EN
登录

放射组学列线图预测晚期癌症化疗免疫治疗效果

Radiomics nomogram for predicting chemo-immunotherapy efficiency in advanced non-small cell lung cancer

Nature 等信源发布 2024-09-06 17:42

可切换为仅中文


AbstractThis study aimed to explore potential radiomics biomarkers in predicting the efficiency of chemo-immunotherapy in patients with advanced non-small cell lung cancer (NSCLC). Eligible patients were prospectively assigned to receive chemo-immunotherapy, and were divided into a primary cohort (n = 138) and an internal validation cohort (n = 58).

摘要本研究旨在探索潜在的放射组学生物标志物,以预测晚期非小细胞肺癌(NSCLC)患者化疗免疫治疗的效率。符合条件的患者被前瞻性分配接受化学免疫治疗,并分为主要队列(n=138)和内部验证队列(n=58)。

Additionally, a separative dataset was used as an external validation cohort (n = 60). Radiomics signatures were extracted and selected from the primary tumor sites from chest CT images. A multivariate logistic regression analysis was conducted to identify the independent clinical predictors. Subsequently, a radiomics nomogram model for predicting the efficiency of chemo-immunotherapy was conducted by integrating the selected radiomics signatures and the independent clinical predictors.

此外,一个独立的数据集被用作外部验证队列(n=60)。从胸部CT图像的原发肿瘤部位提取并选择放射组学特征。进行多因素logistic回归分析以确定独立的临床预测因子。随后,通过整合所选的放射组学特征和独立的临床预测因子,进行了用于预测化学免疫疗法效率的放射组学列线图模型。

The receiver operating characteristic (ROC) curves demonstrated that the radiomics model, the clinical model, and the radiomics nomogram model achieved areas under the curve (AUCs) of 0.85 (95% confidence interval [CI] 0.78–0.92), 0.76 (95% CI 0.68–0.84), and 0.89 (95% CI 0.84–0.94), respectively, in the primary cohort.

受试者工作特征(ROC)曲线表明,在主要队列中,放射组学模型,临床模型和放射组学列线图模型的曲线下面积(AUC)分别为0.85(95%置信区间[CI]0.78-0.92),0.76(95%CI 0.68-0.84)和0.89(95%CI 0.84-0.94)。

In the internal validation cohort, the corresponding AUCs were 0.93 (95% CI 0.86–1.00), 0.79 (95% CI 0.68–0.91), and 0.96 (95% CI 0.90–1.00) respectively. Moreover, in the external validation cohort, the AUCs were 0.84 (95% CI 0.72–0.96), 0.75 (95% CI 0.62–0.87), and 0.86 (95% CI 0.75–0.96), respectively.

在内部验证队列中,相应的AUC分别为0.93(95%CI 0.86-1.00),0.79(95%CI 0.68-0.91)和0.96(95%CI 0.90-1.00)。此外,在外部验证队列中,AUC分别为0.84(95%CI 0.72-0.96),0.75(95%CI 0.62-0.87)和0.86(95%CI 0.75-0.96)。

In conclusion, the radiomics nomogram provides a convenient model for predicting the effect of chemo-immunotherapy in advanced NSCLC patients..

总之,放射组学列线图为预测晚期NSCLC患者化疗免疫治疗的效果提供了一个方便的模型。。

IntroductionNon-small cell lung cancer (NSCLC) accounts for approximately 80–85% of all lung cancers. The treatment of advanced NSCLC depends on tumor histology, pathological subtype, disease stage, and clinical characteristic of the patient1. Chemotherapy and immunotherapy play crucial roles in the treatment of advanced NSCLC2.

引言非小细胞肺癌(NSCLC)约占所有肺癌的80-85%。。化疗和免疫治疗在晚期NSCLC2的治疗中起着至关重要的作用。

However, the prognosis of advanced NSCLC remains poor, with a 5-year survival rate of less than 15%3.Currently, combining chemo-immunotherapy is purposed to improve the survival of advanced NSCLC patients. The mechanism of standard chemotherapy is to induce tumor cell lethality4. Combining standard chemotherapy and immune checkpoint inhibitors could strengthen the immune system against tumor cells5.

然而,晚期NSCLC的预后仍然很差,5年生存率低于15%3。目前,联合化疗免疫治疗旨在提高晚期NSCLC患者的生存率。标准化疗的机制是诱导肿瘤细胞致死4。结合标准化疗和免疫检查点抑制剂可以增强针对肿瘤细胞的免疫系统5。

Clinical trials have revealed that chemo-immunotherapy has the potential benefit in the treatment of advanced NSCLC patients6. However, chemo-immunotherapy may lead to enhanced treatment-related toxicities. Thus, selecting eligible candidates for chemo-immunotherapy should be done carefully. Identifying biomarkers to predict responders of chemo-immunotherapy is one of the major challenges7.Previous studies have demonstrated that image biomarkers of non-invasive CT scans could be used to predict the pathological subtypes of lung tumor8.

临床试验表明,化学免疫疗法在治疗晚期NSCLC患者方面具有潜在的益处6。然而,化学免疫疗法可能导致增强的治疗相关毒性。因此,应仔细选择符合条件的化学免疫治疗候选人。。

Medical imaging biomarkers have also been reported to be feasible for predicting responders to different therapies for advanced NSCLC9. Radiomics is a method used to extract quantitative medical image features, providing imaging biomarkers for diagnostic and prognostic purposes10. Additionally, radiomics features and clinical predictors can be combined to build a radiomics nomogram model, which is useful for individual management11.However, to our knowledge, no study has investigated potential radiomics biomarkers to p.

据报道,医学成像生物标志物可用于预测晚期非小细胞肺癌不同疗法的反应者9。放射组学是一种用于提取定量医学图像特征的方法,为诊断和预后目的提供成像生物标志物10。此外,可以将放射组学特征和临床预测因子结合起来,建立放射组学列线图模型,这对个体管理有用11。然而,据我们所知,没有研究调查p的潜在放射组学生物标志物。

Data availability

数据可用性

All data generated or analysed during this study are included in this published article.

本研究期间生成或分析的所有数据均包含在本文中。

ReferencesKryczka, J., Kryczka, J., Czarnecka-Chrebelska, K. H. & Brzeziańska-Lasota, E. Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. Int. J. Mol. Sci. 22, 8885 (2021).Article

参考文献Kryczka,J.,Kryczka,J.,Czarnecka-Chrebelska,K.H。&Brzeziańska-Lasota,E。顺铂在NSCLC癌症治疗中诱导化疗耐药的分子机制。Int.J.Mol.Sci。228885(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rocco, D., Della, G. L., Battiloro, C. & Gridelli, C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev. Anticancer Ther. 19, 561–568 (2019).Article

Rocco,D.,Della,G.L.,Battiloro,C。&Gridelli,C。联合化学免疫疗法在晚期非小细胞肺癌中的作用。抗癌治疗专家。19561-568(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).Article

Siegel,R.L.,Miller,K.D。和Jemal,A。癌症统计,2020年。CA Cancer J.Clin。70,7-30(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).Article

Galluzzi,L.,Humeau,J.,Buqué,A.,Zitvogel,L。&Kroemer,G。免疫检查点抑制剂时代化疗的免疫刺激。国家修订临床。Oncol公司。17725-741(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Larroquette, M. et al. Combining immune checkpoint inhibitors with chemotherapy in advanced solid tumours: A review. Eur. J. Cancer. 158, 47–62 (2021).Article

Larroquette,M.等人。将免疫检查点抑制剂与晚期实体瘤化疗相结合:综述。Eur.J.癌症。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Planchard, D. et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 863–870 (2019).Article

。安科。30863-870(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pender, A. et al. Genome and transcriptome biomarkers of response to immune checkpoint inhibitors in advanced solid tumors. Clin. Cancer Res. 27, 202–212 (2021).Article

Pender,A.等人。晚期实体瘤中免疫检查点抑制剂反应的基因组和转录组生物标志物。临床。癌症研究27202-212(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kothari, G. Role of radiomics in predicting immunotherapy response. J. Med. Imaging Radiat. Oncol. 66, 575–591 (2022).Article

Kothari,G。放射组学在预测免疫治疗反应中的作用。J、 医学成像辐射。Oncol公司。66575-591(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, C., Gong, J., Yu, H., Liu, Q. & Wang, J. A CT-based radiomics approach to predict nivolumab response in advanced non-small-cell lung cancer. Front. Oncol. 11, 544339–544339 (2021).Article

Liu,C.,Gong,J.,Yu,H.,Liu,Q。&Wang,J。一种基于CT的放射组学方法,用于预测晚期非小细胞肺癌中的nivolumab反应。正面。Oncol公司。11544339–544339(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Matassa, G., Gelardi, F., Hustinx, R. & Chiti, A. Highlights of 33rd EANM annual congress 2020, virtual edition. Eur. J. Nucl. Med. Mol. Imaging. 48, 2314–2318 (2021).Article

Matassa,G.,Gelardi,F.,Hustinx,R。&Chiti,A。第33届EANM 2020年年度大会亮点,虚拟版。欧洲核子公司。医学分子成像。482314-2318(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, B. C. et al. Preoperative assessment for high-risk endometrial cancer by developing an MRI- and clinical-based radiomics nomogram: A multicenter study. J. Magn. Reson. Imaging. 52, 1872–1882 (2020).Article

Yan,B.C.等人。通过开发基于MRI和临床的放射组学列线图对高危子宫内膜癌进行术前评估:一项多中心研究。J、 马格纳。雷森。成像。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Reck, M. et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50. J. Clin. Oncol. 39, 2339–2349 (2021).Article

Reck,M.等人。pembrolizumab与化疗治疗PD-L1肿瘤比例评分≥50的转移性非小细胞肺癌的五年结果。J、 临床。Oncol公司。392339-2349(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).Article

Paz-Ares,L.等人,Pembrolizumab联合化疗治疗鳞状非小细胞肺癌。N、 英语。J、 医学3792040-2051(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).Article

Gandhi,L.等人,Pembrolizumab联合化疗治疗转移性非小细胞肺癌。N、 英语。J、 医学3782078-2092(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gelsomino, F., Facchinetti, F., Sisi, M., Zielli, T. & Ardizzoni, A. PD-L1 ≥ 50% lung cancer refractory to PD-1 inhibition: The role of salvage chemo-immunotherapy combination. Immunotherapy. 13, 363–369 (2021).Article

Gelsomino,F.,Facchinetti,F.,Sisi,M.,Zielli,T。&Ardizzoni,A。PD-L1≥50%对PD-1抑制难治的肺癌:挽救性化学免疫疗法组合的作用。免疫疗法。13363-369(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rocco, D., Gravara, L. D., Battiloro, C. & Gridelli, C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev. Anticancer Ther. 19, 561–568 (2019).Article

Rocco,D.,Gravara,L.D.,Battiloro,C。&Gridelli,C。联合化疗免疫疗法在晚期非小细胞肺癌中的作用。抗癌治疗专家。19561-568(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jin, J., Yang, L., Liu, D. & Li, W. Association of the neutrophil to lymphocyte ratio and clinical outcomes in patients with lung cancer receiving immunotherapy: A meta-analysis. BMJ Open. 10, e035031–e035031 (2020).Article

Jin,J.,Yang,L.,Liu,D。&Li,W。接受免疫治疗的肺癌患者中性粒细胞与淋巴细胞比率与临床结果的关联:荟萃分析。。10,e035031–e035031(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reinstein, Z. Z. et al. Overcoming immunosuppression in bone metastases. Crit. Rev. Oncol. Hematol. 117, 114–127 (2017).Article

Reinstein,Z.Z.等人,《克服骨转移中的免疫抑制》。暴击。修订版Oncol。血液学。117114-127(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).Article

Yu,J.等。肝转移通过巨噬细胞介导的T细胞消除抑制免疫治疗效果。《自然医学》27152-164(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tunali, I. et al. Hypoxia-related radiomics and immunotherapy response: A multicohort study of non-small cell lung cancer. JNCI Cancer Spectr. 5, pkab048 (2021).Article

Tunali,I。等。缺氧相关放射组学和免疫治疗反应:非小细胞肺癌的多队列研究。JNCI癌症谱。5,pkab048(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Q. et al. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 49, 345–360 (2021).Article

Chen,Q。等人。用于预测非小细胞肺癌患者免疫治疗反应和结果的放射学研究的现状和质量:系统评价和荟萃分析。欧洲核子公司。医学分子成像。49345-360(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dercle, L. et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin. Cancer Res. 26, 2151–2162 (2020).Article

Dercle,L.等人。使用放射组学鉴定对全身癌症治疗敏感的非小细胞肺癌。临床。癌症研究262151-2162(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muz, B., Pilar, D. L. P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 3, 83–92 (2015).Article

Muz,B.,Pilar,D.L.P.,Azab,F。&Azab,A.K。缺氧在癌症进展,血管生成,转移和治疗抵抗中的作用。缺氧。3,83-92(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, J. et al. Neoadjuvant immunotherapy or chemoimmunotherapy in non-small cell lung cancer: A systematic review and meta-analysis. Transl. Lung Cancer Res. 11, 277–294 (2022).Article

Jiang,J.等。非小细胞肺癌的新辅助免疫治疗或化学免疫治疗:系统综述和荟萃分析。翻译。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1): Response assessment in solid tumours (RECIST): Version 1.1 and supporting papers. Eur. J. Cancer. 45, 228–247 (2009).Article

Eisenhauer,E.A。等。实体瘤新的反应评估标准:修订的RECIST指南(1.1版):实体瘤反应评估(RECIST):1.1版和支持论文。Eur.J.癌症。45228-247(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAuthor informationAuthors and AffiliationsDepartment of Respiratory Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, ChinaHua JinDepartment of Medical Imaging, Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150030, ChinaYuchao WangDepartment of Clinical Laboratory, Jinshan Hospital, Fudan University, Shanghai, 201508, ChinaXushuo Li & Ying YangDepartment of Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, ChinaRuixue QiAuthorsHua JinView author publicationsYou can also search for this author in.

下载参考文献作者信息作者和附属机构复旦大学金山医院呼吸内科,上海,201508,中国黑龙江中医药大学附属第三医院金华医学影像科,哈尔滨,150030,中国王玉超复旦大学金山医院临床检验科,上海,201508,中国徐硕李应阳复旦大学金山医院肿瘤诊断与治疗中心,上海,201508,中国瑞雪乔治华金维作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarYuchao WangView author publicationsYou can also search for this author in

PubMed Google ScholarYuchao WangView作者出版物您也可以在

PubMed Google ScholarXushuo LiView author publicationsYou can also search for this author in

PubMed谷歌学者XuShuo LiView作者出版物您也可以在

PubMed Google ScholarYing YangView author publicationsYou can also search for this author in

PubMed Google ScholarYing YangView作者出版物您也可以在

PubMed Google ScholarRuixue QiView author publicationsYou can also search for this author in

PubMed谷歌学术评论QiView作者出版物您也可以在

PubMed Google ScholarContributionsR.Q. and Y.W. designed the research study. X.L., Y.W. and Y.Y. provided help and advice on acquisition of data. Y.W. analyzed the data. H.J. and R.Q. wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献。Q、 Y.W.设计了这项研究。十、 L.,Y.W.和Y.Y.在获取数据方面提供了帮助和建议。Y、 W.分析了数据。H、 J.和R.Q.写了手稿。所有作者都为稿件的编辑更改做出了贡献。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Yuchao Wang or Ruixue Qi.Ethics declarations

王玉超或芮雪琪。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleJin, H., Wang, Y., Li, X. et al. Radiomics nomogram for predicting chemo-immunotherapy efficiency in advanced non-small cell lung cancer.

转载和许可本文引用本文Jin,H.,Wang,Y.,Li,X。等人。用于预测晚期非小细胞肺癌化学免疫治疗效率的放射组学列线图。

Sci Rep 14, 20788 (2024). https://doi.org/10.1038/s41598-024-63415-yDownload citationReceived: 05 September 2023Accepted: 28 May 2024Published: 06 September 2024DOI: https://doi.org/10.1038/s41598-024-63415-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1420788(2024)。https://doi.org/10.1038/s41598-024-63415-yDownload引文接收日期:2023年9月5日接收日期:2024年5月28日发布日期:2024年9月6日OI:https://doi.org/10.1038/s41598-024-63415-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsChemo-immunotherapyNon-small cell lung cancerRadiomicsNomogram

关键词小细胞肺癌的免疫治疗

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。