始或药物耐受性的预测特征。

Clones primed to tumour initiation in vivo display two distinct transcriptional states at baseline. Remarkably, these states share a distinctive DNA accessibility profile, highlighting an epigenetic basis for tumour initiation. The drug tolerant niche is also largely pre-encoded, but only partially overlaps the tumour-initiating one and evolves following two genetically and transcriptionally distinct trajectories.

体内引发肿瘤起始的克隆在基线时显示两种不同的转录状态。值得注意的是,这些状态具有独特的DNA可及性特征,突出了肿瘤发生的表观遗传基础。耐药生态位也在很大程度上是预先编码的,但仅与肿瘤起始部分重叠,并沿着两个遗传和转录不同的轨迹进化。

Our study highlights coexisting genetic, epigenetic and transcriptional determinants of cancer evolution, unravelling the molecular complexity of pre-encoded tumour phenotypes..

我们的研究强调了癌症进化的共存遗传,表观遗传和转录决定因素,揭示了预先编码的肿瘤表型的分子复杂性。。

IntroductionCancer adopts evolutionary pathways that sustain the disease. Aggressive tumour behaviours, such as the dissemination to distant organs, diminished susceptibility to treatment, and disease relapse, result from either selection or adaptation processes, possibly intertwined1. When a selective process occurs, the fate of a cancer clone is determined at the root of the evolutionary process.

引言癌症采用维持疾病的进化途径。侵袭性肿瘤行为,例如向远处器官的传播,对治疗的敏感性降低和疾病复发,可能是由选择或适应过程引起的,可能是相互交织的1。当发生选择性过程时,癌症克隆的命运取决于进化过程的根源。

In this case, the heterogeneity of tumour phenotypes can, at least in principle, be identified ahead of selection2. The pre-existence of aggressive phenotypes has been linked to the so-called cancer stem cell (CSC) theory3 and observed in leukaemia4,5 and solid tumours, such as colon6 and breast cancer7,8, as well as glioma9,10.

在这种情况下,至少原则上可以在选择之前确定肿瘤表型的异质性2。侵袭性表型的预先存在与所谓的癌症干细胞(CSC)理论3有关,并在白血病4,5和实体瘤如结肠癌6和乳腺癌7,8以及胶质瘤9,10中观察到。

According to such a model, tumour cells are not all equal, instead a stem-like cancer niche exists that is primed to sustain most of the aggressive phenotypes, such as tumour re-initiation, metastatic dissemination potential, and capacity to survive cytotoxic treatments11.Predicting cancer phenotypes requires linking the molecular state of a clone to its fate with high precision.

根据这样的模型,肿瘤细胞并不都是平等的,相反,存在一个干细胞样的癌症生态位,它可以维持大多数侵袭性表型,如肿瘤重新启动,转移性传播潜能和细胞毒性治疗的生存能力11。预测癌症表型需要将克隆的分子状态与其命运高度精确地联系起来。

Without a priori information, tumour phylogeny can be inferred from somatic mutations12,13,14,15; however, this approach is limited by the high sparsity of single-cell data. Single-cell lineage tracing consists in inserting barcodes in the genome of the cells with the aim of tracing their progeny16,17,18,19.

没有先验信息,可以从体细胞突变推断肿瘤系统发育12,13,14,15;然而,这种方法受到单细胞数据高度稀疏的限制。单细胞谱系追踪包括在细胞基因组中插入条形码,目的是追踪其后代16,17,18,19。

In cancer, this approach has been used to investigate clonality in metastases20, survival upon cytotoxic treatment21,22, as well as to dissect the clonal origin of the primary tumour and metastasis growth23,24,25,26, possibly in vivo27. However, these studies mainly focus on the evolutionary trajectories, rather than on the driving molecular features of pre-existing pheno.

在癌症中,这种方法已被用于研究转移的克隆性20,细胞毒性治疗后的存活率21,22,以及解剖原发肿瘤的克隆起源和转移生长23,24,25,26,可能在体内27。然而,这些研究主要集中在进化轨迹上,而不是先前存在的现象的驱动分子特征。

Data availability

数据可用性

The raw data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-13064, E-MTAB-13066 and E-MTAB-13896, in the GEO database under accession code GSE222596 and in the SRA database under accession code PRJNA922938. The processed data generated in this study have been deposited in Zenodo106 and are provided in the Supplementary Information/Source Data file.

本研究中产生的原始数据已以登录号E-MTAB-13064,E-MTAB-13066和E-MTAB-13896保存在ArrayExpress数据库中,以登录号GSE222596保存在GEO数据库中,以登录号PRJNA922938保存在SRA数据库中。本研究中产生的处理数据已保存在Zenodo106中,并在补充信息/源数据文件中提供。

The raw data used in this study are available in the GEO database under accession GSE161529. The processed data used in this study are available at https://doi.org/10.1016/j.ccell.2021.05.005 (https://ars.els-cdn.com/content/image/1-s2.0-S1535610821002713-mmc6.xlsx), https://doi.org/10.1038/s41586-023-06130-4 (https://www.dropbox.com/scl/fi/22xtcdh0z7bnn5g5ugz33/meta_programs_2023-07-13.xlsx?rlkey=2e7d718s46zybiyvjuptm67n4&dl=1) and https://doi.org/10.1016/j.ccell.2020.06.006 (https://www.cell.com/cms/10.1016/j.ccell.2020.06.006/attachment/f5a9ca73-3dc5-413d-99b0-24d348abf2f3/mmc4.xls). Source data are provided with this paper..

本研究中使用的原始数据可在GEO数据库中以登录号GSE161529获得。本研究中使用的处理数据可在https://doi.org/10.1016/j.ccell.2021.05.005(笑声)(https://ars.els-cdn.com/content/image/1-s2.0-S1535610821002713-mmc6.xlsx),https://doi.org/10.1038/s41586-023-06130-4(笑声)(https://www.dropbox.com/scl/fi/22xtcdh0z7bnn5g5ugz33/meta_programs_2023-07-13.xlsx?rlkey=2e7d718s46zybiyvjuptm67n4&dl=1)和https://doi.org/10.1016/j.ccell.2020.06.006(笑声)(https://www.cell.com/cms/10.1016/j.ccell.2020.06.006/attachment/f5a9ca73-3dc5-413d-99b0-24d348abf2f3/mmc4.xls)。。。

Code availability

代码可用性

The code used to reproduce the analysis reported in this study is available on github at https://github.com/nicassiolab/GBC_SUM159PT_paper and https://github.com/nicassiolab/GBC_SUM159PT_paper_figures. All codes have been deposited in Zenodo107,108.

用于重现本研究报告的分析的代码可在github上获得https://github.com/nicassiolab/GBC_SUM159PT_paper和https://github.com/nicassiolab/GBC_SUM159PT_paper_figures.所有代码都保存在Zenodo107108中。

ReferencesMarine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).Article

参考文献Marine,J.C.,Dawson,S.J。&Dawson,M.A。癌症治疗耐药性的非遗传机制。《国家癌症评论》20743-756(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).Article

Marusyk,A.,Almendro,V。和Polyak,K。肿瘤内异质性:癌症的镜子?《国家癌症评论》12323-334(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).Article

Visvader,J.E。和Lindeman,G.J。实体瘤中的癌症干细胞:积累的证据和未解决的问题。《国家癌症评论》8755-768(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).Article

Lapidot,T。等人。移植到SCID小鼠后引发人类急性髓细胞白血病的细胞。自然367645-648(1994)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).Article

Bonnet,D.&Dick,J.E。人类急性髓细胞白血病被组织为起源于原始造血细胞的等级。《自然医学》3730-737(1997)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).Article

Ricci-Vitiani,L。等人。人结肠癌起始细胞的鉴定和扩增。自然445111-115(2007)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).Article

Al Hajj,M.,Wicha,M.S.,Benito Hernandez,A.,Morrison,S.J。&Clarke,M.F。致瘤性乳腺癌细胞的前瞻性鉴定。程序。国家科学院。科学。美国1003983-3988(2003)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).Article

Batlle,E。&Clevers,H。重新审视癌症干细胞。《自然医学》231124-1134(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).Article

Singh,S.K.等人。人脑肿瘤起始细胞的鉴定。自然432396-401(2004)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015).Article

Lathia,J.D.,Mack,S.C.,Mulkarns-Hubert,E.E.,Valentim,C.L。&Rich,J.N。胶质母细胞瘤中的癌症干细胞。基因发展291203-1217(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Basile, K. J. & Aplin, A. E. Resistance to chemotherapy: short-term drug tolerance and stem cell-like subpopulations. Adv. Pharm. 65, 315–334 (2012).Article

Basile,K.J。&Aplin,A.E。对化疗的耐药性:短期药物耐受性和干细胞样亚群。Adv.Pharm.65315-334(2012)。文章

Google Scholar

谷歌学者

McCarthy, D. J. et al. Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes. Nat. Methods 17, 414–421 (2020).Article

McCarthy,D。J。等人。Cardelino:体细胞克隆亚结构和单细胞转录组的计算整合。自然方法17414-421(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ross, E. M. & Markowetz, F. OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol. 17, 69 (2016).Article

Ross,E.M。和Markowetz,F.OncoNEM:从单细胞测序数据推断肿瘤进化。基因组生物学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Satas, G., Zaccaria, S., Mon, G. & Raphael, B. J. SCARLET: single-cell tumor phylogeny inference with copy-number constrained mutation losses. Cell Syst. 10, 323–332 e328 (2020).Article

Satas,G.,Zaccaria,S.,Mon,G。&Raphael,B.J。SCARLET:具有拷贝数限制突变丢失的单细胞肿瘤系统发育推断。细胞系统。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, Z., Xu, B., Minn, A. & Zhang, N. R. DENDRO: genetic heterogeneity profiling and subclone detection by single-cell RNA sequencing. Genome Biol. 21, 10 (2020).Article

Zhou,Z.,Xu,B.,Minn,A。&Zhang,N.R。DENDRO:通过单细胞RNA测序进行遗传异质性分析和亚克隆检测。基因组生物学。21,10(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224 (2018).Article

Biddy,B.A.等人。直接重编程中谱系和身份的单细胞定位。自然564219-224(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381 (2020).Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens.

Weinreb,C.,Rodriguez-Fraticelli,A.,Camargo,F.D。和Klein,A.M。转录景观的谱系追踪将分化过程中的状态与命运联系起来。科学367,eaaw3381(2020)。Dixit,A。等人。扰动序列:用可扩展的单细胞RNA分析池遗传筛选来解剖分子回路。

Cell 167, 1853–1866 e1817 (2016).Article .

细胞1671853-1866 e1817(2016)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jindal, K., VanHorn, S. & Morris, S. A. New dual-channel system records lineage in high definition. Nat. Methods 19, 38–39 (2022).Article

金达尔,K.,范霍恩,S。和莫里斯,S。A。新的双通道系统以高清记录血统。自然方法19,38-39(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162 e1159 (2021).Article

Simeonov,K.P.等人。转移性癌症的单细胞谱系追踪揭示了混合EMT状态的选择。癌细胞391150-1162 e1159(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gutierrez, C. et al. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nat. Cancer 2, 758–772 (2021).Article

Gutierrez,C。等人。使用ClonMapper的多功能条形码可以对肿瘤进化和治疗过程中的克隆动力学进行高分辨率研究。《自然癌症》2758-772(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).Article

Oren,Y。等人。循环癌症持久性细胞来自具有不同程序的谱系。自然596576-582(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Echeverria, G. V. et al. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat. Commun. 9, 5079 (2018).Article

Echeverria,G.V.等。三阴性乳腺癌多器官转移的高分辨率克隆定位。国家公社。95079(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 766 (2019).Article

Merino,D。等人。条形码揭示了转移性三阴性乳腺癌患者来源的异种移植物中复杂的克隆行为。国家公社。10766(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, L. V. et al. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat. Commun. 5, 5871 (2014).Article

Nguyen,L.V.等人的DNA条形码揭示了连续传代的异种移植物中人乳腺肿瘤亚克隆的多种生长动力学。国家公社。55871(2014)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022).Article

Karras,P。等人。黑色素瘤的细胞层次结构使生长和转移脱钩。自然610190-198(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 e1925 (2022).Article

Yang,D。等人。谱系追踪揭示了肿瘤进化的系统动力学,可塑性和路径。细胞1851905-1923 e1925(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).Article

Black,J.R.M。&McGranahan,N。癌症进化中的遗传和非遗传克隆多样性。《国家癌症评论》21379-392(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Salgia, R. & Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4, 110–118 (2018).Article

Salgia,R。&Kulkarni,P。癌症中药物“耐药性”的遗传/非遗传双重性。趋势癌症4110-118(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).Article

Nam,A.S.,Chaligne,R。&Landau,D.A。通过单细胞多组学整合癌症进化的遗传和非遗传决定因素。Genet自然Rev。22,3-18(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Prat, A. et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res. Treat. 142, 237–255 (2013).Article

。乳腺癌研究治疗。142237-255(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saunus, J. M. et al. Multidimensional phenotyping of breast cancer cell lines to guide preclinical research. Breast Cancer Res. Treat. 167, 289–301 (2018).Article

Saunus,J.M.等人。乳腺癌细胞系的多维表型分析,以指导临床前研究。乳腺癌研究治疗。167289-301(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).Article

Gupta,P.B。等人。随机状态转换在癌细胞群体中产生表型平衡。细胞146633-644(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bierie, B. et al. Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl Acad. Sci. USA 114, E2337–E2346 (2017).Article

Bierie,B。等人。整合素-beta4鉴定了富含癌症干细胞的部分间充质癌细胞群。程序。国家科学院。科学。美国114,E2337–E2346(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Watson, A. W. et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 35, 109293 (2021).Article

Watson,A.W。等人。乳腺肿瘤僵硬通过维持机械调节来指导骨转移。Cell Rep.35109293(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fei, F. et al. Role of metastasis-induced protein S100A4 in human non-tumor pathophysiologies. Cell Biosci. 7, 64 (2017).Article

Fei,F。等人。转移诱导蛋白S100A4在人类非肿瘤病理生理学中的作用。细胞生物科学。7,64(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Low, R. R. J. et al. S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer. Cell Death Differ. 30, 1155–1165 (2023).Chen, J. et al. Transmembrane 4L six family member 1 suppresses hormone receptor-positive, HER2-negative breast cancer cell proliferation.

Low,R.R.J.等人,S100家族蛋白与胰腺癌中的类器官形态和EMT有关。细胞死亡不同。301155-1165(2023)。Chen,J。等人。跨膜4L六家族成员1抑制激素受体阳性,HER2阴性乳腺癌细胞增殖。

Front. Pharmacol. 13, 770993 (2022).Article .

正面。药理学。13770993(2022)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hou, S. et al. TM4SF1 promotes esophageal squamous cell carcinoma metastasis by interacting with integrin alpha6. Cell Death Dis. 13, 609 (2022).Article

Hou,S。等人。TM4SF1通过与整合素α6相互作用促进食管鳞状细胞癌转移。细胞死亡Dis。13609(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xing, P. et al. Upregulation of transmembrane 4 L6 family member 1 predicts poor prognosis in invasive breast cancer: a STROBE-compliant article. Medicine 96, e9476 (2017).Article

Xing,P。等。跨膜4 L6家族成员1的上调预测浸润性乳腺癌的预后不良:符合STROBE的文章。医学96,e9476(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, J. C. et al. TM4SF1 promotes metastasis of pancreatic cancer via regulating the expression of DDR1. Sci. Rep. 7, 45895 (2017).Article

Yang,J.C.等。TM4SF1通过调节DDR1的表达促进胰腺癌的转移。科学。代表745895(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ferrari, E. & Gandellini, P. Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis. 11, 980 (2020).Article

Ferrari,E。&Gandellini,P。揭示了miR-205在生理学和癌症中的起伏:转录和转录后机制。细胞死亡Dis。11980(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dong, M., Dong, Z., Zhu, X., Zhang, Y. & Song, L. Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp. Mol. Pathol. 111, 104322 (2019).Article

Dong,M.,Dong,Z.,Zhu,X.,Zhang,Y。&Song,L。Long非编码RNA MIR205HG通过与SRSF1的相互作用调节宫颈癌中的KRT17和肿瘤过程。实验分子病理学。111104322(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, L., Li, Y., Zhang, R., Li, C., Xiong, J. & Wei, Y. MIR205HG acts as a ceRNA to expedite cell proliferation and progression in lung squamous cell carcinoma via targeting miR-299-3p/MAP3K2 axis. BMC Pulm. Med. 20, 163 (2020).Article

Liu,L.,Li,Y.,Zhang,R.,Li,C.,Xiong,J。&Wei,Y。MIR205HG通过靶向miR-299-3p/MAP3K2轴作为ceRNA来加速肺鳞状细胞癌的细胞增殖和进展。BMC脉冲。医学20163(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mendez, O. et al. Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin. Cancer Res. 24, 6367–6382 (2018).Article

Mendez,O。等人。细胞外HMGA1促进三阴性乳腺癌的肿瘤侵袭和转移。临床。癌症研究246367-6382(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Alborghetti, M. R., Furlan, A. S. & Kobarg, J. FEZ2 has acquired additional protein interaction partners relative to FEZ1: functional and evolutionary implications. PLoS ONE 6, e17426 (2011).Article

Alborghetti,M.R.,Furlan,A.S。&Kobarg,J。FEZ2已经获得了相对于FEZ1的其他蛋白质相互作用伴侣:功能和进化意义。PLoS ONE 6,e17426(2011)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, X. et al. Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 32, 2782–2791 (2013).Article

Zhang,X。等。核糖体蛋白S25(RPS25)-MDM2-p53调节反馈环的鉴定。癌基因322782-2791(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).Article

Curtis,C.等人。2000个乳腺肿瘤的基因组和转录组结构揭示了新的亚组。《自然》486346-352(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).Article

癌症基因组图谱N.人类乳腺肿瘤的综合分子肖像。《自然》490,61-70(2012)。文章

ADS

广告

Google Scholar

谷歌学者

Pal, B. et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J. 40, e107333 (2021).Article

Pal,B。等人。人类乳腺中正常,肿瘤前和致瘤状态的单细胞RNA表达图谱。EMBO J.40,e107333(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).Article

Gavish,A。等人。跨越1000个肿瘤的转录肿瘤内异质性的标志。自然618598-606(2023)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

LaFave, L. M. et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell 38, 212–228 e213 (2020).Article

LaFave,L.M.等人。表观基因组状态转变表征小鼠肺腺癌的肿瘤进展。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, G. et al. Targeting TM4SF1 exhibits therapeutic potential via inhibition of cancer stem cells. Signal Transduct. Target. Ther. 7, 350 (2022).Article

Chen,G。等人靶向TM4SF1通过抑制癌症干细胞显示出治疗潜力。信号传输管。目标。他们。7350(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).Article

Gao,H。等人。由非经典盘状蛋白结构域受体1信号传导介导的多器官部位转移性再激活。细胞166,47-62(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weaver, B. A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677–2681 (2014).Article

Weaver,B.A。紫杉醇/紫杉醇如何杀死癌细胞。分子生物学。细胞252677-2681(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bravo Gonzalez-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).Article

Bravo Gonzalez-Blas,C。等。顺式主题:单细胞ATAC-seq数据的顺式调控主题建模。自然方法16397-400(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010).Article

Lachmann,A。等人。ChEA:从整合全基因组ChIP-X实验推断的转录因子调控。生物信息学262438-2444(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ansieau, S., Morel, A. P., Hinkal, G., Bastid, J. & Puisieux, A. TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29, 3173–3184 (2010).Article

Ansieau,S.,Morel,A.P.,Hinkal,G.,Bastid,J。&Puisieux,A。将胚胎转录因子扭曲成癌蛋白。癌基因293173-3184(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Beck, B. et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16, 67–79 (2015).Article

Beck,B。等人。不同水平的Twist1调节皮肤肿瘤的发生,干性和进展。细胞干细胞16,67-79(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nobre, A. R. et al. ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung. Nat. Cancer 3, 1165–1180 (2022).Article

Nobre,A.R.等人ZFP281在早期播散的乳腺癌细胞中驱动间充质样休眠程序,以防止肺部转移性生长。《自然癌症》31165-1180(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Brown, M. S. et al. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. Sci. Adv. 8, eabj8002 (2022).Article

由中间EMT状态的可塑性驱动的表型异质性控制乳腺癌的疾病进展和转移。科学。广告8,eabj8002(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).Article

Gilbert,L.A。等人。CRISPR介导的模块化RNA引导的真核生物转录调控。细胞154442-451(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).Article

Larson,M.H。等人。CRISPR干扰(CRISPRi)用于基因表达的序列特异性控制。自然协议。82180-2196(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Loukas, I. et al. Selective advantage of epigenetically disrupted cancer cells via phenotypic inertia. Cancer Cell 41, 70–87 e14 (2023).Article

Loukas,I。等人。通过表型惯性对表观遗传破坏的癌细胞的选择性优势。癌细胞41,70-87 e14(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Masiulionyte, B., Valiulyte, I., Tamasauskas, A. & Skiriute, D. Metallothionein genes are highly expressed in malignant astrocytomas and associated with patient survival. Sci. Rep. 9, 5406 (2019).Article

Masiulionyte,B.,Valiulyte,I.,Tamasauskas,A。&Skiriute,D。金属硫蛋白基因在恶性星形细胞瘤中高度表达,并与患者生存相关。科学。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X., Yan, J., Shen, B. & Wei, G. Integrated chromatin accessibility and transcriptome landscapes of doxorubicin-resistant breast cancer cells. Front. Cell Dev. Biol. 9, 708066 (2021).Article

。正面。细胞开发生物学。9708066(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 e1322 (2018).Article

Cho,S.W。等人。lncRNA基因PVT1的启动子是肿瘤抑制DNA边界元件。细胞1731398-1412 e1322(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tseng, Y. Y. et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 512, 82–86 (2014).Article

Tseng,Y。Y。等人。MYC拷贝数增加的癌症中PVT1依赖性。自然512,82-86(2014)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256 e211 (2021).Article

Dhimolea,E。等人。具有抑制Myc活性的胚胎滞育样适应使肿瘤治疗持续存在。癌细胞39240–256 e211(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, M. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285, 21496–21507 (2010).Article

Zhou,M。等人。MicroRNA-125b通过抑制促凋亡Bcl-2拮抗剂杀伤细胞1(Bak1)的表达来赋予乳腺癌细胞对紫杉醇的抗性。J、 生物。化学。28521496-21507(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, Y. et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta-catenin signaling. Nat. Med. 23, 1331–1341 (2017).Article

Lu,Y。等人。lncRNA MIR100HG衍生的miR-100和miR-125b通过Wnt/β-连环蛋白信号传导介导西妥昔单抗抗性。《自然医学杂志》231331-1341(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dave, B., Mittal, V., Tan, N. M. & Chang, J. C. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 14, 202 (2012).Article

Dave,B.,Mittal,V.,Tan,N.M。&Chang,J.C。上皮-间质转化,癌症干细胞和治疗抵抗。乳腺癌第14202号决议(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roche, J. The epithelial-to-mesenchymal transition in cancer. Cancers 10, 52 (2018).Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).Article

Roche,J。癌症中的上皮-间质转化。癌症10,52(2018)。乳腺癌的生物学和分子异质性与其癌症干细胞含量相关。细胞140,62-73(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 e1821 (2016).Article

Adamson,B。等人。多重单细胞CRISPR筛选平台能够系统地解剖未折叠的蛋白质反应。细胞1671867-1882 e1821(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).Article

McGinnis,C.S.等人。MULTI-seq:使用脂质标记指数进行单细胞RNA测序的样品多路复用。自然方法16619-626(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016).Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).Article .

Horlbeck,M.A。等人。用于CRISPR介导的基因抑制和激活的紧凑且高度活跃的下一代文库。Elife 5,e19760(2016)。Shen,W.,Le,S.,Li,Y。&Hu,F。SeqKit:用于FASTA/Q文件操作的跨平台和超快工具包。PLoS ONE 11,e016962(2016)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).Article

R核心团队。R: 统计计算的语言和环境(R Foundation for Statistical Computing,2022)。Hao,Y.等人。多模式单细胞数据的综合分析。细胞1843573–3587 e3529(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, B. et al. An entropy-based metric for assessing the purity of single cell populations. Nat. Commun. 11, 3155 (2020).Article

Liu,B.等人。用于评估单细胞群纯度的基于熵的度量。国家公社。113155(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).Article

McInnes,L.,Healy,J.,Saul,N。&Großberger,L。UMAP:统一流形近似和投影。J、 开源软件。3861(2018)。文章

Google Scholar

谷歌学者

Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278 (2015).Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species.

Finak,G.等人,《MAST:用于评估转录变化和表征单细胞RNA测序数据异质性的灵活统计框架》。基因组生物学16278(2015)。Butler,A.,Hoffman,P.,Smibert,P.,Papalexi,E。&Satija,R。整合不同条件,技术和物种的单细胞转录组数据。

Nat. Biotechnol. 36, 411–420 (2018).Article .

美国国家生物技术公司。36411-420(2018)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).Article

Luecken,M.D.等人,《单细胞基因组学中地图集级数据整合的基准测试》。自然方法19,41-50(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).Article

Tran,H.T.N.等人。单细胞RNA测序数据批量效应校正方法的基准。基因组生物学。21,12(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).Article

Gillespie,M.等人,《反应组途径知识库2022》。核酸研究50,D687–D692(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article

Ritchie,M.E.等人limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, T. et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).PubMed

Wu,T。等人。ClusterProfiler 4.0:用于解释组学数据的通用富集工具。创新2100141(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac.

Sergushichev,A.A。使用累积统计计算进行快速预排序基因集富集分析的算法。bioRxiv预印本https://doi.org/10.1101/060012(2016年)。Stuart,T.,Srivastava,A.,Madad,S.,Lareau,C.A。&Satija,R。使用Signac进行单细胞染色质状态分析。

Nat. Methods 18, 1333–1341 (2021).Article .

自然方法181333-1341(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).Article

Lawrence,M.等人。用于计算和注释基因组范围的软件。。生物学杂志9,e1003118(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011). 1728.Article

Li,Q.,Brown,J.B.,Huang,H。&Bickel,P.J。测量高通量实验的再现性。安。应用。Stat.51752–1779(2011)。第1728条

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).Article

Robin,X。et al。pROC:R和S+的开源软件包,用于分析和比较ROC曲线。BMC生物信息。12,77(2011)。文章

Google Scholar

谷歌学者

Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).Article

Consortium,E.P.等人扩展了人类和小鼠基因组中DNA元素的百科全书。自然583699-710(2020)。文章

ADS

广告

Google Scholar

谷歌学者

Consortium, T. U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).Article

联合会,T.U.UniProt:全球蛋白质知识中心。核酸研究47,D506–D515(2018)。文章

Google Scholar

谷歌学者

McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).Article

McLean,C.Y.等人改进了顺式调控区的功能解释。美国国家生物技术公司。28495-501(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).Article

Keenan,A.B.等人,ChEA3:通过正交组学整合进行转录因子富集分析。核酸研究47,W212-W224(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article

Li,H。&Durbin,R。使用Burrows-Wheeler变换进行快速准确的短读比对。生物信息学251754-1760(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).Article

Talevich,E.,Shain,A.H.,Botton,T。&Bastian,B.C。CNVkit:靶向DNA测序的全基因组拷贝数检测和可视化。。生物学12,e1004873(2016)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article

Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).Article

Cerami,E。等人。cBio癌症基因组学门户:探索多维癌症基因组学数据的开放平台。。2401-404(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sun, D. et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat. Biotechnol. 40, 527–538 (2022).Article

。美国国家生物技术公司。40527-538(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nadalin, F. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution—processed data- https://doi.org/10.5281/zenodo.10912157 (2023).Nadalin, F. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution—reproducibility https://doi.org/10.5281/zenodo.10979191 (2023).Nadalin, F.

Nadalin,F。多组谱系追踪预测了癌症进化处理数据的转录,表观遗传和遗传决定因素-https://doi.org/10.5281/zenodo.10912157(2023年)。Nadalin,F。多组谱系追踪预测癌症进化可重复性的转录,表观遗传和遗传决定因素https://doi.org/10.5281/zenodo.10979191(2023年)。纳达林,F。

Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution—source code- https://doi.org/10.5281/zenodo.10979121 (2023).Download referencesAcknowledgementsThis work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to F.

多组谱系追踪预测癌症进化源代码的转录,表观遗传和遗传决定因素-https://doi.org/10.5281/zenodo.10979121(2023年)。下载参考文献致谢这项工作得到了意大利协会(Associazione Italiana per la Ricerca sul Cancro)(AIRC)对F的资助。

Nicassio (IG18774 and IG22851), from the Fondazione Cariplo to F. Nicassio (2015-0590) and M.J.M. (2016-0615), and from “National Center for Gene Therapy and Drugs based on RNA Technology” (CN00000041) supported by European Union—NextGenerationEU PNRR MUR—M4C2 to F. Nicassio; and “Roche per la ricerca 2018” to M.J.M.

Nicassio(IG18774和IG22851),从Fondazione Cariplo到F.Nicassio(2015-0590)和M.J.M.(2016-0615),以及“基于RNA技术的国家基因治疗和药物中心”(CN00000041),由欧盟下一代PNRR MUR-M4C2支持F.Nicassio;和“Roche per la ricerca 2018”给M.J.M。

F. Nadalin was supported by a REBIT-POD fellowship. B.G. was supported by a FIRC-AIRC fellowship for Italy (22438). J.C.M. and I.P. acknowledge funding from EMBL member states. M.P.P. is a PhD student within the European School of Molecular Medicine (SEMM). Figures 1a, b; 2a, h; 3a; 4a; 5c; 6d, e; 7a and Supplementary Figs. 1a, 5a were created with BioRender.com and released under a Creative Commons Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND) 4.0 International license.

F、 Nadalin得到了REBIT-POD奖学金的支持。B、 G.得到了FIRC-AIRC意大利奖学金(22438)的支持。J、 C.M.和I.P.感谢EMBL成员国的资助。M、 P.P.是欧洲分子医学院(SEMM)的博士生。图1a,b;;3a;4a;5c;6d,e;7a和补充图1a,5a是由BioRender.com创建的,并根据知识共享署名非商业性NoDerivs(CC-BY-NC-ND)4.0国际许可证发布。

We thank Chiara Tordonato for help with mice experiments; Leah Rosen and Magdalena Strauss for input on barcode analysis; Pier Giuseppe Pelicci, Niccolò Roda and Valentina Gambino for help with the Perturb-seq lentiviral infection. We acknowledge support by the technological units at t.

我们感谢Chiara Tordonato对小鼠实验的帮助;Leah Rosen和Magdalena Strauss为条形码分析提供信息;Pier Giuseppe Pelicci,NiccolòRoda和Valentina Gambino为扰动-seq慢病毒感染提供帮助。我们感谢t的技术部门的支持。

PubMed Google ScholarM. J. MarziView author publicationsYou can also search for this author in

PubMed Google ScholarM.J.MarziView作者出版物您也可以在

PubMed Google ScholarM. Pirra PiscazziView author publicationsYou can also search for this author in

PubMed谷歌学术评论。Pirra PiscazziView作者出版物您也可以在

PubMed Google ScholarP. Fuentes-BravoView author publicationsYou can also search for this author in

PubMed谷歌ScholarP。

PubMed Google ScholarS. ProcacciaView author publicationsYou can also search for this author in

PubMed谷歌学者。ProAcciaView作者出版物您也可以在

PubMed Google ScholarM. ClimentView author publicationsYou can also search for this author in

你也可以在

PubMed Google ScholarP. BonettiView author publicationsYou can also search for this author in

PubMed谷歌ScholarP。BonettiView作者出版物您也可以在

PubMed Google ScholarC. RubolinoView author publicationsYou can also search for this author in

。RubolinoView作者出版物您也可以在

PubMed Google ScholarB. GiulianiView author publicationsYou can also search for this author in

PubMed谷歌学术论坛。GiulianiView作者出版物您也可以在

PubMed Google ScholarI. PapatheodorouView author publicationsYou can also search for this author in

PubMed Google ScholarI.PapatheodorouView作者出版物您也可以在

PubMed Google ScholarJ. C. MarioniView author publicationsYou can also search for this author in

PubMed Google ScholarJ.C.MarioniView作者出版物您也可以在

PubMed Google ScholarF. NicassioView author publicationsYou can also search for this author in

PubMed谷歌学术论坛。NicassioView作者出版物您也可以在

PubMed Google ScholarContributionsF. Nadalin: conceptualisation, methodology, investigation, writing—original draft preparation. M.J.M.: conceptualisation, investigation, writing—review and editing. M.P.P.: investigation, writing—review & editing. P.F.: investigation, writing—review & editing.

PubMed谷歌学术贡献。纳达林:概念化,方法论,调查,写作原稿准备。M、 J.M.:概念化,调查,写作评论和编辑。M、 P.P.:调查,写作评论和编辑。P、 F.:调查、写作、评论和编辑。

S.P.: formal analysis. M.C.: investigation. P.B.: investigation. C.R.: resources. B.G.: resources. I.P.: supervision, writing—review & editing. J.C.M.: supervision, writing—review & editing. F. Nicassio: conceptualisation, funding acquisition, supervision, writing—original draft preparation.Corresponding authorsCorrespondence to.

S、 P:形式分析。M、 C.:调查。P、 B.:调查。C、 R.:资源。B、 G.:资源。一、 P:监督,写作审查和编辑。J、 C.M.:监督,写作审查和编辑。F、 尼卡西奥:概念化,资金获取,监督,撰写原始草案。。

F. Nadalin or F. Nicassio.Ethics declarations

F、 纳达林或F.尼卡西奥。道德宣言

Competing interests

相互竞争的利益

J.C.M. has been an employee of Genentech since September 2022. The remaining authors declare no competing interests.

J、 自2022年9月以来,C.M.一直是基因泰克的员工。其余作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Supplementary Data 7Supplementary Data 8Supplementary Data 9Supplementary Data 10Supplementary Data 11Supplementary Data 12Supplementary Data 13Supplementary Data 15Supplementary Data 14Supplementary Data 16Supplementary Data 17Supplementary Data 18Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6补充数据7补充数据8补充数据9补充数据10补充数据11补充数据12补充数据13补充数据15补充数据14补充数据16补充数据17补充数据18报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleNadalin, F., Marzi, M.J., Pirra Piscazzi, M. et al. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution.

转载和许可本文引用本文Nadalin,F.,Marzi,M.J.,Pirra Piscazzi,M。等人。多组谱系追踪预测癌症进化的转录,表观遗传和遗传决定因素。

Nat Commun 15, 7609 (2024). https://doi.org/10.1038/s41467-024-51424-4Download citationReceived: 10 August 2023Accepted: 05 August 2024Published: 01 September 2024DOI: https://doi.org/10.1038/s41467-024-51424-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》157609(2024)。https://doi.org/10.1038/s41467-024-51424-4Download引文接收日期:2023年8月10日接收日期:2024年8月5日发布日期:2024年9月1日OI:https://doi.org/10.1038/s41467-024-51424-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。