EN
登录

Nat. Commun:DMDA-PatA通过将eIF4A和DDX3锚定到GNG基序上介导RNA序列选择性翻译抑制

Nat. Commun:DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs

Nature 等信源发布 2024-09-02 18:51

可切换为仅中文


AbstractSmall-molecule compounds that elicit mRNA-selective translation repression have attracted interest due to their potential for expansion of druggable space. However, only a limited number of examples have been reported to date. Here, we show that desmethyl desamino pateamine A (DMDA-PatA) represses translation in an mRNA-selective manner by clamping eIF4A, a DEAD-box RNA-binding protein, onto GNG motifs.

摘要引起mRNA选择性翻译抑制的小分子化合物由于其扩展药物空间的潜力而引起了人们的兴趣。然而,迄今为止,仅报告了有限数量的例子。在这里,我们显示去甲基脱氨基-patamine A(DMDA-PatA)通过将死盒RNA结合蛋白eIF4A夹在GNG基序上以mRNA选择性方式抑制翻译。

By systematically comparing multiple eIF4A inhibitors by ribosome profiling, we found that DMDA-PatA has unique mRNA selectivity for translation repression. Unbiased Bind-n-Seq reveals that DMDA-PatA-targeted eIF4A exhibits a preference for GNG motifs in an ATP-independent manner. This unusual RNA binding sterically hinders scanning by 40S ribosomes.

通过核糖体分析系统地比较多种eIF4A抑制剂,我们发现DMDA-PatA对翻译抑制具有独特的mRNA选择性。无偏的Bind-n-Seq揭示了DMDA-PatA靶向的eIF4A以不依赖ATP的方式表现出对GNG基序的偏好。这种不寻常的RNA结合在空间上阻碍了40S核糖体的扫描。

A combination of classical molecular dynamics simulations and quantum chemical calculations, and the subsequent development of an inactive DMDA-PatA derivative reveals that the positive charge of the tertiary amine on the trienyl arm induces G selectivity. Moreover, we identified that DDX3, another DEAD-box protein, is an alternative DMDA-PatA target with the same effects on eIF4A.

经典分子动力学模拟和量子化学计算的结合,以及随后开发的无活性DMDA-PatA衍生物表明,三烯臂上叔胺的正电荷诱导了G选择性。此外,我们发现另一种DEAD盒蛋白DDX3是一种替代的DMDA PatA靶标,对eIF4A具有相同的作用。

Our results provide an example of the sequence-selective anchoring of RNA-binding proteins and the mRNA-selective inhibition of protein synthesis by small-molecule compounds..

我们的研究结果为RNA结合蛋白的序列选择性锚定和小分子化合物对蛋白质合成的mRNA选择性抑制提供了一个例子。。

IntroductionThe production of harmful proteins often leads to deleterious outcomes in cells, causing a wide variety of diseases. Due to the limited druggable proteome1, compounds that modulate the synthesis of unwelcome proteins at the translational level provide attractive therapeutic opportunities2.

引言有害蛋白质的产生通常会导致细胞中的有害结果,导致多种疾病。由于有限的可药用蛋白质组1,在翻译水平上调节不受欢迎蛋白质合成的化合物提供了有吸引力的治疗机会2。

Although several compounds that suppress translation in an mRNA-selective manner have been identified2,3, the number of such compounds is still limited, warranting further identification of a new class with such activity.Repurposing natural secondary metabolites for pharmacological use has been a common strategy in drug development4.

尽管已经鉴定出几种以mRNA选择性方式抑制翻译的化合物2,3,但这些化合物的数量仍然有限,需要进一步鉴定具有这种活性的新类别。将天然次生代谢物重新用于药理用途一直是药物开发中的常见策略4。

Indeed, translation inhibitors are not exceptions, as a variety of antibiotics targeting ribosomes have been exploited5. In addition to ribosomes, eukaryotic translation initiation factor (eIF) 4 A has been found to be a common target of a variety of natural products, presenting a vulnerability in cancer6.

事实上,翻译抑制剂也不例外,因为已经开发了多种靶向核糖体的抗生素5。除核糖体外,真核翻译起始因子(eIF)4A已被发现是多种天然产物的共同靶标,在癌症中具有脆弱性6。

These compounds include hippuristanol (Hipp) from a soft coral (Isis hippuris)7,8,9,10,11, rocaglates from plants of the Aglaia genus12,13,14,15,16,17,18,19,20, pateamine A (PatA) from a sponge (Mycale sp.) or its microbiome symbionts21,22,23,24,25,26,27,28,29,30,31,32, and sanguinarine (San) from poppy plants (Macleaya cordata and Argemone Mexicana)33,34.eIF4A is an ATP-dependent DEAD-box type RNA-binding protein that forms a complex with the cap-binding protein eIF4E and scaffold protein eIF4G and then facilitates the loading of the 43S preinitiation complex onto the 5′ ends of mRNA and subsequent scanning of the 5′ untranslated region (UTR)35,36.

这些化合物包括来自软珊瑚(Isis hippuris)7,8,9,10,11的马匹甾醇(Hipp),来自Aglaia属植物12,13,14,15,16,17,18,19,20的罗卡糖,来自海绵(Mycale sp.)或其微生物群共生体21,22,23,24,25,26,27,28,29,30,31,32的patamine a(PatA),以及来自罂粟植物(Macleaya cordata和Argemone Mexicana)的血根碱(San)33,34.eIF4A是一种依赖ATP的死盒型RNA结合蛋白,与帽结合蛋白eIF4E和支架蛋白eIF4G形成复合物,然后促进43S预起始复合物加载到mRNA的5'端,随后扫描5'非翻译区(UTR)35,36。

In mammals, this protein is encoded by two genes, EIF4A1 and EIF4A2. Hipp and San have been shown to reduce the RNA-binding ability of eIF4A8,9,10,34, simply inactivating the function of eIF4A in.

在哺乳动物中,这种蛋白质由两个基因EIF4A1和EIF4A2编码。Hipp和San已被证明可以降低eIF4A8,9,10,34的RNA结合能力,从而简单地使eIF4A的功能失活。

Data availability

数据可用性

The data supporting the findings of this study are available from the corresponding authors upon request. The results of ribosome profiling, RNA pulldown-Seq, and RNA Bind-n-Seq (GEO: GSE243312) obtained in this study have been deposited in the National Center for Biotechnology Information (NCBI) database.

支持本研究结果的数据可应要求从通讯作者处获得。本研究中获得的核糖体分析,RNA pulldown-Seq和RNA Bind-n-Seq(GEO:GSE243312)的结果已保存在国家生物技术信息中心(NCBI)数据库中。

All the input and result files for the FMO calculations are available at the FMODB [https://drugdesign.riken.jp/FMODB/detail.php?FMODBID = “ID in the list”]106 (see Supplementary Table 1 for the ID list). Source data are provided with this paper..

FMODB提供了FMO计算的所有输入和结果文件[https://drugdesign.riken.jp/FMODB/detail.php?FMODBID = “列表中的ID”]106(ID列表见补充表1)。本文提供了源数据。。

Code availability

代码可用性

For the data analysis for ribosome profiling, RNA pulldown-Seq, and RNA Bind-n-Seq, we deposited key codes in Zenodo (https://doi.org/10.5281/zenodo.11064746)107, which used reported custom script (https://github.com/ingolia-lab/RiboSeq). For the MD and FMO calculations, we used the abmptools on GitHub (https://github.com/kojioku/abmptools)..

为了对核糖体分析、RNA pulldown-Seq和RNA Bind-n-Seq进行数据分析,我们在Zenodo中保存了关键代码(https://doi.org/10.5281/zenodo.11064746)(https://github.com/ingolia-lab/RiboSeq)。对于MD和FMO计算,我们使用了GitHub上的abmptools(https://github.com/kojioku/abmptools)。。

ReferencesValeur, E. & Jimonet, P. New modalities, technologies, and partnerships in probe and lead generation: enabling a mode-of-action centric paradigm. J. Med. Chem. 61, 9004–9029 (2018).Article

ReferencesValeur,E。&Jimonet,P。探索和潜在客户开发中的新模式,技术和伙伴关系:实现以行动为中心的模式。J、 医学化学。619004-9029(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shichino, Y. & Iwasaki, S. Compounds for selective translational inhibition. Curr. Opin. Chem. Biol. 69, 102158 (2022).Article

Shichino,Y。&Iwasaki,S。用于选择性翻译抑制的化合物。货币。。化学。生物学69102158(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vázquez-Laslop, N. & Mankin, A. S. Context-specific action of ribosomal antibiotics. Annu. Rev. Microbiol. 72, 185–207 (2018).Article

Vázquez-Laslop,N。&Mankin,A.S。核糖体抗生素的背景特异性作用。年。微生物修订版。72185-207(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).Article

Atanasov,A.G.,Zotchev,S.B.,Dirsch,V.M.,国际自然产物科学特别工作组和Supuran,C.T。药物发现中的天然产物:进展和机遇。《药物目录》修订版。2020-216(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451–478 (2018).Article

Lin,J.,Zhou,D.,Steitz,T.A.,Polikanov,Y.S.&Gagnon,M.G。核糖体靶向抗生素:作用模式,耐药机制以及对药物设计的影响。年。。87451-478(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, L. & Pelletier, J. Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Nat. Prod. Rep. 37, 609–616 (2020).Article

Shen,L。&Pelletier,J。通过天然产物选择性靶向DEAD-box RNA解旋酶真核起始因子(eIF)4A。《国家生产报告》37609-616(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Higa, T., Tanaka, J.-I., Tsukitani, Y. & Kikuchi, H. Hippuristanols, cytotoxic polyoxygenated steroids from the gorgonian Isis hippuris. Chem. Lett. 10, 1647–1650 (1981).Article

Higa,T.,Tanaka,J.-I.,Tsukitani,Y。&Kikuchi,H。Hippuristanols,来自gorgonian Isis hippuris的细胞毒性多氧类固醇。化学。利特。101647-1650(1981)。文章

Google Scholar

谷歌学者

Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2, 213–220 (2006).Article

Bordeleau,M.E.等人。RNA解旋酶eIF4A抑制剂对IRES的功能表征。自然化学。生物学杂志2213-220(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lindqvist, L. et al. Selective pharmacological targeting of a DEAD box RNA helicase. PLoS One 3, e1583 (2008).Article

Lindqvist,L。等人。DEAD-box RNA解旋酶的选择性药理学靶向。PLoS One 3,e1583(2008)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Y. et al. Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding. Structure 22, 941–948 (2014).Article

Sun,Y。等人。RNA解旋时真核起始因子4AI的单分子动力学。结构22941-948(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Steinberger, J. et al. Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5′ leader regions. Nucleic Acids Res. 48, 9521–9537 (2020).Article

Steinberger,J。等人。马匹甾醇抗性突变体的鉴定和表征揭示了mRNA 5'前导区内的eIF4A1依赖性。核酸研究489521-9537(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

King, M. L. et al. X-Ray crystal structure of rocaglamide, a novel antileulemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J. Chem. Soc. Chem. Commun. 1, 1150–1151 (1982).Article

King,M.L.等人。rocaglamide的X射线晶体结构,rocaglamide是一种来自Aglaia elliptifolia的新型抗白血病1H-环戊并[b]苯并呋喃。J、 。社会化学。Commun公司。1150-1151(1982)。文章

Google Scholar

谷歌学者

Bordeleau, M. E. et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest. 118, 2651–2660 (2008).CAS

Bordeleau,M.E。等人。翻译起始的治疗性抑制调节小鼠淋巴瘤模型中的化学敏感性。J、 临床。投资。1182651-2660(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sadlish, H. et al. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem. Biol. 8, 1519–1527 (2013).Article

Sadlish,H。等人。eIF4A RNA复合物上功能相关的rocaglamide结合位点的证据。ACS化学。生物学81519-1527(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Santagata, S. et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341, 1238303 (2013).Article

Santagata,S。等人。蛋白质翻译和HSF1激活的紧密协调支持合成代谢的恶性状态。科学3411238303(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Iwasaki, S., Floor, S. N. & Ingolia, N. T. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature 534, 558–561 (2016).Article

Iwasaki,S.,Floor,S.N。和Ingolia,N.T。Rocaglates将DEAD-box蛋白eIF4A转化为序列选择性翻译阻遏物。自然534558-561(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chu, J. et al. Amidino-rocaglates: a potent class of eIF4A inhibitors. Cell Chem. Biol. 26, 1586–1593.e3 (2019).Article

Chu,J。等人。脒基罗卡格雷酯:一类有效的eIF4A抑制剂。细胞化学。生物学261586-1593.e3(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Iwasaki, S. et al. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol. Cell 73, 738–748.e9 (2019).Article

Iwasaki,S。等人,《翻译抑制剂rocaglamide靶向eIF4A和多尿RNA之间的双分子腔》,《分子细胞》73738–748.e9(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chu, J. et al. Rocaglates induce gain-of-function alterations to eIF4A and eIF4F. Cell Rep. 30, 2481–2488.e5 (2020).Article

Chu,J。等人,Rocaglates诱导eIF4A和eIF4F的功能获得性改变。Cell Rep.302481–2488.e5(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cencic, R. et al. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc. Natl. Acad. Sci. USA. 121, e2318093121 (2024).Article

Cencic,R。等人。第二代eIF4A RNA解旋酶抑制剂利用翻译重编程作为三阴性乳腺癌的脆弱性。程序。纳特尔。阿卡德。科学。美国121,e2318093121(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Northcote, P. T., Blunt, J. W. & Munro, M. H. G. Pateamine: a potent cytotoxin from the New Zealand Marine sponge, mycale sp. Tetrahedron Lett. 32, 6411–6414 (1991).Article

Northcote,P.T.,Blunt,J.W.&Munro,M.H.G.patamine:一种来自新西兰海绵mycale sp.四面体Lett的有效细胞毒素。。文章

CAS

中科院

Google Scholar

谷歌学者

Bordeleau, M. E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl. Acad. Sci. USA. 102, 10460–10465 (2005).Article

Bordeleau,M.E.等人。真核翻译小分子抑制剂刺激哺乳动物翻译起始因子eIF4A活性。程序。纳特尔。阿卡德。科学。美国10210460–10465(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Low, W. K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20, 709–722 (2005).Article

Low,W.K.等人,《海洋天然产物patamine A.Mol.Cell 20709–722对真核翻译起始的抑制》(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bordeleau, M. E. et al. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem. Biol. 13, 1287–1295 (2006).Article

Bordeleau,M.E。等人。RNA介导的patamine A对RNA解旋酶eIF4A的螯合作用抑制翻译起始。化学。生物学113287-1295(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Low, W. K., Dang, Y., Bhat, S., Romo, D. & Liu, J. O. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: negation of domain-linker regulation of activity. Chem. Biol. 14, 715–727 (2007).Article

Low,W.K.,Dang,Y.,Bhat,S.,Romo,D。&Liu,J.O。patamine A对真核翻译起始因子4A的底物依赖性靶向:结构域接头活性调节的否定。化学。生物学14715-727(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Di Marco, S. et al. The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice. Nat. Commun. 3, 896 (2012).Article

Di Marco,S。等人。翻译抑制剂patamine A可预防恶病质引起的小鼠肌肉萎缩。国家公社。。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Low, W.-K. et al. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg. Med. Chem. 22, 116–125 (2014).Article

。生物组织医学化学。22116-125(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Popa, A., Lebrigand, K., Barbry, P. & Waldmann, R. Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genomics 17, 52 (2016).Article

Popa,A.,Lebrigand,K.,Barbry,P。&Waldmann,R。patamine A敏感的核糖体分析揭示了小鼠胚胎干细胞中翻译的范围。BMC基因组学17,52(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, R. et al. Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia 33, 1663–1674 (2019).Article

Chen,R.等人。创建新的翻译抑制剂,以靶向慢性淋巴细胞白血病中的促生存蛋白。白血病331663-1674(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl. Acad. Sci. USA. 117, 9508–9518 (2020).Article

Rust,M.等人。一个多生产者微生物组在海绵Mycale hentscheli中产生化学多样性。程序。纳特尔。阿卡德。科学。美国,1179508–9518(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Storey, M. A. et al. Metagenomic exploration of the marine sponge Mycale hentscheli uncovers multiple polyketide-producing bacterial symbionts. MBio 11, e02997–19 (2020).Article

海洋海绵Mycale hentscheli的宏基因组学探索揭示了多种产生聚酮化合物的细菌共生体。MBio 11,e02997–19(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naineni, S. K. et al. Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chem. Biol.28, 825–834.e6 (2021).Santos, A. C. & Adkilen, P. The alkaloids of Argemone mexicana. J. Am. Chem. Soc. 54, 2923–2924 (1932).Article .

Naineni,S.K.等人。通过eIF4A的晶体结构揭示的功能模拟:与界面抑制剂去甲基patamine A结合的RNA复合物。Cell Chem。生物学28825-834.e6(2021)。Santos,A.C。和Adkilen,P。墨西哥阿格蒙生物碱。J、 上午化学。Soc.542923–2924(1932)。文章。

CAS

中科院

Google Scholar

谷歌学者

Jiang, C. et al. Targeting the N terminus of eIF4AI for inhibition of its catalytic recycling. Cell Chem. Biol. 26, 1417–1426.e5 (2019).Article

Jiang,C.等人。靶向eIF4AI的N末端以抑制其催化再循环。细胞化学。生物学261417-1426.e5(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).Article

Hinnebusch,A.G。真核翻译起始的扫描机制。年。。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brito Querido, J. et al. Structure of a human 48S translational initiation complex. Science 369, 1220–1227 (2020).Article

Brito-Querido,J。等人。人类48S翻译起始复合物的结构。科学3691220-1227(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, M. et al. Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. Cell Chem. Biol. 28, 475–486.e8 (2021).Article

Chen,M。等人。翻译抑制剂rocaglamide A对DDX3和eIF4A的双重靶向。Cell Chem。生物学28475-486.e8(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).Article

Ingolia,N.T.,Ghaemmaghami,S.,Newman,J.R。&Weissman,J.S。使用核糖体分析对核苷酸分辨率进行体内翻译的全基因组分析。科学324218-223(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Iwasaki, S. & Ingolia, N. T. The growing toolbox for protein synthesis studies. Trends Biochem. Sci. 42, 612–624 (2017).Article

Iwasaki,S。&Ingolia,N.T。蛋白质合成研究的成长工具箱。趋势生物化学。科学。42612-624(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Romo, D. et al. Evidence for separate binding and scaffolding domains in the immunosuppressive and antitumor marine natural product, pateamine a: design, synthesis, and activity studies leading to a potent simplified derivative. J. Am. Chem. Soc. 126, 10582–10588 (2004).Article

Romo,D.等人。免疫抑制和抗肿瘤海洋天然产物patamine a中单独结合和支架结构域的证据:设计,合成和活性研究,导致有效的简化衍生物。J、 上午化学。Soc.12610582–10588(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, T. Y. et al. Time-resolved proteomics extends ribosome profiling-based measurements of protein synthesis dynamics. Cell Syst. 4, 636–644.e9 (2017).Article

Liu,T.Y.等人。时间分辨蛋白质组学扩展了基于核糖体分析的蛋白质合成动力学测量。细胞系统。4636-644.e9(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chhipi-Shrestha, J. K. et al. Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chem. Biol. 29, 259–275.e10 (2022).Article

Chhipi-Shrestha,J.K。等人。剪接调节剂通过从内含子翻译的易凝结蛋白引发整体翻译抑制。细胞化学。生物学29259-275.e10(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Naineni, S. K. et al. A comparative study of small molecules targeting eIF4A. RNA 26, 541–549 (2020).Article

Naineni,S.K.等人。靶向eIF4A的小分子的比较研究。RNA 26541-549(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lambert, N. et al. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54, 887–900 (2014).Article

Lambert,N.等人,《RNA结合N-Seq:RNA结合蛋白序列和结构结合特异性的定量评估》。分子细胞54887-900(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lambert, N. J., Robertson, A. D. & Burge, C. B. RNA Bind-n-Seq: measuring the binding affinity landscape of RNA-binding proteins. Methods Enzymol. 558, 465–493 (2015).Article

Lambert,N.J.,Robertson,A.D。和Burge,C.B。RNA Bind-N-Seq:测量RNA结合蛋白的结合亲和力景观。方法酶法。558465-493(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Linder, P. & Jankowsky, E. From unwinding to clamping—the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).Article

Linder,P。&Jankowsky,E。从解开到夹紧DEAD-box RNA解旋酶家族。Nat。Rev。Mol。Cell Biol。12505-516(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weis, K. & Hondele, M. The role of DEAD-Box ATPases in gene expression and the regulation of RNA-protein condensates. Annu. Rev. Biochem. 91, 197–219 (2022).Article

Weis,K。&Hondele,M。DEAD-Box ATPases在基因表达和RNA-蛋白质缩合物调节中的作用。年。。91197-219(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).Article

Pestova,T.V。&Kolupaeva,V.G。单个真核翻译起始因子在核糖体扫描和起始密码子选择中的作用。Genes Dev.162906–2922(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).Article

Wolfe,A.L.等人,RNA G-四链体在癌症中引起eIF4A依赖性癌基因翻译。自然513,65-70(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldron, J. A., Raza, F. & Le Quesne, J. eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Res. 46, 3075–3087 (2018).Article

Waldron,J.A.,Raza,F。&Le Quesne,J。eIF4A比G-四链体更能减轻经典二级结构介导的翻译抑制。核酸研究463075-3087(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldron, J. A. et al. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol. 20, 300 (2019).Article

Waldron,J.A。等人。起始密码子上游的mRNA结构元件决定了对eIF4A解旋酶活性的依赖性。基因组生物学。20300(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dmitriev, S. E., Pisarev, A. V., Rubtsova, M. P., Dunaevsky, Y. E. & Shatsky, I. N. Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett. 533, 99–104 (2003).Article

Dmitriev,S.E.,Pisarev,A.V.,Rubtsova,M.P.,Dunaevsky,Y.E.&Shatsky,I.N.将48S翻译预起始复合物转化为80S起始复合物,如toeprinting所揭示的。FEBS Lett公司。533,99-104(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shirokikh, N. E. et al. Quantitative analysis of ribosome-mRNA complexes at different translation stages. Nucleic Acids Res. 38, e15 (2010).Article

Shirokikh,N.E.等人。不同翻译阶段核糖体-mRNA复合物的定量分析。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, M. et al. A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants. Elife 12, e81302 (2023).Article

Chen,M。等人。一种寄生真菌利用突变的eIF4A在合成rocaglate的Aglaia植物上存活。Elife 12,e81302(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kitaura, K., Ikeo, E., Asada, T., Nakano, T. & Uebayasi, M. Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701–706 (1999).Article

Kitaura,K.,Ikeo,E.,Asada,T.,Nakano,T。&Uebayasi,M。碎片分子轨道方法:大分子的近似计算方法。化学。物理。利特。313701-706(1999)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Fedorov, D. G., Nagata, T. & Kitaura, K. Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012).Article

Fedorov,D.G.,Nagata,T。和Kitaura,K。用碎片分子轨道方法探索化学。物理。化学。化学。物理。147562-7577(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tanaka, S., Mochizuki, Y., Komeiji, Y., Okiyama, Y. & Fukuzawa, K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys. Chem. Chem. Phys. 16, 10310–10344 (2014).Article

Tanaka,S.,Mochizuki,Y.,Komeiji,Y.,Okiyama,Y。&Fukuzawa,K。生物分子和纳米系统的电子相关碎片分子轨道计算。物理。化学。化学。物理。1610310-10344(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mochizuki, Y., Tanaka, S. & Fukuzawa, K. Recent Advances of the Fragment Molecular Orbital Method: Enhanced Performance and Applicability (Springer Nature Singapore, 2021).Handa, Y. et al. Prediction of binding pose and affinity of Nelfinavir, a SARS-CoV-2 main protease repositioned drug, by combining docking, molecular dynamics, and fragment molecular orbital calculations.

Mochizuki,Y.,Tanaka,S。和Fukuzawa,K。碎片分子轨道方法的最新进展:增强的性能和适用性(Springer Nature Singapore,2021)。Handa,Y.等人。通过结合对接,分子动力学和片段分子轨道计算,预测SARS-CoV-2主要蛋白酶重新定位药物奈非那韦的结合姿势和亲和力。

J. Phys. Chem. B 128, 2249–2265 (2024).Article .

J、 物理。化学。B 1282249-2265(2024)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fedorov, D. G. & Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 28, 222–237 (2007).Article

Fedorov,D.G。和Kitaura,K。对相互作用能量分解分析。J、 计算机。化学。28222-237(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tsukamoto, T. et al. Implementation of pair interaction energy decomposition analysis and its applications to protein-ligand systems. J. Comput. Chem. Jpn. 14, 1–9 (2015).Article

Tsukamoto,T.等人。成对相互作用能量分解分析的实现及其在蛋白质-配体系统中的应用。J、 计算机。化学。日本。14,1-9(2015)。文章

CAS

中科院

Google Scholar

谷歌学者

Li, F. et al. Reanalysis of ribosome profiling datasets reveals a function of rocaglamide A in perturbing the dynamics of translation elongation via eIF4A. Nat. Commun. 14, 553 (2023).Article

Li,F。等人对核糖体分析数据集的重新分析揭示了rocaglamide a通过eIF4A扰乱翻译延伸动力学的功能。国家公社。14553(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mullard, A. Small molecules against RNA targets attract big backers. Nat. Rev. Drug Discov. 16, 813–815 (2017).Article

针对RNA靶标的小分子吸引了大量支持者。《药物目录》修订版。16813-815(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garber, K. Drugging RNA. Nat. Biotechnol. 41, 745–749 (2023).Article

Garber,K。Drugging RNA。Nat。Biotechnol。41745-749(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Khaperskyy, D. A. et al. Influenza a virus host shutoff disables antiviral stress-induced translation arrest. PLoS Pathog. 10, e1004217 (2014).Article

Khaperskyy,D.A。等人。甲型流感病毒宿主关闭会禁用抗病毒应激诱导的翻译停滞。PLoS Pathog。10,e1004217(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

González-Almela, E. et al. Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology 484, 41–50 (2015).Article

González-Almela,E.等人。patamine A对辛德毕斯病毒基因组和亚基因组mRNA翻译的差异作用。病毒学484,41-50(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ziehr, B., Lenarcic, E., Cecil, C. & Moorman, N. J. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication. Virology 489, 194–201 (2016).Article

Ziehr,B.,Lenarcic,E.,Cecil,C。&Moorman,N.J。eIF4AIII RNA解旋酶是人类巨细胞病毒复制的关键决定因素。病毒学489194-201(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Slaine, P. D., Kleer, M., Smith, N. K., Khaperskyy, D. A. & McCormick, C. Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza A virus replication. Viruses 9, 388 (2017).Article

Slaine,P.D.,Kleer,M.,Smith,N.K.,Khaperskyy,D.A。&McCormick,C。应激颗粒诱导真核翻译起始因子4A抑制剂阻断甲型流感病毒复制。病毒9388(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lucas, D. M. et al. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 113, 4656–4666 (2009).Article

Lucas,D.M.等人。新型植物源性药物silvestrol在体内外对慢性淋巴细胞白血病和急性淋巴细胞白血病具有B细胞选择性活性。血液1134656-4666(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alachkar, H. et al. Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia. J. Hematol. Oncol. 6, 21 (2013).Article

Alachkar,H。等人Silvestrol在急性髓细胞白血病中表现出显着的体内和体外抗白血病活性,并抑制FLT3和miR-155的表达。J、 血液学。Oncol公司。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boussemart, L. et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513, 105–109 (2014).Article

Boussemart,L。等人。eIF4F是抗BRAF和抗MEK癌症疗法的抗性联系。自然513105-109(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wiegering, A. et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov. 5, 768–781 (2015).Article

Wiegering,A。等人。靶向翻译起始绕过了在结直肠癌中维持高MYC水平的信号串扰机制。癌症发现。5768-781(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Manier, S. et al. Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci. Transl. Med. 9, eaal2668 (2017).Article

Manier,S。等人。抑制致癌翻译程序是多发性骨髓瘤的有效治疗策略。科学。。医学杂志9,eaal2668(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cerezo, M. et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat. Med. 24, 1877–1886 (2018).Article

Cerezo,M。等人。黑色素瘤中通过eIF4F-STAT1-PD-L1轴对肿瘤免疫逃逸的翻译控制。《自然医学》241877-1886(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chan, K. et al. eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat. Commun. 10, 5151 (2019).Article

Chan,K。等人。eIF4A支持胰腺导管腺癌中的致癌翻译程序。国家公社。105151(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nishida, Y. et al. Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML. Leukemia 35, 2469–2481 (2021).Article

Nishida,Y。等人。抑制翻译起始因子eIF4a使热休克因子1(HSF1)失活并在AML中发挥抗白血病活性。白血病352469-2481(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Skofler, C. et al. Eukaryotic translation initiation factor 4AI: a potential novel target in neuroblastoma. Cells 10, 301 (2021).Article

Skofler,C。等。真核翻译起始因子4AI:神经母细胞瘤中潜在的新靶点。细胞10301(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thompson, P. A. et al. Targeting oncogene mRNA translation in B-cell malignancies with eFT226, a potent and selective inhibitor of eIF4A. Mol. Cancer Ther. 20, 26–36 (2021).Article

Thompson,P.A。等人。用eFT226(一种有效且选择性的eIF4A抑制剂)靶向B细胞恶性肿瘤中的癌基因mRNA翻译。分子癌症治疗。20,26-36(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wilmore, S. et al. Targeted inhibition of eIF4A suppresses B-cell receptor-induced translation and expression of MYC and MCL1 in chronic lymphocytic leukemia cells. Cell. Mol. Life Sci. 78, 6337–6349 (2021).Article

Wilmore,S。等人。靶向抑制eIF4A抑制B细胞受体诱导的慢性淋巴细胞白血病细胞中MYC和MCL1的翻译和表达。细胞。。786337-6349(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuznetsov, G. et al. Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol. Cancer Ther. 8, 1250–1260 (2009).Article

Kuznetsov,G.等人。des-methyl,des-amino-patamine A(一种海洋天然产物patamine A.Mol.Cancer Ther的合成类似物)的有效体外和体内抗癌活性。81250-1260(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, J. J. D. et al. Proteomics reveal cap-dependent translation inhibitors remodel the translation machinery and translatome. Cell Rep 37, 109806 (2021).Article

蛋白质组学揭示帽依赖性翻译抑制剂重塑翻译机制和翻译组。Cell Rep 37109806(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Romo, D. et al. Total synthesis and immunosuppressive activity of (−)-pateamine A and related compounds: implementation of a β-lactam-based macrocyclization. J. Am. Chem. Soc. 120, 12237–12254 (1998).Article

(-)-patamine A及其相关化合物的全合成和免疫抑制活性:基于β-内酰胺的大环化的实现。J、 上午化学。Soc.12012237–12254(1998)。文章

CAS

中科院

Google Scholar

谷歌学者

Zhuo, C.-X. & Fürstner, A. Catalysis-based total syntheses of pateamine A and DMDA-Pat A. J. Am. Chem. Soc. 140, 10514–10523 (2018).Article

Zhuo,C.-X.&Fürstner,A。基于催化的patamine A和DMDA的全合成Pat A.J.Am。Chem。Soc.14010514–10523(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guan, W. et al. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters. J. Org. Chem. 79, 7199–7204 (2014).Article

Guan,W.等人。通过酸介导的α-羟基硼酸酯的消除立体选择性形成三取代乙烯基硼酸酯。J、 组织化学。797199-7204(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McIntosh, M. L., Moore, C. M. & Clark, T. B. Copper-catalyzed diboration of ketones: facile synthesis of tertiary alpha-hydroxyboronate esters. Org. Lett. 12, 1996–1999 (2010).Article

McIntosh,M.L.,Moore,C.M。&Clark,T.B。铜催化的酮二硼化:叔α-羟基硼酸酯的简便合成。组织Lett。1996年至1999年(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, S. et al. Pincer iron hydride complexes for alkene isomerization: catalytic approach to trisubstituted (Z)-alkenyl boronates. ACS Catal. 11, 10138–10147 (2021).Article

Xu,S.等。用于烯烃异构化的Pincer氢化铁配合物:三取代(Z)-烯基硼酸酯的催化方法。ACS加泰罗尼亚。110138–10147(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Sanchez, A. & Maimone, T. J. Taming shapeshifting anions: total synthesis of ocellatusone C. J. Am. Chem. Soc. 144, 7594–7599 (2022).Article

。Soc.1447594–7599(2022年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhuo, C.-X. & Fürstner, A. Concise synthesis of a pateamine A analogue with in vivo anticancer activity based on an iron-catalyzed pyrone ring opening/cross-coupling. Angew. Chem. Int. Ed Engl. 55, 6051–6056 (2016).Article

Zhuo,C.-X.&Fürstner,A。基于铁催化的吡喃酮开环/交叉偶联,简明合成具有体内抗癌活性的patamine A类似物。安吉。化学。国际英语。556051-6056(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mito, M., Mishima, Y. & Iwasaki, S. Protocol for disome profiling to survey ribosome collision in humans and zebrafish. STAR Protoc. 1, 100168 (2020).Article

Mito,M.,Mishima,Y。&Iwasaki,S。二体分析协议,用于调查人类和斑马鱼中的核糖体碰撞。。1100168(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kashiwagi, K. et al. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat. Commun. 12, 1–12 (2021).Article

Kashiwagi,K。等人。eIF2B捕获病毒蛋白NSs抑制综合应激反应。国家公社。12,1-12(2021)。文章

Google Scholar

谷歌学者

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article

Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).Article

Anders,S。&Huber,W。序列计数数据的差异表达分析。基因组生物学。11,R106(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article

Chen,S.,Zhou,Y.,Chen,Y。&Gu,J。fastp:一种超快速的一体化FASTQ预处理器。生物信息学34,i884–i890(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Molecular Operating Environment (MOE). (2022.02 Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada, 2024).Gerber, P. R. & Müller, K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J. Comput. Aided Mol.

分子操作环境(MOE)。(2022.02化学计算集团ULC,910-1010 Sherbrooke St.W.,蒙特利尔,QC H3A 2R7,加拿大,2024)。Gerber,P.R。&Müller,K.MAB,一种用于药物化学结构建模的普遍适用的分子力场。J、 计算机。辅助分子。

Des. 9, 251–268 (1995).Article .

Des公司。9251-268(1995)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Case, D. A. et al. Amber 10. (University of California, 2008).

Case,D.A.等人,Amber 10。(加利福尼亚大学,2008年)。

Google Scholar

谷歌学者

Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).Article

Maier,J.A.等人,ff14SB:提高ff99SB蛋白质侧链和骨架参数的准确性。J、 。理论计算。113696-3713(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zgarbová, M. et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011).Article

Zgarbová,M.等人。基于糖苷扭转曲线的参考量子化学计算改进Cornell等人的核酸力场。J、 。理论计算。72886-2902(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).Article

Wang,J.,Wolf,R.M.,Caldwell,J.W.,Kollman,P.A。和Case,D.A。通用琥珀力场的开发和测试。J、 计算机。化学。251157-1174(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, J., Wolf, R. M., Caldwell, J. W. & Kollman, P. A. & Case, D. A. Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case, “Development and testing of a general amber force field”Journal of Computational Chemistry (2004) 25(9) 1157–1174. J. Comput. Chem.

Wang,J.,Wolf,R.M.,Caldwell,J.W.&Kollman,P.A.&Case,D.A。Junmei Wang,Romain M.Wolf,James W.Caldwell,Peter A.Kollman和David A.Case,“通用琥珀力场的开发和测试”,《计算化学杂志》(2004)25(9)1157-1174。J、 计算机。化学。

26, 114–114 (2005).Article .

26114-114(2005)。文章。

CAS

中科院

Google Scholar

谷歌学者

He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).Article

He,X.,Man,V.H.,Yang,W.,Lee,T.-S.&Wang,J。下一代AMBER将军力场的快速高质量电荷模型。J、 。物理。153114502(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Case, D. A. et al. Amber 16 (University of California, 2016).Mochizuki, Y. et al. A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme. Theor. Chem. Acc. 112, 442–452 (2004).Article

Case,D.A.等人,Amber 16(加利福尼亚大学,2016)。Mochizuki,Y。等人。一种具有碎片分子轨道方案的并行积分直接二阶Møller–Plesset微扰理论方法。理论。化学。根据112442–452(2004)。文章

CAS

中科院

Google Scholar

谷歌学者

Mochizuki, Y., Koikegami, S., Nakano, T., Amari, S. & Kitaura, K. Large scale MP2 calculations with fragment molecular orbital scheme. Chem. Phys. Lett. 396, 473–479 (2004).Article

Mochizuki,Y.,Koikegami,S.,Nakano,T.,Amari,S。&Kitaura,K。使用碎片分子轨道方案进行大规模MP2计算。化学。物理。利特。396473-479(2004)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Takaya, D. et al. FMODB: the world’s first database of quantum mechanical calculations for biomacromolecules based on the fragment molecular orbital method. J. Chem. Inf. Model. 61, 777–794 (2021).Article

Takaya,D.等人,FMODB:世界上第一个基于碎片分子轨道方法的生物大分子量子力学计算数据库。J、 。Inf.模型。61777-794(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Saito, H. Custom scripts for DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs. Zenodo. https://doi.org/10.5281/zenodo.11064746 (2024).Download referencesAcknowledgementsWe thank all the members of the Iwasaki laboratory for constructive discussions and technical help.

Saito,H。DMDA PatA的自定义脚本通过将eIF4A和DDX3锚定到GNG基序来介导RNA序列选择性翻译抑制。。https://doi.org/10.5281/zenodo.11064746(2024年)。下载参考文献致谢我们感谢岩崎实验室所有成员的建设性讨论和技术帮助。

We are grateful to Dr. K. Dodo, Dr. K. Okuwaki, Dr. K. Kato, Dr. C. Watanabe, and Dr. T. Honma for their helpful advice. Hipp was a kind gift from Dr. J. Tanaka. San was a kind gift from Dr. J. Liu. We thank Dr. C.-X. Zhuo and S. Schulthoff for preparing the pateamine derivatives and C. Wirtz for excellent NMR support (and all at the MPI Mülheim).

我们感谢K.Dodo博士,K.Okuwaki博士,K.Kato博士,C.Watanabe博士和T.Honma博士的有益建议。希普是田中博士的礼物。San是J.Liu博士的礼物。我们感谢C.-X.Zhuo博士和S.Schulthoff博士制备了patamine衍生物,感谢C.Wirtz出色的NMR支持(以及所有在MPI Mülheim的支持)。

We are grateful to Dr. N.T. Ingolia for sharing the plasmids. This study used facilities of the HOKUSAI SailingShip supercomputer facility at RIKEN; Sanger sequencing at the Support Unit for Bio-Material Analysis, RIKEN CBS Research Resources Division; and deep sequencing via HiSeq 4000, supported by the National Institutes for Health (NIH) Instrumentation Grant (S10 OD018174), in QB3 Genomics, UC Berkeley, Berkeley, CA, (RRID:SCR_022170).

我们感谢N.T.Ingolia博士分享质粒。这项研究使用了位于里肯的HOKUSAI SailingShip超级计算机设施;RIKEN CBS研究资源部生物材料分析支持部门的Sanger测序;。

MD simulations and FMO calculations were performed using the Fugaku supercomputer (project ID: hp220143) and the TSUBAME 3.0 supercomputer (Tokyo Institute of Technology, Japan). This work was supported by the Japan Society for the Promotion of Science (JSPS) (JP23H02415 and JP23H00095 to S.I.; JP23H05473 to M.Y.; JP23K05648 to Y.S.), the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (JP20H05784 and JP24H02307 to S.I.; JP21H05281 to T.I.; JP21H05734 and JP23H04268 to Y.S.; JP23H04882 to M.Y.), the Japan Agency for Medical Research and Development (AMED) (JP23gm1410001 to S.I.

使用Fugaku超级计算机(项目编号:hp220143)和TSUBAME 3.0超级计算机(日本东京理工学院)进行MD模拟和FMO计算。这项工作得到了日本科学促进会(JSPS)的支持(JP23H02415和JP23H00095至S.I.;JP23H05473至M.Y.;JP23K05648至Y.S.),教育、文化、体育、科学和技术部(MEXT)(JP20H05784和JP24H02307至S.I.;JP21H05281至T.I.;JP21H05734和JP23H04268至Y.S.;JP23H04882至M.Y.),日本医学研究与发展署(AMED)(JP23gm1410001至S.I。

and T.I.), and RIKEN (Pioneering Projects “Biology of In.

和T.I.)和RIKEN(开创性项目“In的生物学”。

PubMed Google ScholarYuma HandaView author publicationsYou can also search for this author in

PubMed Google ScholarYuma HandaView作者出版物您也可以在

PubMed Google ScholarMingming ChenView author publicationsYou can also search for this author in

PubMed Google Scholarmaming ChenView作者出版物您也可以在

PubMed Google ScholarTilman Schneider-PoetschView author publicationsYou can also search for this author in

PubMed Google ScholarTilman Schneider PoetschView作者出版物您也可以在

PubMed Google ScholarYuichi ShichinoView author publicationsYou can also search for this author in

PubMed Google ScholarYuichi ShichinoView作者出版物您也可以在

PubMed Google ScholarMari TakahashiView author publicationsYou can also search for this author in

PubMed Google ScholarMari TakahashiView作者出版物您也可以在

PubMed Google ScholarDaniel RomoView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel RomoView作者出版物您也可以在

PubMed Google ScholarMinoru YoshidaView author publicationsYou can also search for this author in

PubMed Google Scholarmaminoru YoshidaView作者出版物您也可以在

PubMed Google ScholarAlois FürstnerView author publicationsYou can also search for this author in

PubMed Google ScholarAlois FürstnerView作者出版物您也可以在

PubMed Google ScholarTakuhiro ItoView author publicationsYou can also search for this author in

PubMed Google ScholarTakuhiro ItoView作者出版物您也可以在

PubMed Google ScholarKaori FukuzawaView author publicationsYou can also search for this author in

PubMed Google ScholarKaori FukuzawaView作者出版物您也可以在

PubMed Google ScholarShintaro IwasakiView author publicationsYou can also search for this author in

PubMed Google ScholarShintaro IwasakiView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization: H.S. and S.I.; Methodology: H.S., Y.H., M.C., T.S.-P., Y.S., M.T., and A.F.; Formal analysis: H.S., Y.H., M.C., Y.S., M.T., and A.F.; Investigation: H.S., H.S., Y.H., M.C., Y.S., M.T., and A.F.; Resources: D.R. and A.F.; Writing – Original Draft: S.I.; Writing – Review & Editing: H.S., Y.H., M.C., T.S.-P., Y.S., M.T., D.R., M.Y., A.F., T.I., K.F., and S.I.; Visualization: H.S.

PubMed谷歌学术贡献概念:H.S.和S.I。;方法学:H.S.,Y.H.,M.C.,T.S.-P.,Y.S.,M.T。和A.F。;形式分析:H.S.,Y.H.,M.C.,Y.S.,M.T。和A.F。;。;资源:D.R.和A.F。;写作-原稿:S.I。;写作-评论和编辑:H.S.,Y.H.,M.C.,T.S.-P.,Y.S.,M.T.,D.R.,M.Y.,A.F.,T.I.,K.F。和S.I。;可视化:H.S。

and S.I.; Supervision: Y.S., M.Y., A.F., T.I., K.F., and S.I.; Project administration: S.I.; and Funding Acquisition: T.S.-P., Y.S., D.R., M.Y., T.I., and S.I.Corresponding authorCorrespondence to.

和S.I。;监督:Y.S.,M.Y.,A.F.,T.I.,K.F。和S.I。;项目管理:S.I。;和资金获取:T.S.-P.,Y.S.,D.R.,M。Y、 ,T.I.和S.I.对应作者对应。

Shintaro Iwasaki.Ethics declarations

岩崎慎太郎。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Lars Bock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Lars Bock和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleSaito, H., Handa, Y., Chen, M. et al. DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs.

转载和许可本文引用本文Saito,H.,Handa,Y.,Chen,M。等人。DMDA PatA通过将eIF4A和DDX3锚定到GNG基序来介导RNA序列选择性翻译抑制。

Nat Commun 15, 7418 (2024). https://doi.org/10.1038/s41467-024-51635-9Download citationReceived: 13 October 2023Accepted: 11 August 2024Published: 02 September 2024DOI: https://doi.org/10.1038/s41467-024-51635-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41467-024-51635-9Download引文接收日期:2023年10月13日接收日期:2024年8月11日发布日期:2024年9月2日OI:https://doi.org/10.1038/s41467-024-51635-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。