商务合作
动脉网APP
可切换为仅中文
AbstractThe outer membrane is a formidable barrier that protects Gram-negative bacteria against environmental threats. Its integrity requires the correct folding and insertion of outer membrane proteins (OMPs) by the membrane-embedded β-barrel assembly machinery (BAM). Unfolded OMPs are delivered to BAM by the periplasmic chaperone SurA, but how SurA and BAM work together to ensure successful OMP delivery and folding remains unclear.
摘要外膜是保护革兰氏阴性菌免受环境威胁的强大屏障。其完整性需要通过膜嵌入的β-桶组装机器(BAM)正确折叠和插入外膜蛋白(OMP)。未折叠的OMP通过周质伴侣SurA传递给BAM,但SurA和BAM如何协同工作以确保OMP的成功传递和折叠仍不清楚。
Here, guided by AlphaFold2 models, we use disulphide bond engineering in an attempt to trap SurA in the act of OMP delivery to BAM, and solve cryoEM structures of a series of complexes. The results suggest that SurA binds BAM at its soluble POTRA-1 domain, which may trigger conformational changes in both BAM and SurA that enable transfer of the unfolded OMP to the BAM lateral gate for insertion into the outer membrane.
在这里,在AlphaFold2模型的指导下,我们使用二硫键工程试图在OMP传递到BAM的过程中捕获SurA,并解决一系列复合物的cryoEM结构。结果表明,SurA在其可溶性POTRA-1结构域结合BAM,这可能触发BAM和SurA的构象变化,从而使未折叠的OMP转移到BAM侧门以插入外膜。
Mutations that disrupt the interaction between BAM and SurA result in outer membrane assembly defects, supporting the key role of SurA in outer membrane biogenesis..
破坏BAM和SurA之间相互作用的突变会导致外膜组装缺陷,从而支持SurA在外膜生物发生中的关键作用。。
IntroductionGram-negative (diderm) bacteria have a complex outer membrane (OM) that is essential for cell integrity, virulence and pathogenesis1. The OM is densely packed with integral outer membrane proteins (OMPs) that share a β-barrel fold2. These OMPs are synthesised in the cytoplasm, and secreted into the periplasm via Sec-mediated translocation.
引言革兰氏阴性(diderm)细菌具有复杂的外膜(OM),对细胞完整性,毒力和致病性至关重要1。OM中密集堆积着完整的外膜蛋白(OMP),它们共享一个β桶折叠2。这些OMP在细胞质中合成,并通过Sec介导的易位分泌到周质中。
Within the periplasm, they are bound by chaperones, especially Skp and SurA3, before being delivered to the β-barrel assembly machinery (BAM). BAM is an OM-localized, multi-protein complex which folds and inserts OMPs into the OM. The importance of this pathway is underlined by the widespread conservation of the BAM complex in all bacteria that contain a canonical OM, and conservation of both BAM and SurA in proteobacteria4,5.
在周质内,它们被伴侣结合,特别是Skp和SurA3,然后被传递到β-桶组装机器(BAM)。BAM是一种OM定位的多蛋白复合物,可将OMP折叠并插入OM中。BAM复合物在所有含有规范OM的细菌中的广泛保守性以及BAM和SurA在proteobacteria4,5中的保守性强调了这一途径的重要性。
The major component of the BAM complex, BamA, is itself an OMP that is essential in E. coli. BamA is composed of a 16-stranded β-barrel, which, in E. coli, is preceded N-terminally by five polypeptide transport associated (POTRA) domains that extend into the periplasm (Supplementary Fig 1a). BAM also contains four accessory lipoproteins, BamB-E, of which only BamD is essential in E.
BAM复合物的主要成分BamA本身是大肠杆菌中必不可少的OMP。BamA由一个16链的β桶组成,在大肠杆菌中,它在N端之前有五个延伸到周质的多肽转运相关(POTRA)结构域(补充图1a)。BAM还含有四种辅助脂蛋白BamB-E,其中只有BamD在E中是必需的。
coli, and deletions of the other lipoproteins result in growth defects of varying severity6,7. The deletion of SurA also causes a variety of growth defects in an array of pathogenic and lab strains of E. coli in both aerobic and anaerobic conditions8. While structural studies have revealed how BamA inserts OMPs into the OM, the details of how chaperones deliver unfolded OMPs to BAM to begin insertion/assembly remain unknown.
大肠杆菌,其他脂蛋白的缺失导致不同程度的生长缺陷6,7。在需氧和厌氧条件下,SurA的缺失还导致一系列致病性和实验室大肠杆菌菌株的各种生长缺陷8。虽然结构研究揭示了BamA如何将OMP插入OM,但伴侣如何将未折叠的OMP传递给BAM以开始插入/组装的细节仍然未知。
This is especially intriguing given the lack of ATP in the periplasm, which means that these activities cannot be coordinated via ATP binding/hydrolysis, as is commonly used to control and coordinate .
鉴于周质中缺乏ATP,这尤其有趣,这意味着这些活性不能通过ATP结合/水解来协调,这通常用于控制和协调。
Data availability
数据可用性
CryoEM reconstructions and corresponding coordinates have been deposited in the Electron Microscopy Data Bank (EMBD) and the Protein Data Bank (PDB), respectively: Wait Complex Extended SurA (https://www.ebi.ac.uk/emdb/EMD-18035/, https://www.wwpdb.org/pdb?id=pdb_00008pz2), Wait Complex Compact SurA (https://www.ebi.ac.uk/emdb/EMD-18034/, https://www.wwpdb.org/pdb?id=pdb_00008pz1), Wait Complex with Darobactin Extended SurA (https://www.ebi.ac.uk/emdb/EMD-18046/, https://www.wwpdb.org/pdb?id=pdb_00008pzv), Wait Complex with Darobactin Compact SurA (https://www.ebi.ac.uk/emdb/EMD-18045/, https://www.wwpdb.org/pdb?id=pdb_00008pzu), Arrival Complex (https://www.ebi.ac.uk/emdb/EMD-18564/, https://www.wwpdb.org/pdb?id=pdb_00008qpw), Handover Complex (https://www.ebi.ac.uk/emdb/EMD-18563/, https://www.wwpdb.org/pdb?id=pdb_00008qpv), Release Complex Extended SurA (https://www.ebi.ac.uk/emdb/EMD-18543/, https://www.wwpdb.org/pdb?id=pdb_00008qp5), Release Complex Compact SurA (https://www.ebi.ac.uk/emdb/EMD-18053/, https://www.wwpdb.org/pdb?id=pdb_00008q0g) and Release Complex No SurA (https://www.ebi.ac.uk/emdb/EMD-18562/, https://www.wwpdb.org/pdb?id=pdb_00008qpu).
CryoEM重建和相应的坐标已分别保存在电子显微镜数据库(EMBD)和蛋白质数据库(PDB)中:Wait Complex Extended SurA(https://www.ebi.ac.uk/emdb/EMD-18035/,https://www.wwpdb.org/pdb?id=pdb_00008pz2),Wait Complex Compact苏拉(https://www.ebi.ac.uk/emdb/EMD-18034/,https://www.wwpdb.org/pdb?id=pdb_00008pz1),Wait复合物与Darobactin扩展的SurA(https://www.ebi.ac.uk/emdb/EMD-18046/,https://www.wwpdb.org/pdb?id=pdb_00008pzv),Wait复合物与Darobactin Compact SurA(https://www.ebi.ac.uk/emdb/EMD-18045/,https://www.wwpdb.org/pdb?id=pdb_00008pzu)(https://www.ebi.ac.uk/emdb/EMD-18564/,https://www.wwpdb.org/pdb?id=pdb_00008qpw),移交综合体(https://www.ebi.ac.uk/emdb/EMD-18563/,https://www.wwpdb.org/pdb?id=pdb_00008qpv),释放复杂的扩展SurA(https://www.ebi.ac.uk/emdb/EMD-18543/,https://www.wwpdb.org/pdb?id=pdb_00008qp5),发布Complex Compact SurA(https://www.ebi.ac.uk/emdb/EMD-18053/,https://www.wwpdb.org/pdb?id=pdb_00008q0g)并释放复合物No SurA(https://www.ebi.ac.uk/emdb/EMD-18562/,https://www.wwpdb.org/pdb?id=pdb_00008qpu)。
The raw cryoEM datasets used in this study have been deposited to the Electron Microscopy Public Image Archive (EMPIAR): POTRA-1 Cross-link (https://www.ebi.ac.uk/empiar/EMPIAR-12197/), POTRA-1 Cross-link with darobactin (https://www.ebi.ac.uk/empiar/EMPIAR-11933/), POTRA1 Cross-link OmpX hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11939/), β1 Cross-link OmpX Hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11940/) and β1 Cross-link EspP Hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11941/).
The raw cryoEM datasets used in this study have been deposited to the Electron Microscopy Public Image Archive (EMPIAR): POTRA-1 Cross-link (https://www.ebi.ac.uk/empiar/EMPIAR-12197/), POTRA-1 Cross-link with darobactin (https://www.ebi.ac.uk/empiar/EMPIAR-11933/), POTRA1 Cross-link OmpX hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11939/), β1 Cross-link OmpX Hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11940/) and β1 Cross-link EspP Hybrid (https://www.ebi.ac.uk/empiar/EMPIAR-11941/).
Details of all deposition codes are also available in Supplementary Table 2. The raw proteomics data have been deposited to the Prote.
补充表2中还提供了所有沉积代码的详细信息。原始蛋白质组学数据已保存到Prote。
ReferencesGuest, R. L. & Silhavy, T. J. Cracking outer membrane biogenesis. Biochim. Biophys. Acta, Mol. Cell Res. 1870, 119405 (2023).Article
参考Guest,R.L。和Silhavy,T.J。裂解外膜生物发生。生物化学。生物物理。Acta,Mol.Cell Res.1870119405(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Horne, J. E., Brockwell, D. J. & Radford, S. E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 295, 10340–10367 (2020).Article
Horne,J.E.,Brockwell,D.J。和Radford,S.E。脂质双层在革兰氏阴性细菌外膜蛋白折叠中的作用。J。Biol。化学。29510340-10367(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21, 2473–2484 (2007).Article
Sklar,J.G.,Wu,T.,Kahne,D。&Silhavy,T.J。定义周质伴侣SurA,Skp和DegP在大肠杆菌中的作用。Genes Dev 212473–2484(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heinz, E. & Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5, 104376 (2014).Article
Heinz,E。&Lithgow,T。Omp85/TpsB蛋白超家族结构多样性,分类学发生和进化的综合分析。正面。微生物。5104376(2014)。文章
Google Scholar
谷歌学者
Humes, J. R. et al. The Role of SurA PPIase Domains in Preventing Aggregation of the Outer-Membrane Proteins tOmpA and OmpT. J. Mol. Biol. 431, 1267–1283 (2019).Article
Humes,J.R.等人。SurA PPIase结构域在防止外膜蛋白tOmpA和OmpT聚集中的作用。J、 分子生物学。4311267-1283(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hart, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The Synthetic Phenotype of ∆bamb ∆bame Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. mBio 10, 00662–19 (2019).Article
Hart,E.M.,Gupta,M.,Wühr,M。&Silhavy,T.J.。ΔbambΔbame双突变体的合成表型是由脂蛋白RcsF对Bam复合物的致命干扰引起的。mBio 100662-19(2019)。文章
Google Scholar
谷歌学者
Tata, M. & Konovalova, A. Improper coordination of BamA and BamD Results in Bam Complex Jamming by a Lipoprotein Substrate. mBio 10, 00660–19 (2019).Article
Tata,M。&Konovalova,A。BamA和BamD的不正确配位导致脂蛋白底物对Bam复合物的干扰。mBio 100660-19(2019)。文章
Google Scholar
谷歌学者
Rousset, F. et al. The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nat. Microbiol. 6, 301–312 (2021).Article
Rousset,F。等人。遗传多样性对大肠杆菌物种内基因重要性的影响。自然微生物。6301-312(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sučec, I., Bersch, B. & Schanda, P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front. Mo.l Biosc.i 8, 762005 (2021).Article
Sučec,I.,Bersch,B。&Schanda,P。伴侣如何结合(部分)未折叠的客户蛋白?正面。Mo.l Biosc.i 8762005(2021)。文章
Google Scholar
谷歌学者
Iadanza, M. G. et al. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7, 12865 (2016).Article
Iadanza,M.G.等人。cryo-EM.Nat.Commun捕获的完整β-桶组装机械中的横向开口。712865(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Iadanza, M. G. et al. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 3, 766 (2020).Article
Iadanza,M.G.等人。脂质纳米盘中双层的扭曲和BAM复合物的动力学。Commun公司。生物学3766(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).Article
Bakelar,J.,Buchanan,S.K。和Noinaj,N。β-桶组装机械复合体的结构。科学351180-186(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, R. et al. Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat. Commun. 171, 7131 (2021).Article
Wu,R。等人。BamA桶域内的可塑性介导了BAM.Nat.Commun的混合桶机制。1717131(2021)。文章
ADS
广告
Google Scholar
谷歌学者
Doerner, P. A. & Sousa, M. C. Extreme Dynamics in the BamA β-Barrel Seam. Biochemistry 56, 3142–3149 (2017).Article
Doerner,P.A。和Sousa,M.C。BamAβ-桶形煤层的极端动力学。生物化学563142-3149(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Haysom, S. F. et al. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. Angew. Chem. 62, e202218783 (2023).Article
Haysom,S.F.等人,Darobactin B稳定了大肠杆菌细胞中BAM复合物的侧向闭合构象。安吉。化学。62,e202218783(2023)。文章
Google Scholar
谷歌学者
Noinaj, N., Kuszak, A. J., Balusek, C., Gumbart, J. C. & Buchanan, S. K. Lateral Opening and Exit Pore Formation Are Required for BamA Function. Structure 22, 1055–1062 (2014).Article
Noinaj,N.,Kuszak,A.J.,Balusek,C.,Gumbart,J.C。&Buchanan,S.K。BamA功能需要侧向开放和出口孔形成。结构221055-1062(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X., Peterson, J. H. & Bernstein, H. D. Bacterial outer membrane proteins are targeted to the bam complex by two parallel mechanisms. mBio 12, e00597–21 (2021).Article
Wang,X.,Peterson,J.H。&Bernstein,H.D。细菌外膜蛋白通过两种平行机制靶向bam复合物。mBio 12,e00597–21(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Montezano, D., Bernstein, R., Copeland, M. M. & Slusky, J. S. G. General features of transmembrane beta barrels from a large database. Proc. Natl. Acad. Sci. 120, e2220762120 (2023).Article
Montezano,D.,Bernstein,R.,Copeland,M.M。和Slusky,J.S.G。来自大型数据库的跨膜β桶的一般特征。程序。纳特尔。阿卡德。科学。120,e2220762120(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shen, C. et al. Structural basis of BAM-mediated outer membrane β-barrel protein assembly. Nature 617, 185–193 (2023).Article
Shen,C。等人。BAM介导的外膜β-桶蛋白组装的结构基础。自然617185-193(2023)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Tomasek, D. et al. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583, 473–478 (2020).Article
Tomasek,D。等人。新生膜蛋白在BAM复合物上折叠时的结构。自然583473-478(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Doyle, M. T. et al. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 185, 1143–1156 (2022).Article
Doyle,M.T.等人的低温电磁结构揭示了细菌外膜蛋白折叠的多个阶段。细胞1851143-1156(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Devlin, T., & Fleming, K. A team of chaperones play to win in the bacterial periplasm. Trends in Biochemical Sciences. (2024)Doyle, M. T. & Bernstein, H. D. Molecular Machines that Facilitate Bacterial Outer Membrane Protein Biogenesis. Annu. Rev. Biochem. 93, 17.1–17.21 (2024).Article .
Devlin,T。和Fleming,K。一组伴侣在细菌周质中获胜。生物化学科学趋势。(2024)Doyle,M.T。&Bernstein,H.D。促进细菌外膜蛋白生物发生的分子机器。年。生物化学评论。93,17.1–17.21(2024)。文章。
Google Scholar
谷歌学者
Schiffrin, B. et al. Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun. Biol. 5, 560 (2022).Article
Schiffrin,B。等人。外膜蛋白折叠中周质伴侣SurA和BAM复合物之间的动态相互作用。Commun公司。生物学5560(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bennion, D., Charlson, E. S., Coon, E. & Misra, R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol 77, 1153–1171 (2010).
Bennion,D.,Charlson,E.S.,Coon,E。&Misra,R。通过表征大肠杆菌的BamA POTRA 1突变体来解剖β桶外膜蛋白组装途径。摩尔771153-1171(2010)。
Google Scholar
谷歌学者
Ricci, D. P., Schwalm, J., Gonzales-Cope, M. & Silhavy, T. J. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. mBio 4, e00540–13 (2013).Article
Ricci,D.P.,Schwalm,J.,Gonzales-Cope,M。&Silhavy,T.J。外膜蛋白伴侣SurA的活性和特异性受脯氨酸异构酶结构域的调节。mBio 4,e00540–13(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bitto, E. & McKay, D. B. Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins. Structure 10, 1489–1498 (2002).Article
Bitto,E。&McKay,D.B。SurA的晶体结构,SurA是一种促进外膜孔蛋白折叠的分子伴侣。结构101489-1498(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Marx, D. C., Leblanc, M. J., Plummer, A. M., Krueger, S. & Fleming, K. G. Domain interactions determine the conformational ensemble of the periplasmic chaperone SurA. Protein Science 29, 2043–2053 (2020).Article
Marx,D.C.,Leblanc,M.J.,Plummer,A.M.,Krueger,S。&Fleming,K.G。域相互作用决定了周质伴侣SurA的构象集合。蛋白质科学292043-2053(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, X., Wang, S., Hu, Y.-X. & Mckay, D. B. The Periplasmic Bacterial Molecular Chaperone SurA Adapts its Structure to Bind Peptides in Different Conformations to Assert a Sequence Preference for Aromatic Residues. J. Mol. Biol. 373, 367–381 (2007).Article
Xu,X.,Wang,S.,Hu,Y.-X.&Mckay,D.B。周质细菌分子伴侣SurA调整其结构以结合不同构象的肽,以确定芳香族残基的序列偏好。J、 分子生物学。373367-381(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Calabrese, A. N. et al. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11, 1–16 (2020).Article
Calabrese,A.N.等人。伴侣SurA中的域间动力学及其与外膜蛋白客户的多位点结合。国家公社。11,1-16(2020)。文章
Google Scholar
谷歌学者
Soltes, G. R., Schwalm, J., Ricci, D. P. & Silhavy, T. J. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. J. Bacteriol. 198, 921–929 (2016).Article
Soltes,G.R.,Schwalm,J.,Ricci,D.P。&Silhavy,T.J。大肠杆菌伴侣SurA的活性受涉及小蛋白结构域的构象变化的调节。J、 细菌。198921-929(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, M., An, D. N. & Skolnick, J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. Elife 11, e82885 (2022).Article
Gao,M.,An,D.N.&Skolnick,J.深度学习驱动的细菌外膜蛋白生物发生超蛋白复合物的见解。Elife 11,e82885(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical Conditionality: A Genetic Strategy to Probe Organelle Assembly. Cell 121, 307–317 (2005).Article
Ruiz,N.,Falcone,B.,Kahne,D。&Silhavy,T.J。化学条件:探测细胞器组装的遗传策略。细胞121307-317(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wu, T. et al. Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell 121, 235–245 (2005).Article
Wu,T.等人。鉴定大肠杆菌外膜生物发生所需的多组分复合物。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rizzitello, A. E., Harper, J. R. & Silhavy, T. J. Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia coli. J. Bacteriol. 183, 6794 (2001).Article
Rizzitello,A.E.,Harper,J.R。&Silhavy,T.J。大肠杆菌周质中伴侣活性平行途径的遗传证据。J、 细菌。1836794(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).Article
Kim,S.等人。外膜蛋白组装机重要部件的结构和功能。科学317961-964(2007)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
De Las Peñas, A., Connolly, L. & Gross, C. A. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Molecular Microbiology 24, 373–385 (1997).Article
De Las Peñas,A.,Connolly,L。&Gross,C.A。σE介导的对大肠杆菌胞质外应激的反应由RseA和RseB转导,RseB是σE的两个负调节剂。分子微生物学24373-385(1997)。文章
Google Scholar
谷歌学者
White, P. et al. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat. commun. 12, 4174 (2021).Article
White,P。等人。膜不稳定和蛋白质动力学在BAM催化的OMP折叠中的作用。国家公社。124174(2021)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459 (2019).Article
Imai,Y。等人。一种新的抗生素选择性地杀死革兰氏阴性病原体。自然576459(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Böhringer, N. et al. Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs. Microbiol. Spectr. 9, e0153521 (2021).Article
Böhringer,N。等人。Darobactin类似物的突变产生和抗菌表征。微生物。光谱。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ritzmann, N., Manioglu, S., Hiller, S. & Müller, D. J. Monitoring the antibiotic darobactin modulating the β-barrel assembly factor BamA. Structure 3, 350–359 (2022).Article
Ritzmann,N.,Manioglu,S.,Hiller,S。&Müller,D.J。监测调节β-桶组装因子BamA的抗生素darobactin。结构3350-359(2022)。文章
Google Scholar
谷歌学者
Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).Article
抗生素darobactin模拟aβ链以抑制外膜插入酶。自然593125-129(2021)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Bitto, E. & Mckay, D. B. The Periplasmic Molecular Chaperone Protein SurA Binds a Peptide Motif That Is Characteristic of Integral Outer Membrane Proteins. J. Biol. Chem 278, 49316–49322 (2003).Article
Bitto,E。&Mckay,D.B。周质分子伴侣蛋白SurA结合肽基序,这是完整的外膜蛋白的特征。J、 生物。化学27849316–49322(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jia, M. et al. Conformational Dynamics of the Periplasmic Chaperone SurA. Biochemistry 59, 3235–3246 (2020).Article
Jia,M。等人。周质伴侣SurA的构象动力学。生物化学593235-3246(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Marx, D. C. et al. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. Proc. Natl. Acad. Sci. 117, 28026–28035 (2020).Article
Marx,D.C.等人,SurA是一种隐秘的凹槽伴侣,可扩展未折叠的外膜蛋白。程序。纳特尔。阿卡德。科学。11728026-28035(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat. Commun. 10, 1–13 (2019).Article
Doyle,M.T。&Bernstein,H.D。细菌外膜蛋白通过与BamAβ桶的不对称相互作用组装。国家公社。10,1-13(2019)。文章
Google Scholar
谷歌学者
Storek, K. M. et al. The Escherichia coli β-Barrel Assembly Machinery Is sensitized to Perturbations under High Membrane Fluidity. J. Bacteriol. 201, e00517–e00518 (2019).Article
Storek,K.M。等人。大肠杆菌β-桶组装机器对高膜流动性下的扰动敏感。J、 细菌。201,e00517–e00518(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vertommen, D., Ruiz, N., Leverrier, P., Silhavy, T. J. & Collet, J.-F. O. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics 9, 2432–2443 (2009).Article
Vertommen,D.,Ruiz,N.,Leverrier,P.,Silhavy,T.J。&Collet,J.-F.O。使用差异蛋白质组学表征大肠杆菌周质伴侣SurA的作用。蛋白质组学92432-2443(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Costello, S. M., Plummer, A. M., Fleming, P. J. & Fleming, K. G. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins. Proc. Natl. Acad. Sci. 113, E4794–E4800 (2016).Article
Costello,S.M.,Plummer,A.M.,Fleming,P.J。&Fleming,K.G。动态周质伴侣库促进外膜蛋白的生物发生。程序。纳特尔。阿卡德。科学。113,E4794–E4800(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Storek, K. et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl. Acad. Sci. 115, 3692–2697 (2018).Article
针对大肠杆菌β桶组装机的单克隆抗体具有杀菌作用。程序。纳特尔。阿卡德。科学。1153692-2697(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Behrens, S., Maier, R., De Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20, 285–294 (2001).Article
Behrens,S.,Maier,R.,De Cock,H.,Schmid,F.X。&Gross,C.A。缺乏其小蛋白结构域的SurA周质PPIase在体内起作用并具有伴侣活性。EMBO J 20285–294(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
He, C., Pan, S., Li, G. & Zhao, X. S. Molecular mechanism of SurA’s chaperoning function to outer membrane proteins revealed by purification-after-crosslinking single-molecule FRET. Sci. China Chem. 63, 1142–1152 (2020).Article
He,C.,Pan,S.,Li,G。&Zhao,X.S。通过交联单分子FRET后的纯化揭示了SurA对外膜蛋白伴侣功能的分子机制。科学。中国化工。631142-1152(2020)。文章
Google Scholar
谷歌学者
Thewasano, N., Germany, E. M., Maruno, Y., Nakajima, Y. & Shiota, T. Categorization of Escherichia coli outer membrane proteins by dependence on accessory proteins of the β-barrel assembly machinery complex. J. Biol. Chem. 299, 104821 (2023).Article
Thewasano,N.,Germany,E.M.,Maruno,Y.,Nakajima,Y。&Shiota,T。通过依赖β-桶组装机械复合物的辅助蛋白对大肠杆菌外膜蛋白进行分类。J、 生物。化学。299104821(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. Elife 3, e04234 (2014).Article
Roman Hernandez,G.,Peterson,J.H。&Bernstein,H.D。使用纯化的组分重建细菌自体转运蛋白组件。Elife 3,e04234(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pavlova, O., Peterson, J. H., Ieva, R. & Bernstein, H. D. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc. Natl. Acad. Sci. 110, E938–E94747 (2013).Article
。程序。纳特尔。阿卡德。科学。110,E938–E94747(2013)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).Article
Kimanius,D.,Dong,L.,Sharov,G.,Nakane,T。&Scheres,S.H.W。RELION-4.0中自动低温电磁单粒子分析的新工具。生物化学。J、 4784169–4185(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).Article
Rohou,A。&Grigorieff,N。CTFFIND4:从电子显微照片快速准确地估计散焦。J、 结构。生物学192216-221(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019).Article
。生物学2,1-13(2019)。文章
Google Scholar
谷歌学者
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290–296 (2017).Article
Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science 30, 70–82 (2021).Article
Pettersen,E.F.等人,《UCSF ChimeraX:研究人员、教育者和开发人员的结构可视化》。蛋白质科学30,70-82(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics. Structure 16, 673–683 (2008).Article
Trabuco,L.G.,Villa,E.,Mitra,K.,Frank,J。&Schulten,K。使用分子动力学将原子结构灵活拟合到电子显微镜图中。结构16673-683(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. 66, 213–221 (2010).
Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。66213-221(2010)。
Google Scholar
谷歌学者
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. 66, 486–501 (2010).
Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。晶体学报。66486-501(2010)。
Google Scholar
谷歌学者
Williams, C. J. et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science 27, 293 (2018).Article
Williams,C.J.等人,《MolProbity:改进全原子结构验证的更多更好的参考数据》。蛋白质科学27293(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schiffrin, B. et al. Effects of Periplasmic Chaperones and Membrane Thickness on BamA-Catalyzed Outer-Membrane Protein Folding. J. Mol. Biol. 429, 3776–3792 (2017).Article
Schiffrin,B。等人。周质伴侣和膜厚度对BamA催化的外膜蛋白折叠的影响。J、 分子生物学。4293776-3792(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Müller, B. K., Zaychikov, E., Bräuchle, C. & Lamb, D. C. Pulsed Interleaved Excitation. Biophys. J. 89, 3508–3522 (2005).Article
Müller,B.K.,Zaychikov,E.,Bräuchle,C。&Lamb,D.C。脉冲交错激发。生物物理。J、 893508-3522(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009).Article
Cordes,T.,Vogelsang,J。&Tinnefeld,P。关于trolox作为抗闪烁和抗漂白剂的机理。J、 上午化学。Soc.1315018–5019(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ingargiola, A., Lerner, E., Chung, S. Y., Weiss, S. & Michalet, X. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET. PLoS One 11, e0160716 (2016).Article
Ingargiola,A.,Lerner,E.,Chung,S.Y.,Weiss,S。&Michalet,X。FRETburts:用于分析自由扩散的单分子FRET的开源工具包。PLoS One 11,e0160716(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nir, E. et al. Shot-noise limited single-molecule FRET histograms: Comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).Article
Nir,E.等人。散粒噪声限制的单分子FRET直方图:理论和实验之间的比较。J、 物理。化学。B 11022103–22124(2006)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Antonik, M., Felekyan, S., Gaiduk, A. & Seidel, C. A. M. Separating Structural Heterogeneities from Stochastic Variations in Fluorescence Resonance Energy Transfer Distributions via Photon Distribution Analysis. J. Phys. Chem. B 110, 6970–6978 (2006).Article
Antonik,M.,Felekyan,S.,Gaiduk,A。&Seidel,C.A.M。通过光子分布分析将结构异质性与荧光共振能量转移分布的随机变化分开。J、 物理。化学。B 1106970–6978(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schrimpf, W., Barth, A., Hendrix, J. & Lamb, D. C. PAM: A Framework for Integrated Analysis of Imaging, Single-Molecule, and Ensemble Fluorescence Data. Biophys. J. 114, 1518–1528 (2018).Article
Schrimpf,W.,Barth,A.,Hendrix,J。&Lamb,D.C。PAM:成像,单分子和整体荧光数据综合分析的框架。生物物理。J、 1141518-1528(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50, D543–D552 (2021).Article
Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸Res 50,D543–D552(2021)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Bob Schiffrin, David Brockwell, and all members of the Radford and Ranson labs for helpful discussions, and Nasir Khan for excellent technical support. CryoEM data were collected at the Astbury Biostructure Laboratory, funded by the University of Leeds and Wellcome (108466/Z/15/Z; 221524/Z/20/Z) and we thank facility staff for their technical input.
下载参考文献致谢我们感谢Bob Schiffrin,David Brockwell以及Radford和Ranson实验室的所有成员进行了有益的讨论,并感谢Nasir Khan提供了出色的技术支持。CryoEM数据是在利兹大学和惠康大学资助的Astbury生物结构实验室收集的(108466/Z/15/Z;221524/Z/20/Z),我们感谢设施工作人员的技术投入。
The Mass Spectrometry Facility instrumentation used in this work was funded by Wellcome (223810/Z/21/Z). K.L.F. and J.E.H. acknowledge funding from the MRC (MR/P018491/1). K.L.F. is funded by the BBSRC (BB/X015653/1) and JAC by BBSRC (BB/T008059/1). SER holds a Royal Society Professorial Fellowship (RSRP/R1/211057).
这项工作中使用的质谱仪器由Wellcome(223810/Z/21/Z)资助。K、 L.F.和J.E.H.感谢MRC的资助(MR/P018491/1)。K、 L.F.由BBSRC(BB/X015653/1)资助,JAC由BBSRC(BB/T008059/1)资助。SER拥有皇家学会教授奖学金(RSRP/R1/211057)。
A.N.C. acknowledges the support of a Sir Henry Dale Fellowship jointly funded by Wellcome and the Royal Society (220628/Z/20/Z) and a University Academic Fellowship from the University of Leeds. T.F.S. and N.B. acknowledge funding from the German Federal Ministry of Education and Research (BMBF, via grant GBi2S and German Centre for Infection Research (DZIF) 09.918).
A、 N.C.感谢惠康(Wellcome)和皇家学会(Royal Society)共同资助的亨利·戴尔爵士(Sir Henry Dale)奖学金(220628/Z/20/Z)和利兹大学(University of Leeds)的大学学术奖学金的支持。T、 F.S.和N.B.感谢德国联邦教育和研究部(BMBF)通过拨款GBi2S和德国感染研究中心(DZIF)09.918提供的资金。
The anti-BamA polyclonal antibody used for western blotting and pTrc99a-BamABCDE-CT8His plasmid was a kind gift from Harris Bernstein (NIH, USA). The anti-SurA polyclonal used for western blotting was a generous gift from Jean-François Collet (UCLouvain, Belgium). The BamA depletion strain (JCM166), SurA deletion strain (AR208), and BamA complementation vector (pZS21-BamA-NT6His) were generously provided by Tom Silhavy (Princeton, USA).
用于蛋白质印迹的抗BamA多克隆抗体和pTrc99a-BamABCDE-CT8His质粒是Harris-Bernstein(美国国立卫生研究院)的礼物。用于蛋白质印迹的抗SurA多克隆抗体是Jean-François Collet(比利时UCLouvain)的慷慨礼物。BamA耗竭菌株(JCM166),SurA缺失菌株(AR208)和BamA互补载体(pZS21-BamA-NT6His)由Tom Silhavy(美国普林斯顿)慷慨提供。
All materials are available from the authors upon request.Author informationAuthor notesJim E. HornePresent address: Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1GA, UKRomany J. HornePresent address: Steinmetz Building, Granta Park, Great Ab.
。作者信息作者注释Jim E.HornePresent地址:剑桥网球场路生物化学系,CB2 1GA,UKRomany J.HornePresent地址:Granta Park Steinmetz Building,Great Ab。
PubMed Google ScholarJim E. HorneView author publicationsYou can also search for this author in
PubMed谷歌学者Jim E.HorneView作者出版物您也可以在
PubMed Google ScholarJoel A. CrossleyView author publicationsYou can also search for this author in
PubMed Google ScholarJoel A.CrossleyView作者出版物您也可以在
PubMed Google ScholarNils BöhringerView author publicationsYou can also search for this author in
PubMed Google ScholarNils BöhringerView作者出版物您也可以在
PubMed Google ScholarRomany J. HorneView author publicationsYou can also search for this author in
PubMed Google Scholarromy J.HorneView作者出版物您也可以在
PubMed Google ScholarTill F. SchäberleView author publicationsYou can also search for this author in
PubMed Google ScholarTill F.SchäberleView作者出版物您也可以在
PubMed Google ScholarAntonio N. CalabreseView author publicationsYou can also search for this author in
PubMed Google ScholarAntonio N.CalabreseView作者出版物您也可以在
PubMed Google ScholarSheena E. RadfordView author publicationsYou can also search for this author in
PubMed Google ScholarNeil A. RansonView author publicationsYou can also search for this author in
PubMed Google ScholarNeil A.RansonView作者出版物您也可以在
PubMed Google ScholarContributionsK.L.F. and J.E.H. contributed equally to this study and are designated as joint first authors. K.L.F. collected and processed all cryoEM data. J.E.H. led on construct design, molecular biology and protein production, assisted by R.J.H. Microbiology experiments were performed by KLF and JEH, as were proteomics experiments and data analysis (assisted by ANC).
PubMed谷歌学术贡献SK。五十、 F.和J.E.H.对这项研究做出了同样的贡献,并被指定为联合第一作者。K、 L.F.收集并处理了所有cryoEM数据。J、 E.H.在R.J.H.的协助下领导构建体设计,分子生物学和蛋白质生产。微生物学实验由KLF和JEH进行,蛋白质组学实验和数据分析(由ANC协助)也是如此。
J.A.C. performed single-molecule fluorescence experiments and data analysis. N.B. and T.F.S. produced and purified darobactin-B. The paper was written and edited by all authors, and all authors contributed to experiment design. The project was supervised by S.E.R. and N.A.R.Corresponding authorsCorrespondence to.
J、 A.C.进行了单分子荧光实验和数据分析。N、 B.和T.F.S.生产并纯化了darobactin-B。该论文由所有作者撰写和编辑,所有作者都为实验设计做出了贡献。该项目由S.E.R.和N.A.R.通讯作者通信监督。
Sheena E. Radford or Neil A. Ranson.Ethics declarations
Sheena E.Radford或Neil A.Ranson。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleFenn, K.L., Horne, J.E., Crossley, J.A. et al. Outer membrane protein assembly mediated by BAM-SurA complexes.
转载和许可本文引用本文Fenn,K.L.,Horne,J.E.,Crossley,J.A。等人。BAM-SurA复合物介导的外膜蛋白组装。
Nat Commun 15, 7612 (2024). https://doi.org/10.1038/s41467-024-51358-xDownload citationReceived: 11 April 2024Accepted: 02 August 2024Published: 01 September 2024DOI: https://doi.org/10.1038/s41467-024-51358-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》157612(2024)。https://doi.org/10.1038/s41467-024-51358-xDownload引文接收日期:2024年4月11日接受日期:2024年8月2日发布日期:2024年9月1日OI:https://doi.org/10.1038/s41467-024-51358-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。