商务合作
动脉网APP
可切换为仅中文
AbstractNigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact on the diagnosis left ventricular systolic dysfunction (LVSD) in the perinatal period.
摘要尼日利亚是全球围产期心肌病发病率最高的国家。这项开放标签,实用的临床试验将孕妇和产后妇女随机分为常规护理或人工智能(AI)指导的筛查,以评估其对围产期左心室收缩功能障碍(LVSD)诊断的影响。
The study intervention included digital stethoscope recordings with point of-care AI predictions and a 12-lead electrocardiogram with asynchronous AI predictions for LVSD. The primary end point was identification of LVSD during the study period. In the intervention arm, the primary end point was defined as the number of identified participants with LVSD as determined by a positive AI screen, confirmed by echocardiography.
研究干预包括数字听诊器记录和即时AI预测,以及12导联心电图和LVSD异步AI预测。。在干预组中,主要终点定义为通过超声心动图证实的阳性AI筛查确定的LVSD参与者人数。
In the control arm, this was the number of participants with clinical recognition and documentation of LVSD on echocardiography in keeping with current standard of care. Participants in the intervention arm had a confirmatory echocardiogram at baseline for AI model validation. A total of 1,232 (616 in each arm) participants were randomized and 1,195 participants (587 intervention arm and 608 control arm) completed the baseline visit at 6 hospitals in Nigeria between August 2022 and September 2023 with follow-up through May 2024.
在对照组中,这是根据当前的护理标准,在超声心动图上对LVSD进行临床识别和记录的参与者人数。干预组的参与者在基线时进行了确认性超声心动图检查,以进行AI模型验证。2022年8月至2023年9月,共有1232名(每组616名)参与者被随机分配,1195名参与者(587名干预组和608名对照组)在尼日利亚的6家医院完成了基线访问,随访至2024年5月。
Using the AI-enabled digital stethoscope, the primary study end point was met with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05–4.27; P = 0.032). With the 12-lead AI-electrocardiogram model, the primary end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) patients (odds ratio 1.75, 95% CI 0.85–3.62; P = 0.125).
。使用12导联AI心电图模型,587例患者中有20例(3.4%)检测到主要终点,608例患者中有12例(2.0%)检测到主要终点(优势比1.75,95%CI 0.85-3.62;P=0.125)。
A similar direction of effect was observed in prespecified subgro.
在预先指定的subgro中观察到类似的作用方向。
MainIn the United States, cardiomyopathy is a leading cause of maternal mortality and the number one cause of death in the postpartum period. Its incidence is estimated to be 1 in 2,000 (refs. 1,2) and as high as 1 in ~700 among African American women with milder forms likely going undetected in the absence of screening2.
Main在美国,心肌病是孕产妇死亡的主要原因,也是产后死亡的头号原因。据估计,其发病率为2000年的1/1(参考文献1,2),在没有筛查的情况下可能未被发现的较轻形式的非裔美国女性中,其发病率高达700/1。
In Nigeria, the incidence is reported to be 1 in 96 deliveries3,4, the highest reported worldwide5. Cardiomyopathy occurring during pregnancy and postpartum is challenging to diagnose due to similarities between heart failure symptoms and those related to physiologic changes of pregnancy6,7. This leads to a delay in diagnosis and consequently, adverse maternal outcomes6.
在尼日利亚,据报道发病率为96次分娩中的1次[3,4],这是全球报道的最高水平[5]。由于心力衰竭症状与妊娠生理变化相关的症状相似,妊娠期和产后发生的心肌病难以诊断[6,7]。这导致诊断延迟,从而导致不良的孕产妇结局6。
While cardiomyopathy can occur de novo during pregnancy, hemodynamic changes of pregnancy can also unmask previously undiagnosed or asymptomatic LVSD8.AI-enabled electrocardiograms (ECGs) have shown effectiveness in identifying multiple cardiovascular pathologies9,10,11,12, including detection of low left ventricular ejection fraction (LVEF)13,14.
虽然心肌病可能在怀孕期间从头发生,但妊娠的血流动力学变化也可以掩盖以前未诊断或无症状的LVSD8.AI启用的心电图(ECG)已显示出识别多种心血管疾病的有效性9,10,11,12,包括检测左心室射血分数低(LVEF)13,14。
A retrospective study (area under the curve (AUC) = 0.89)15 and a pilot prospective study among pregnant and postpartum women in the United States showed AI-based screening to be effective (AUC = 1.00 using a 12-lead ECG and 0.98 using a digital stethoscope)16 in identifying pregnancy-related LVSD with LVEF < 45%.
一项回顾性研究(曲线下面积(AUC)=0.89)15和一项针对美国孕妇和产后妇女的前瞻性试验研究显示,基于AI的筛查是有效的(使用12导联心电图的AUC=1.00,使用数字听诊器的AUC=0.98)16在识别LVEF<45%的妊娠相关LVSD方面。
Other retrospective studies in the United States and the Republic of Korea have also shown good performance of separate AI-ECG models for detecting perinatal LVSD17,18. Based on these previous studies, we surmised that this new technology has the potential to enhance screening and identification of LVSD in the peripartum period; however, it remains unknown whether AI-guided screening improves cardiomyopathy detection in obstetric pa.
美国和大韩民国的其他回顾性研究也显示,单独的AI-ECG模型在检测围产期LVSD17,18方面表现良好。基于这些先前的研究,我们推测这项新技术有可能在围产期加强LVSD的筛查和鉴定;然而,AI指导的筛查是否能改善产科pa的心肌病检测尚不清楚。
US FDA-cleared AI-ECG algorithm
美国FDA批准的AI-ECG算法
At study entry, 18 cases (3.1%) of LVSD (LVEF < 50%) were identified in the intervention arm (positive 12-lead ECG AI prediction for LVSD, confirmed with echocardiography) compared to 11 (1.8%) in the control arm; odds ratio 1.72, 95% CI 0.80–3.67; P = 0.158. At the study end, three additional LVSD cases were identified with two in the intervention arm and one in the control arm, resulting in a total of 20 cases (3.4%) of LVSD (LVEF < 50%) identified in the intervention arm compared to 12 (2.0%) in the control arm; odds ratio 1.75, 95% CI 0.85–3.62; P = 0.125 (Table 2).
在研究开始时,干预组发现18例(3.1%)LVSD(LVEF<50%)(LVSD 12导联心电图AI预测阳性,超声心动图证实),而对照组为11例(1.8%);优势比1.72,95%可信区间0.80-3.67;P=0.158。在研究结束时,另外3例LVSD病例被确定为干预组2例,对照组1例,干预组共有20例(3.4%)LVSD(LVEF<50%),而对照组为12例(2.0%);优势比1.75,95%可信区间0.85-3.62;P=0.125(表2)。
Although a numerically higher number of LVSD cases were identified with the 12-lead AI-ECG screening, this did not reach statistical significance..
尽管通过12导联AI-ECG筛查发现了数量较多的LVSD病例,但这并没有达到统计学意义。。
Original Mayo Clinic AI-ECG algorithm
原始梅奥诊所AI-ECG算法
At study entry, 14 cases (2.4%) of LVSD (LVEF < 50%) were identified in the intervention arm (positive 12-lead AI-ECG prediction for LVSD, confirmed with echocardiography) compared to 11 (1.8%) in the control arm; odds ratio 1.33, 95% CI 0.60–2.94; P = 0.487. At the study end, five additional LVSD cases were identified with four in the intervention arm and one in the control arm resulting in a total of 18 cases (3.1%) of LVSD (LVEF < 50%) identified in the intervention arm compared to 12 (2.0%) in the control arm; odds ratio 1.57, 95% CI 0.75–3.29; P = 0.227 (Table 2).
在研究开始时,干预组发现14例(2.4%)LVSD(LVEF<50%)(LVSD阳性12导联AI-ECG预测,超声心动图证实),而对照组为11例(1.8%);优势比1.33,95%可信区间0.60-2.94;P=0.487。在研究结束时,又发现了5例LVSD病例,其中干预组4例,对照组1例,干预组共发现18例(3.1%)LVSD(LVEF<50%),而对照组为12例(2.0%);优势比1.57,95%可信区间0.75-3.29;P=0.227(表2)。
Similar to the US FDA-cleared model, a numerically higher number of LVSD cases were identified with this AI model but this did not reach statistical significance..
与美国FDA批准的模型类似,该AI模型在数字上识别出更多的LVSD病例,但这没有达到统计学意义。。
Secondary outcomesDigital stethoscope performance by subgroupsEvaluation of the primary outcome within prespecified subgroups were consistent with a tendency toward improved detection of LVSD in the intervention arm compared to the control arm across all prespecified subgroups (age group, ethnicity, region, presence of hypertensive disorders and pregnancy/postpartum status).
次要结果数字听诊器在预先设定的亚组中的主要结果的亚组评估表现与干预组与所有预先设定的亚组(年龄组,种族,地区,高血压疾病的存在和妊娠/产后状态)的对照组相比改善LVSD检测的趋势一致。
A summary figure is provided in Fig. 3a.Fig. 3: Forest plots showing primary outcome stratified by subgroups.a, Performance of the digital stethoscope. b, Performance of the US FDA-cleared 12-lead AI-ECG algorithm. c, Performance of the original Mayo Clinic 12-lead AI-ECG algorithm in detecting the primary outcome within each prespecified subgroup.
。图3:森林图显示了按亚组分层的主要结果。a,数字听诊器的性能。b、 美国FDA批准的12导联AI-ECG算法的性能。c、 原始梅奥诊所12导联AI-ECG算法在检测每个预先指定的亚组内的主要结果方面的表现。
Data in the columns are presented as frequencies and percentages with 95% exact CI in parenthesis. The column with error bars represents odds ratio estimates depicted as a black dot and the error bar represents the large sample 95% CI around the odds ratio estimate. The odds ratios and 95% large sample CI were estimated using logistic regression.
列中的数据以频率和百分比表示,括号中有95%的准确CI。带有误差线的列表示以黑点表示的优势比估计值,误差线表示优势比估计值周围的大样本95%CI。使用逻辑回归估计优势比和95%的大样本CI。
HDP, hypertensive disorder of pregnancy (includes chronic hypertension, gestational hypertension, pre-eclampsia and eclampsia).Full size image12-Lead ECG performance by subgroupsSubgroup analysis using the US FDA-cleared 12-lead AI-ECG algorithm also showed consistent results across the prespecified subgroups except for age group, where the odds ratio for identifying LVSD among those younger than 30 years was 0.9 (95% CI 0.4–2.5) and 4.2 (95% CI 1.2–15.0) for those aged 30 years and older (Fig.
HDP,妊娠高血压疾病(包括慢性高血压,妊娠高血压,先兆子痫和子痫)。使用美国FDA批准的12导联AI-ECG算法通过亚组分析的全尺寸图像12导联心电图表现也显示了预先指定的亚组的一致结果,但年龄组除外,其中30岁以下人群识别LVSD的优势比为0.9(95%CI 0.4-2.5)和4.2(95%CI 1.2-15.0)。
3b). This may suggest improved performance of the model in older compared to younger patients. We also provide a summary figure for the subgroup analysis using the original Mayo Clinic 12-lead AI-ECG algorithm (Fig. 3c) an.
3b)。这可能表明与年轻患者相比,老年患者的模型表现有所改善。我们还提供了使用原始Mayo Clinic 12导联AI-ECG算法(图3c)进行亚组分析的汇总图。
Data availability
数据可用性
The underlying data supporting the findings of this study can be made available to clinical investigators and researchers upon request. Written requests for data sharing including an analysis plan will be required before approval. These requests will be individually assessed in consultation with the study team leads and co-investigators as appropriate.
支持这项研究结果的基础数据可以根据要求提供给临床研究人员和研究人员。在批准之前,需要书面的数据共享请求,包括分析计划。这些请求将酌情与研究团队领导和联合调查人员协商进行单独评估。
If other investigators are interested in performing additional analyses, these requests can be made to the corresponding author (D.A.A.) and analyses will be performed in collaboration with the Mayo Clinic. In all cases, any data and materials to be shared will be released via a Material Transfer Agreement.
如果其他研究人员有兴趣进行其他分析,可以向通讯作者(D.A.A.)提出这些要求,并将与梅奥诊所合作进行分析。在任何情况下,共享的任何数据和材料都将通过材料转让协议发布。
Individual-level data will be available and data sharing will ensure that the rights and privacy of individuals participating in the research always remains protected. The anticipated time frame to respond to initial data requests is 1 month..
将提供个人层面的数据,数据共享将确保参与研究的个人的权利和隐私始终受到保护。响应初始数据请求的预期时间范围为1个月。。
Code availability
代码可用性
The AI algorithms used in this paper have been previously published and have recently received US FDA clearance35,36. The code itself cannot be shared because it is proprietary intellectual property that has been licensed to Anumana and Eko Health. The US FDA-cleared 12-lead AI-ECG algorithm can be accessed from Anumana and the digital stethoscope AI algorithm through Eko Health..
本文中使用的AI算法先前已经发布,最近获得了美国FDA的许可35,36。代码本身不能共享,因为它是专有知识产权,已被授权给Anumana和Eko Health。。。
ReferencesGoli, R. et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 143, 1852–1862 (2021).Article
参考文献Goli,R。等人。围产期心肌病的遗传和表型景观。发行量1431852–1862(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gunderson, E. P. et al. Epidemiology of peripartum cardiomyopathy: incidence, predictors, and outcomes. Obstet. Gynecol. 118, 583–591 (2011).Article
Gunderson,E.P.等。围产期心肌病的流行病学:发病率,预测因素和结果。障碍。妇科。118583-591(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Karaye, K. M. et al. Clinical features and outcomes of peripartum cardiomyopathy in nigeria. J. Am. Coll. Cardiol. 76, 2352–2364 (2020).Article
Karaye,K.M.等人,《尼日利亚围产期心肌病的临床特征和预后》,J.Am.Coll。心脏病。762352-2364(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Karaye, K. M. et al. Incidence, clinical characteristics, and risk factors of peripartum cardiomyopathy in Nigeria: results from the PEACE Registry. ESC Heart Fail. 7, 235–243 (2020).CAS
Karaye,K.M.等人,《尼日利亚围产期心肌病的发病率、临床特征和危险因素:来自和平登记处的结果》。ESC心脏衰竭。7235-243(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Isogai, T. & Kamiya, C. A. Worldwide incidence of peripartum cardiomyopathy and overall maternal mortality. Int. Heart J. 60, 503–511 (2019).Article
Isogai,T。&Kamiya,C.A。全球围产期心肌病发病率和总体孕产妇死亡率。《国际心脏杂志》60503-511(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hameed, A. B. et al. Pregnancy-related cardiovascular deaths in California: beyond peripartum cardiomyopathy. Am. J. Obstet. Gynecol. 213, 379.e1–10 (2015).Article
Hameed,A.B.等人,《加利福尼亚州与妊娠有关的心血管死亡:超越围产期心肌病》。美国J.Obstet。妇科。213379。e1-10(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sliwa, K., Bauersachs, J., Arany, Z., Spracklen, T. F. & Hilfiker-Kleiner, D. Peripartum cardiomyopathy: from genetics to management. Eur. Heart J. 42, 3094–3102 (2021).Article
Sliwa,K.,Bauersachs,J.,Arany,Z.,Spracklen,T.F。&Hilfiker-Kleiner,D。围产期心肌病:从遗传学到管理。《欧洲心脏杂志》423094-3102(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, M. B. et al. Team-based care of women with cardiovascular disease from pre-conception through pregnancy and postpartum: JACC Focus Seminar 1/5. J. Am. Coll. Cardiol. 77, 1763–1777 (2021).Article
Davis,M.B.等人,《从受孕前到怀孕和产后对心血管疾病女性的团队护理:JACC焦点研讨会1/5》。J、 美国科罗拉多州。心脏病。771763-1777(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Attia, Z. I. et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394, 861–867 (2019).Article
Attia,Z.I.等人。一种人工智能心电图算法,用于识别窦性心律期间的心房颤动患者:结果预测的回顾性分析。柳叶刀394861-867(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ko, W. Y. et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J. Am. Coll. Cardiol. 75, 722–733 (2020).Article
。J、 美国科罗拉多州。心脏病。75722-733(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cohen-Shelly, M. et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur. Heart J. 42, 2885–2896 (2021).Article
Cohen Shelly,M.等人。使用人工智能对主动脉瓣狭窄进行心电图筛查。《欧洲心脏杂志》422885-2896(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Elias, P. et al. Deep learning electrocardiographic analysis for detection of left-sided valvular heart disease. J. Am. Coll. Cardiol. 80, 613–626 (2022).Article
Elias,P。等人。用于检测左侧瓣膜性心脏病的深度学习心电图分析。J、 美国科罗拉多州。心脏病。80613-626(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).Article
Attia,Z.I.等人。使用人工智能心电图筛查心脏收缩功能障碍。《自然医学》25,70-74(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yao, X. et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat. Med. 27, 815–819 (2021).Article
Yao,X。等人。人工智能心电图用于识别射血分数低的患者:一项实用的随机临床试验。《自然医学》27815-819(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Adedinsewo, D. A. et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. Eur. Heart J. Digit. Health 2, 586–596 (2021).Article
Adedinsewo,D.A.等人用基于心电图的深度学习模型检测妊娠期和产后的心肌病。欧洲心脏病J.数字。健康2586-596(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adedinsewo, D. et al. Artificial intelligence based screening for cardiomyopathy in an obstetric population: a pilot study. Cardiovasc. Digit. Health J. 5, 132–140 (2024).Article
Adedinsewo,D.等人。基于人工智能的产科人群心肌病筛查:一项初步研究。心血管。数字。《健康杂志》5132-140(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karabayir, I. et al. Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy. Am. J. Obstet. Gynecol. MFM 6, 101337 (2024).Article
Karabayir,I。等人。用于检测围产期心肌病的心电图人工智能模型的开发和验证。美国J.Obstet。妇科。MFM 6101337(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, Y. et al. An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. Int. J. Cardiol. 352, 72–77 (2022).Article
Lee,Y.等人。用于检测围产期心肌病的人工智能心电图分析。国际心脏病杂志。352,72-77(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bachtiger, P. et al. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study. Lancet Digit. Health 4, e117–e125 (2022).Article
Bachtiger,P.等人。在英国伦敦的ECG听诊器检查期间,使用人工智能对射血分数降低的心力衰竭进行即时筛查:一项前瞻性,观察性,多中心研究。柳叶刀数字。健康4,e117–e125(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Attia, Z. I. et al. Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled digital stethoscope. Eur. Heart J. Digit. Health 3, 373–379 (2022).Article
Attia,Z.I.等人,《从单导联心电图自动检测低射血分数:AI算法在启用心电图的数字听诊器中的应用》。欧洲心脏病J.数字。健康3373-379(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ogah, O. S., Orimolade, O. A. & Jinadu, T. O. Cardiovascular diseases in nigeria: current status, threats, and opportunities. Circulation 148, 1441–1444 (2023).Article
Ogah,O.S.,Orimolade,O.A。和Jinadu,T.O。尼日利亚的心血管疾病:现状,威胁和机遇。发行量1481441–1444(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chaemsaithong, P., Sahota, D. S. & Poon, L. C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 226, S1071–S1097.e2 (2022).Article
Chaemsaithong,P.,Sahota,D.S。和Poon,L.C。妊娠早期先兆子痫筛查和预测。美国J.Obstet。妇科。226,S1071–S1097.e2(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beck, A. et al. Screening for depression among the general adult population and in women during pregnancy or the first-year postpartum: two systematic reviews to inform a guideline of the canadian task force on preventive health care. Syst. Rev. 11, 176 (2022).Article
。系统。第11176版(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bellavance, S., Cardinal, M.-P., Gobeil, L., Roy-Lacroix, M.-E. & Dallaire, F. The mathematical limitations of fetal echocardiography as a screening tool in the setting of a normal second-trimester ultrasound. CJC Open. 3, 987–993 (2021).Article
Bellavance,S.,Cardinal,M.-P.,Gobeil,L.,Roy Lacroix,M.-E.&Dallaire,F。胎儿超声心动图作为正常妊娠中期超声筛查工具的数学局限性。CJC打开。3987-993(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wikström, T. et al. Effect of second-trimester sonographic cervical length on the risk of spontaneous preterm delivery in different risk groups: a prospective observational multicenter study. Acta Obstet. Gynecol. Scand. 100, 1644–1655 (2021).Article
Wikström,T.等人。妊娠中期超声宫颈长度对不同风险组自发性早产风险的影响:一项前瞻性观察性多中心研究。禁止法案。妇科。斯堪的纳维亚。1001644-1655(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Trends in maternal mortality 2000 to 2020: estimates by WHO, UNICEF, UNFPA, World Bank Group and UNDESA/Population Division. 2023. https://www.who.int/publications/i/item/9789240068759 (WHO, 2023).The Mobile Economy: Sub Saharan Africa 2022. https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/10/The-Mobile-Economy-Sub-Saharan-Africa-2022.pdf (GMSA, 2022).Davis, M.
2000年至2020年孕产妇死亡率趋势:世卫组织、儿童基金会、人口基金、世界银行集团和联合国经社部/人口司的估计数。2023https://www.who.int/publications/i/item/9789240068759(世卫组织,2023年)。。https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/10/The-Mobile-Economy-Sub-Saharan-Africa-2022.pdf(GMSA,2022年)。戴维斯,M。
B., Arany, Z., McNamara, D. M., Goland, S. & Elkayam, U. Peripartum cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 207–221 (2020).Article .
B、 ,Arany,Z.,McNamara,D.M.,Goland,S。&Elkayam,U。围产期心肌病:JACC最新评论。J、 美国科罗拉多州。心脏病。。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Petersen, E. E. et al. Vital signs: pregnancy-related deaths, United States, 2011–2015, and strategies for prevention, 13 states, 2013–2017. MMWR Morb. Mortal. Wkly Rep. 68, 423–429 (2019).Article
Petersen,E.E.等人,《生命体征:妊娠相关死亡,美国,2011-2015年》和《预防策略》,13个州,2013-2017年。MMWR Morb。凡人。Wkly Rep.68423–429(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
MacDorman, M. F., Thoma, M., Declcerq, E. & Howell, E. A. Racial and ethnic disparities in maternal mortality in the united states using enhanced vital records, 2016‒2017. Am. J. Public Health 111, 1673–1681 (2021).Article
。《美国公共卫生杂志》1111673-1681(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pachariyanon, P., Bogabathina, H., Jaisingh, K., Modi, M. & Modi, K. Long-term outcomes of women with peripartum cardiomyopathy having subsequent pregnancies. J. Am. Coll. Cardiol. 82, 16–26 (2023).Article
Pachariyanon,P.,Bogabathina,H.,Jaisingh,K.,Modi,M。&Modi,K。围产期心肌病患者随后怀孕的长期结局。J、 美国科罗拉多州。心脏病。82,16-26(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Maternal Mortality. https://www.who.int/news-room/fact-sheets/detail/maternal-mortality (WHO, 2024).Moucheraud, C. et al. Consequences of maternal mortality on infant and child survival: a 25-year longitudinal analysis in Butajira Ethiopia (1987–2011). Reprod. Health 12, S4 (2015).Article .
孕产妇死亡率。https://www.who.int/news-room/fact-sheets/detail/maternal-mortality(世卫组织,2024年)。Moucheraud,C.等人,《孕产妇死亡率对婴儿和儿童生存的影响:布塔吉拉埃塞俄比亚25年纵向分析》(1987-2011)。重新编程。健康12,S4(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Le-Rademacher, J., Gunn, H., Yao, X. & Schaid, D. J. Clinical trials overview: from explanatory to pragmatic clinical trials. Mayo Clin. Proc. 98, 1241–1253 (2023).Article
Le Rademacher,J.,Gunn,H.,Yao,X。&Schaid,D.J。临床试验概述:从解释性到实用性临床试验。梅奥临床。程序。981241-1253(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Low Ejection Fraction AI-ECG Algorithm: Reduced Ejection Fraction Machine Learning-based Notification Software. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K232699 (US FDA, 2024).Eko Low Ejection Fraction Tool (ELEFT): Reduced Ejection Fraction Machine Learning-based Notification Software.
低射血分数AI-ECG算法:基于减少射血分数机器学习的通知软件。https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K232699(美国食品和药物管理局,2024年)。Eko低射血分数工具(ELEFT):基于减少射血分数机器学习的通知软件。
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K233409 (US FDA, 2024).Adedinsewo, D. A. et al. Screening for peripartum cardiomyopathies using artificial intelligence in Nigeria (SPEC-AI Nigeria): clinical trial rationale and design. Am. Heart J. 261, 64–74 (2023).Article .
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K233409(美国食品和药物管理局,2024年)。Adedinsewo,D.A.等人,《尼日利亚使用人工智能筛查围产期心肌病(SPEC-AI尼日利亚):临床试验原理和设计》。《美国心脏杂志》261,64-74(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Liu, X. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).Article
。《自然医学》261364-1374(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Attia, Z. I. et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ. Arrhythm. Electrophysiol. 12, e007284 (2019).Article
Attia,Z.I.等人。使用标准12导联心电图的人工智能进行年龄和性别估计。保监会。心律失常。电生理学。12,e007284(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe express our sincere thanks to all the clinical staff and patients of the obstetric and cardiology departments at all participating sites in Nigeria, without whom this study would not be possible. We especially appreciate all research study staff who contributed to participant recruitment, data collection and study coordination efforts: D.
下载参考文献致谢我们衷心感谢尼日利亚所有参与站点的产科和心脏病学部门的所有临床工作人员和患者,没有他们,本研究将不可能进行。我们特别感谢所有为参与者招募,数据收集和研究协调工作做出贡献的研究人员:D。
Onietan (lead study coordinator, Lagos University Teaching Hospital), R. Quao (Lagos University Teaching Hospital), S. Aborisade (University College Ibadan (UCH)), O. Makinde (UCH), V. Ojo (UCH), K. Adenike Olatunde (UCH), O. Allison Orimolade (UCH), S. Taofeek Oladotun (UCH), O. Alabi (UCH), A. Teslim Sanusi (UCH), T.
Onietan(拉各斯大学教学医院首席研究协调员),R.Quao(拉各斯大学教学医院),S.Aborisade(伊巴丹大学学院(UCH)),O.Makinde(UCH),V.Ojo(UCH),K.Adenike Olatunde(UCH),O.Allison Orimolade(UCH),S.Taofeek Oladotun(UCH),O.Alabi(UCH),A.Teslim Sanusi(UCH),T。
Azeez Olukunle (UCH), I. Alabede (UCH), M.A. Ijaiya (University of Illorin Teaching Hospital (UITH)), A. Adeniran (UITH), A. Temilola (Olabisi Onabanjo University Teaching Hospital (OOUTH)), A. Adekolade (OOUTH), A. Akiseku (OOUTH), K. Hidaya (OOUTH), A. Adedokun (UITH), O. Ishola (UITH), N.A. Ishaq (Aminu Kano Teaching Hospital), Y.
Azeez-Olukunle(UCH),I.Alabede(UCH),M.A.Ijaiya(伊洛林大学教学医院(UITH)),A.Adeniran(UITH),A.Temilola(Olabisi-Onabanjo大学教学医院(OOTH)),A.Adekolade(OOTH),A.Akiseku(OOTH),K.Hidaya(OOTH),A.Adedokun(UITH),O.Ishola(UITH),N.A.Ishaq(阿米努卡诺教学医院),Y。
Sa’ad (Aminu Kano Teaching Hospital), A. Abdullahi (Rasheed Shekoni Specialist Hospital, (RSSH)), R. Musa (RSSH) and A. Ibrahim Aliyu (RSSH). This trial was funded by the Mayo Clinic (Centers for Digital Health and Community Health and Engagement Research, D.A.A.) and, in part, by the Mayo Clinic BIRCWH program funded by the NIH (grant no.
Sa'ad(阿米努卡诺教学医院),A.Abdullahi(拉希德谢科尼专科医院(RSSH)),R.Musa(RSSH)和A.Ibrahim Aliyu(RSSH)。这项试验由梅奥诊所(数字健康和社区健康与参与研究中心,D.A.A.)资助,部分由美国国立卫生研究院资助的梅奥诊所BIRCWH计划资助(批准号:。
K12 AR084222, D.A.A.) and Mayo Clinic’s Center for Clinical and Translational Sciences (grant no. UL1 TR002377, R.E.C.). Multiple co-authors are Mayo Clinic employees, otherwise funders were not directly involved in designing the trial, data collection, analysis, interpretation or manuscript writing.
K12 AR084222,D.A.A.)和梅奥诊所临床和转化科学中心(批准号UL1 TR002377,R.E.C.)。多名合著者是梅奥诊所的员工,否则资助者不会直接参与试验设计,数据收集,分析,解释或手稿撰写。
Portable ECG, phonocardiogram recordings and AI predictions using the digital stethoscope were extracted.
提取了使用数字听诊器的便携式心电图,心音图记录和AI预测。
PubMed Google ScholarAndrea Carolina Morales-LaraView author publicationsYou can also search for this author in
PubMed Google ScholarAndrea Carolina Morales LaraView作者出版物您也可以在
PubMed Google ScholarBosede B. AfolabiView author publicationsYou can also search for this author in
PubMed Google ScholarBosede B.AfolabiView作者出版物您也可以在
PubMed Google ScholarOyewole A. KushimoView author publicationsYou can also search for this author in
PubMed Google ScholarOyewole A.KushimoView作者出版物您也可以在
PubMed Google ScholarAmam C. MbakwemView author publicationsYou can also search for this author in
PubMed Google ScholarAmam C.MbakwemView作者出版物您也可以在
PubMed Google ScholarKehinde F. IbiyemiView author publicationsYou can also search for this author in
PubMed Google ScholarKehinde F.IbiyemiView作者出版物您也可以在
PubMed Google ScholarJames Ayodele OgunmodedeView author publicationsYou can also search for this author in
PubMed谷歌学者James Ayodele Ogummodeeview作者出版物您也可以在
PubMed Google ScholarHadijat Olaide RajiView author publicationsYou can also search for this author in
PubMed Google ScholarHadijat Olaide RajiView作者出版物您也可以在
PubMed Google ScholarSadiq H. RingimView author publicationsYou can also search for this author in
PubMed Google ScholarSadiq H.RingimView作者出版物您也可以在
PubMed Google ScholarAbdullahi A. HabibView author publicationsYou can also search for this author in
PubMed Google ScholarAbdullahi A.HabibView作者出版物您也可以在
PubMed Google ScholarSabiu M. HamzaView author publicationsYou can also search for this author in
PubMed Google ScholarSabiu M.HamzaView作者出版物您也可以在
PubMed Google ScholarOkechukwu S. OgahView author publicationsYou can also search for this author in
PubMed Google ScholarOkechukwu S.OgahView作者出版物您也可以在
PubMed Google ScholarGbolahan ObajimiView author publicationsYou can also search for this author in
PubMed Google ScholarGbolahan ObajimiView作者出版物您也可以在
PubMed Google ScholarOlugbenga Oluseun SaanuView author publicationsYou can also search for this author in
PubMed Google ScholarOlugbenga Oluseun SaanuView作者出版物您也可以在
PubMed Google ScholarOlusoji E. JagunView author publicationsYou can also search for this author in
PubMed Google ScholarOlusoji E.JagunView作者出版物您也可以在
PubMed Google ScholarFrancisca O. InofomohView author publicationsYou can also search for this author in
PubMed Google ScholarFrancisca O.InofomohView作者出版物您也可以在
PubMed Google ScholarTemitope AdeoluView author publicationsYou can also search for this author in
PubMed Google ScholarTemitope AdeoluView作者出版物您也可以在
PubMed Google ScholarKamilu M. KarayeView author publicationsYou can also search for this author in
PubMed Google ScholarKamilu M.KarayeView作者出版物您也可以在
PubMed Google ScholarSule A. GayaView author publicationsYou can also search for this author in
PubMed Google ScholarSule A.GayaView作者出版物您也可以在
PubMed Google ScholarIsiaka AlfaView author publicationsYou can also search for this author in
PubMed Google ScholarIsiaka AlfaView作者出版物您也可以在
PubMed Google ScholarCynthia YohannaView author publicationsYou can also search for this author in
PubMed Google ScholarSynthia YohannaView作者出版物您也可以在
PubMed Google ScholarK. L. VenkatachalamView author publicationsYou can also search for this author in
PubMed Google ScholarK.L.VenkatachalamView作者出版物您也可以在
PubMed Google ScholarJennifer DuganView author publicationsYou can also search for this author in
PubMed谷歌学者Jennifer DuganView作者出版物您也可以在
PubMed Google ScholarXiaoxi YaoView author publicationsYou can also search for this author in
PubMed Google ScholarXiaoxi YaoView作者出版物您也可以在
PubMed Google ScholarHanna J. SledgeView author publicationsYou can also search for this author in
PubMed Google ScholarHanna J.SledgeView作者出版物您也可以在
PubMed Google ScholarPatrick W. JohnsonView author publicationsYou can also search for this author in
PubMed Google ScholarPatrick W.JohnsonView作者出版物您也可以在
PubMed Google ScholarMikolaj A. WieczorekView author publicationsYou can also search for this author in
PubMed Google Scholarmarikolaj A.WieczorekView作者出版物您也可以在
PubMed Google ScholarZachi I. AttiaView author publicationsYou can also search for this author in
PubMed Google ScholarZachi I.AttiaView作者出版物您也可以在
PubMed Google ScholarSabrina D. PhillipsView author publicationsYou can also search for this author in
PubMed Google ScholarSabrina D.PhillipsView作者出版物您也可以在
PubMed Google ScholarMohamad H. YamaniView author publicationsYou can also search for this author in
PubMed Google ScholarYvonne Butler TobahView author publicationsYou can also search for this author in
PubMed Google ScholarYvonne Butler TobahView作者出版物您也可以在
PubMed Google ScholarCarl H. RoseView author publicationsYou can also search for this author in
PubMed Google ScholarCarl H.RoseView作者出版物您也可以在
PubMed Google ScholarEmily E. SharpeView author publicationsYou can also search for this author in
PubMed Google ScholarEmily E.SharpeView作者出版物您也可以在
PubMed Google ScholarFrancisco Lopez-JimenezView author publicationsYou can also search for this author in
PubMed谷歌学者Francisco Lopez JimenezView作者出版物您也可以在
PubMed Google ScholarPaul A. FriedmanView author publicationsYou can also search for this author in
PubMed Google ScholarPaul A.FriedmanView作者出版物您也可以在
PubMed Google ScholarPeter A. NoseworthyView author publicationsYou can also search for this author in
PubMed Google ScholarPeter A.NoseworthyView作者出版物您也可以在
PubMed Google ScholarRickey E. CarterView author publicationsYou can also search for this author in
PubMed Google ScholarRickey E.CarterView作者出版物您也可以在
PubMed Google ScholarConsortiaon behalf of the SPEC-AI Nigeria InvestigatorsDemilade A. Adedinsewo, Andrea Carolina Morales-Lara, Bosede B. Afolabi, Oyewole A. Kushimo, Amam C. Mbakwem, Kehinde F. Ibiyemi, James Ayodele Ogunmodede, Hadijat Olaide Raji, Sadiq H. Ringim, Abdullahi A.
PubMed Google ScholarConsortiaon代表SPEC-AI尼日利亚调查员Milade A.Adedinsewo,Andrea Carolina Morales Lara,Bosede B.Afolabi,Oyewole A.Kushimo,Amam C.Mbakwem,Kehinde F.Ibiyemi,James Ayodele Ogummede,Hadijat Olaide Raji,Sadiq H.Ringim,Abdullahi A。
Habib, Sabiu M. Hamza, Okechukwu S. Ogah, Gbolahan Obajimi, Olugbenga Oluseun Saanu, Olusoji E. Jagun, Francisca O. Inofomoh, Temitope Adeolu, Kamilu M. Karaye, Sule A. Gaya, Isiaka Alfa, Cynthia Yohanna, K. L. Venkatachalam, Jennifer Dugan, Xiaoxi Yao, Hanna J. Sledge, Patrick W. Johnson, Mikolaj A.
哈比卜(Habib)、萨比乌(Sabiu M.Hamza)、奥克丘库(Okechukwu S.Ogah)、格博拉汉(Gbolahan Obajimi)、奥卢格班加(Olugbenga Oluseun Saanu)、奥卢索吉(Olusoji E.Jagun)、方济各(Francisca O.Inofomoh)、特米托佩(Temitope Adeolu)、卡米卢(Kamilu M.Karaye)、苏勒(Sule A.Gaya)、伊萨卡(Is。五十、 文卡塔查兰(Venkatachalam),詹妮弗·杜根(JenniferDugan),姚晓曦(XiaoxiYao),汉娜·J·斯莱奇(HannaJ.Sledge),帕特里克·W·约翰逊(PatrickW.Johnson),米科拉杰(Mikolaj A。
Wieczorek, Zachi I. Attia, Sabrina D. Phillips, Mohamad H. Yamani, Yvonne Butler Tobah, Carl H. Rose, Emily E. Sharpe, Francisco Lopez-Jimenez, Paul A. Friedman, Peter A. Noseworthy & Rickey E. CarterContributionsD.A.A., R.E.C. and P.A.N. initially designed the trial and provided study oversight. D.A.A.
Wieczorek、Zachi I.Attia、Sabrina D.Phillips、Mohamad H.Yamani、Yvonne Butler Tobah、Carl H.Rose、Emily E.Sharpe、Francisco Lopez Jimenez、Paul A.Friedman、Peter A.Noseworthy和Rickey E.CarterContributionsD。A、 A.,R.E.C.和P.A.N.最初设计了试验并提供了研究监督。D、 A.A。
and A.C.M.L. performed site monitoring, all co-authors at participating institutions performed data acquisition, interpretation and entry. R.E.C., P.W.J., M.A.W. and H.J.S. performed data analysis. All authors contributed to study conceptualization, design and execution. D.A.A. wrote the initial paper draft and all co-authors contributed substantially to the writing and revising of the paper for key intellectual content and approved the final version for publication.Corresponding authorCorrespondence to.
A.C.M.L.进行了现场监测,参与机构的所有合著者都进行了数据采集,解释和输入。R、 E.C.,P.W.J.,M.A.W.和H.J.S.进行了数据分析。所有作者都为研究概念化,设计和执行做出了贡献。D、 。对应作者对应。
Demilade A. Adedinsewo.Ethics declarations
Demilade A.Adedinsewo。
Competing interests
相互竞争的利益
D.A.A. is supported by the Mayo Clinic BIRCWH program funded by the NIH (grant no. K12 AR084222). The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Z.I.A. is a co-inventor of several AI algorithms (including screening for low LVEF, QT tool, aortic stenosis and atrial fibrillation detection during normal sinus rhythm).
D、 A.A.得到了美国国立卫生研究院资助的梅奥诊所BIRCWH计划的支持(批准号K12 AR084222)。。Z、 I.A.是几种AI算法的共同发明者(包括筛查低LVEF,QT工具,主动脉瓣狭窄和正常窦性心律期间的心房颤动检测)。
These have been licensed to Anumana, AliveCor and Eko. The Mayo Clinic and Z.I.A. may benefit from their commercialization. Z.I.A. is a member of the scientific advisory board for Anumana, an AI company, receives stock options for being an inventor of the ejection fraction algorithm and is a consultant for Anumana, AliveCor and XAI.health.
这些已被许可给Anumana,AliveCor和Eko。梅奥诊所和Z.I.A.可能会从其商业化中受益。Z、 I.A.是人工智能公司Anumana科学顾问委员会的成员,因其是射出分率算法的发明者而获得股票期权,并且是Anumana,AliveCor和XAI.health的顾问。
P.A.F. is a co-inventor of several AI algorithms (including screening for low LVEF, QT tool, aortic stenosis and atrial fibrillation detection during normal sinus rhythm). These have been licensed to Anumana, AliveCor and Eko. The Mayo Clinic and P.A.F. may benefit from their commercialization. P.A.F.
P、 A.F.是几种AI算法的共同发明者(包括筛查低LVEF,QT工具,主动脉瓣狭窄和正常窦性心律期间的心房颤动检测)。这些已被许可给Anumana,AliveCor和Eko。梅奥诊所和P.A.F.可能会从其商业化中受益。P、 A.F。
is a member of the scientific advisory board for Anumana, an AI company. F.L.J. in conjunction with the Mayo Clinic has filed patents related to the application of AI to ECG for diagnosis and risk stratification. F.L.J. is a member of the scientific advisory board for Anumana, an AI company. P.A.N. and the Mayo Clinic have filed patents related to the application of AI to ECG for diagnosis and risk stratification and have licensed several AI-ECG algorithms to Anumana.
是人工智能公司Anumana科学顾问委员会的成员。F、 L.J.与梅奥诊所(Mayo Clinic)共同申请了与AI在心电图诊断和风险分层中的应用相关的专利。F、 L.J.是人工智能公司Anumana科学顾问委员会的成员。P、 A.N.和梅奥诊所(Mayo Clinic)已经申请了与AI应用于心电图诊断和风险分层相关的专利,并向Anumana许可了几种AI-ECG算法。
P.A.N. and the Mayo Clinic are involved in potential equity/royalty relationship with AliveCor. P.A.N. is a study investigator in an ablation trial sponsored by Medtronic. P.A.N. also has served on an expert advisory panel for OptumLabs. Y.B.T. has sponsored research grants .
P、 A.N.和梅奥诊所与AliveCor存在潜在的股权/版税关系。P、 A.N.是美敦力赞助的消融试验的研究人员。P、 A.N.还曾担任OptumLabs的专家咨询小组成员。Y、 。
Peer review
同行评审
Peer review information
同行评审信息
Nature Medicine thanks Michael Honigberg, Antonio Luiz Ribeiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Lorenzo Righetto, in collaboration with the Nature Medicine team.
《自然医学》感谢迈克尔·霍尼格伯格(MichaelHonigberg)、安东尼奥·路易斯·里贝罗(AntonioLuizRibeiro)和另一位匿名审稿人对这项工作的同行评审做出的贡献。主要处理编辑:洛伦佐·里格托(LorenzoRighetto)与《自然医学》团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationInvestigator list, Supplementary Figs. 1–6 and Supplementary Tables 1–3.Reporting SummaryRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleAdedinsewo, D.A., Morales-Lara, A.C., Afolabi, B.B. et al. Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial.
转载和许可本文引用本文Adedinsewo,D.A.,Morales Lara,A.C.,Afolabi,B.B。等人。人工智能指导的产科人群心肌病筛查:一项实用的随机临床试验。
Nat Med (2024). https://doi.org/10.1038/s41591-024-03243-9Download citationReceived: 25 June 2024Accepted: 09 August 2024Published: 02 September 2024DOI: https://doi.org/10.1038/s41591-024-03243-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Med(2024)。https://doi.org/10.1038/s41591-024-03243-9Download引文接收日期:2024年6月25日接受日期:2024年8月9日发布日期:2024年9月2日OI:https://doi.org/10.1038/s41591-024-03243-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供