商务合作
动脉网APP
可切换为仅中文
AbstractCytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties.
摘要细胞因子风暴(CS)是由病原体和过度免疫治疗等各种因素引发的加剧的炎症反应,如果不加以控制,将对生命构成重大威胁。槲皮素是一种在中药中发现的单体,具有显着的抗炎和抗病毒特性。
This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets.
本研究试图通过网络药理学分析和实验验证相结合,探讨槲皮素干预是否可以减轻CS。首先,通过网络药理学鉴定了槲皮素和CS影响的常见靶基因和潜在机制,分子对接实验证实了槲皮素和核心靶标。
Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway.
随后,脂多糖(LPS)刺激的Raw264.7细胞的体外实验表明,槲皮素可以有效抑制促炎介质的过度表达并调节AKT1-FoxO1信号通路。同时,槲皮素可以通过Keap1-Nrf2信号通路减少ROS。
In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways..
此外,注射LPS的C57BL/6小鼠的体内研究进一步证实了槲皮素对CS的抑制作用。总之,这项研究阐明了与槲皮素对CS的治疗作用有关的新靶基因和信号通路。此外,它提供了令人信服的证据支持槲皮素逆转LPS诱导的CS的功效,主要是通过调节AKT1-FoxO1和Keap1-Nrf2信号通路。。
IntroductionCytokine storm (CS) is a systemic inflammatory syndrome with excessive hyperactivation of immune cells characterized by increased cytokine release, including interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and monocyte chemotactic protein 1 (MCP-1), which causes severe pathologic complications, such as sepsis, tissue damage, multiple organ failure, and ultimately, death1.
引言细胞因子风暴(CS)是一种全身性炎症综合征,免疫细胞过度活化,其特征是细胞因子释放增加,包括白细胞介素-6(IL-6),肿瘤坏死因子α(TNF-α)和单核细胞趋化蛋白1(MCP-1),导致严重的病理并发症,如败血症,组织损伤,多器官衰竭,最终导致死亡1。
CS might be stimulated by multiple factors such as pathogens, auto-inflammation, monogenic, or therapeutic intervention and the lungs are the main organ to be affected by CS2.Macrophages play a pivotal role in infection and inflammation as the principal innate immune cells, exerting crucial regulatory functions in pathological inflammation.
CS可能受到多种因素的刺激,如病原体,自身炎症,单基因或治疗干预,肺是受CS2影响的主要器官。巨噬细胞作为主要的先天免疫细胞在感染和炎症中起关键作用,在病理性炎症中发挥关键的调节功能。
Within the tissue microenvironment, they exhibit polarization into either the classically activated M1 phenotype, characterized by pro-inflammatory properties, or the alternatively activated M2 phenotype, which demonstrates anti-inflammatory characteristics. Dysregulation in macrophage phenotypes can result in unchecked inflammatory responses, thereby precipitating CS and subsequent tissue damage3.
在组织微环境中,它们表现出极化为经典激活的M1表型(以促炎特性为特征)或交替激活的M2表型(表现出抗炎特性)。巨噬细胞表型失调可导致未经检查的炎症反应,从而导致CS和随后的组织损伤3。
Considering the pivotal role of macrophages in CS progression, modulating macrophage overactivation emerges as a promising strategy for CS intervention.Quercetin, a flavonoid compound, possesses a spectrum of biological properties, including antioxidant, anti-inflammatory, antiviral, and neuroprotective effects4,5,6,7.
考虑到巨噬细胞在CS进展中的关键作用,调节巨噬细胞过度活化成为CS干预的有希望的策略。槲皮素是一种黄酮类化合物,具有一系列生物学特性,包括抗氧化,抗炎,抗病毒和神经保护作用4,5,6,7。
Research indicated that quercetin exerted its anti-inflammatory effects by targeting Syk/Src/IRAK-1 to inhibit LPS-induced macrophage activation, while also preventing LPS-induced oxidative stress and inflammation through pathways NOX2/ROS/NF-κB8,9. However, the specific targets and signaling pathways through which quercetin regulates CS r.
研究表明,槲皮素通过靶向Syk/Src/IRAK-1来抑制LPS诱导的巨噬细胞活化,同时通过NOX2/ROS/NF-κB8,9途径预防LPS诱导的氧化应激和炎症,从而发挥其抗炎作用。然而,槲皮素调节CS r的特定靶标和信号通路。
Data availability
数据可用性
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.
本研究中使用和/或分析的数据集可根据合理要求从通讯作者处获得。
AbbreviationsBALF:
缩写BALF:
Bronchoalveolar lavage fluid
支气管肺泡灌洗液
BP:
BP公司:
Biological process
生物过程
CC:
抄送:
Cellular composition
细胞组成
COVID-19:
新型冠状病毒肺炎:
Coronavirus disease 2019
2019年冠状病毒病
CS:
CS公司:
Cytokine storm
细胞激素风暴
DEX:
Dexamethasone
地塞米松
DMSO:
二甲基亚砜:
Dimethyl sulphoxide
二甲基亚砜
FoxO:
福克斯:
Forkhead box proteins O
叉头盒蛋白O
GO:
转到:
Gene ontology
基因本体论
IL-6:
Interleukin-6
白细胞介素-6
iNOS:
Inducible nitric oxide synthase
诱导型一氧化氮合酶
Keap1:
标题1:
Kelch-like ECH-associated protein 1
Kelch样ECH相关蛋白1
KEGG:
桶:
Kyoto encyclopedia of genes and genomes
京都基因与基因组百科全书
LPS:
LPS:
Lipopolysaccharides
脂多糖
MCP-1:
MCP-1:
Monocyte chemotactic protein 1
单核细胞趋化蛋白1
MF:
MF公司:
Molecular function
分子功能
NO:
否:
Nitric oxide
一氧化氮
Nrf2:
Nrf2:
Nuclear factor erythroid 2-related factor
核因子红细胞2相关因子
PPI:
PPI:
Protein–protein interaction network
蛋白质-蛋白质相互作用网络
ROS:
活性氧:
Reactive oxygen species
活性氧类
TCM:
TCM:
Traditional Chinese medicine
中医学
TNF-α:
TNF-α:
Tumor necrosis factor α
肿瘤坏死因子α
ReferencesFajgenbaum, D. C., Longo, D. L. & June, C. H. Cytokine storm. N. Engl. J. Med. 383(23), 2255–2273 (2020).Article
参考文献Fajgenbaum,D.C.,Longo,D.L。和June,C.H。细胞因子风暴。N、 英语。J、 医学383(23),2255-2273(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karki, R. & Kanneganti, T.-D. The ‘cytokine storm’: Molecular mechanisms and therapeutic prospects. Trends Immunol. 42(8), 681–705 (2021).Article
Karki,R。&Kanneganti,T.-D.“细胞因子风暴”:分子机制和治疗前景。趋势免疫。42(8),681-705(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shapouri-Moghaddam, A. et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233(9), 6425–6440 (2018).Article
Shapouri-Moghaddam,A。等人。巨噬细胞可塑性,极化以及在健康和疾病中的功能。J、 细胞。生理学。233(9),6425–6440(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ansari, M. A., Abdul, H. M., Joshi, G., Opii, W. O. & Butterfield, D. A. Protective effect of quercetin in primary neurons against Aβ(1–42): Relevance to Alzheimer’s disease. J. Nutr. Biochem. 20(4), 269–275 (2009).Article
Ansari,M.A.,Abdul,H.M.,Joshi,G.,Opii,W.O。和Butterfield,D.A。槲皮素在原代神经元中对Aβ(1-42)的保护作用:与阿尔茨海默病的相关性。J、 营养。生物化学。20(4),269-275(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Das, N. et al. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct. 4, 6 (2013).Article
槲皮素在高脂喂养的小鼠短期治疗后减轻炎症。。4,6(2013)。文章
Google Scholar
谷歌学者
Granato, M. et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem. 41, 124–136 (2017).Article
槲皮素通过抑制PI3K/AKT/mTOR和STAT3信号通路诱导原发性渗出性淋巴瘤细胞凋亡和自噬。J、 营养。生物化学。41124-136(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, W. et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 8, 1 (2015).Article
Wu,W。等人。槲皮素作为抗病毒药物抑制甲型流感病毒(IAV)进入。病毒8,1(2015)。文章
Google Scholar
谷歌学者
Yang, W. S. et al. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol. 15, 1165–1174 (2015).CAS
Yang,W.S.等人。Myrsine seguinii乙醇提取物及其活性成分槲皮素通过靶向Syk/Src/IRAK-1抑制LPS诱导的巨噬细胞活化和腹膜炎。J、 民族药理学。151165-1174(2015)。中科院
Google Scholar
谷歌学者
Sul, O.A.-O. & Ra, S.A.-O. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 26, 6949. https://doi.org/10.3390/molecules26226949 (2021).Article
Sul,O.A.-O.&Ra,S.A.-O.槲皮素通过调节肺上皮细胞中的NOX2/ROS/NF-kB来预防LPS诱导的氧化应激和炎症。分子266949。https://doi.org/10.3390/molecules26226949。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sullivan, I. O. et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6, 1 (2015).ADS
Sullivan,I.O.等人FoxO1整合了胰岛素对肝脏葡萄糖产生和葡萄糖利用的直接和间接影响。国家公社。6,1(2015)。广告
Google Scholar
谷歌学者
Savai, R. et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. 20(11), 1289–1300 (2014).Article
Savai,R。等人。促增殖和炎症信号在肺动脉高压中汇聚于FoxO1转录因子。《自然医学》20(11),1289-1300(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Poojary, V. K., Penberthy, K. K., Buckley, M. W., Arandjelovic, S. & Ravichandran, K. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells. Plos One 12, 3 (2017).
Poojary,V.K.,Penberthy,K.K.,Buckley,M.W.,Arandjelovic,S。&Ravichandran,K。Foxo1磷酸化状态的离体调节不会导致T调节细胞功能障碍。Plos One 12,3(2017)。
Google Scholar
谷歌学者
Webb, A. E. & Brunet, A. FOXO transcription factors: Key regulators of cellular quality control. Trends Biochem. Sci. 39, 159–169 (2014).Article
。趋势生物化学。科学。39159-169(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Riol-Blanco, L. et al. Immunological synapse formation inhibits, via NF-κB and FOXO1, the apoptosis of dendritic cells. Nat. Immunol. 10(7), 753–760 (2009).Article
免疫突触的形成通过NF-κB和FOXO1抑制树突状细胞的凋亡。自然免疫。10(7),753-760(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Han, C. et al. FoxO1 regulates TLR4/MyD88/MD2-NF-κB inflammatory signalling in mucosal barrier injury of inflammatory bowel disease. J. Cell Mol. Med. 24(6), 3712–3723 (2020).Article
Han,C。等人,FoxO1在炎症性肠病的粘膜屏障损伤中调节TLR4/MyD88/MD2-NF-κB炎症信号传导。J、 细胞分子医学24(6),3712-3723(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, D. et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages. Diabetes 58(11), 2624–2633 (2009).Article
Su,D。等人FoxO1将胰岛素抵抗与巨噬细胞中促炎细胞因子IL-1β的产生联系起来。糖尿病58(11),2624-2633(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fan, W. et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 29(24), 4223–4236 (2010).Article
Fan,W。等人FoxO1调节巨噬细胞中的Tlr4炎症途径信号传导。EMBO J.29(24),4223–4236(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yamamoto, M.A.-O., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98(3), 1169–1203 (2018).Article
Yamamoto,M.A.-O.,Kensler,T.W。&Motohashi,H。KEAP1-NRF2系统:用于维持氧化还原稳态的基于硫醇的传感器-效应器装置。生理学。第98(3)版,1169–1203(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).Article
Kanehisa,M。&Goto,S。KEGG:京都基因与基因组百科全书。核酸研究28,27-30(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanehisa, M.A.-O.X. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).Article
Kanehisa,M.A.-O.X.致力于了解细胞生物的起源和进化。。281947-1951(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanehisa, M.A.-O.X., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).Article
Kanehisa,M.A.-O.X.,Furumichi,M.,Sato,Y.,Kawashima,M。&Ishiguro Watanabe,M.KEGG,用于基于分类学的途径和基因组分析。核酸研究51,D587–D592(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pooladanda, V., Thatikonda, S., Muvvala, S. P., Devabattula, G. & Godugu, C. BRD4 targeting nanotherapy prevents lipopolysaccharide induced acute respiratory distress syndrome. Int. J. Pharmaceut. 2021, 601 (2021).
Pooladanda,V.,Thatikonda,S.,Muvvala,S.P.,Devabattula,G。&Godugu,C。靶向BRD4的纳米疗法可预防脂多糖引起的急性呼吸窘迫综合征。国际J.Pharmaceut。2021601(2021)。
Google Scholar
谷歌学者
Chan, E. L. & Murphy, J. T. Reactive oxygen species mediate endotoxin-induced human dermal endothelial NF-κB Activation. J. Surg. Res. 111(1), 120–126 (2003).Article
Chan,E.L。&Murphy,J.T。活性氧介导内毒素诱导的人皮肤内皮NF-κB活化。J、 。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Simon, F. & Fernández, R. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J. Hypertens. 27(6), 1202–1216 (2009).Article
Simon,F。&Fernández,R。早期脂多糖诱导的活性氧产生引起人脐静脉内皮细胞的坏死细胞死亡。J、 高血压。27(6),1202-1216(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tan, H.-Y. et al. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longevity 2016, 1–16 (2016).Article
Tan,H.-Y.等人。巨噬细胞极化中的活性氧:反映其在人类疾病进展和治疗中的双重作用。氧化剂。医学细胞。长寿2016,1-16(2016)。文章
Google Scholar
谷歌学者
Zhu, F. et al. Brd4 inhibition ameliorates Pyocyanin-mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways. Cell Death Dis. 11, 459 (2020).Article
Zhu,F。等人。Brd4抑制通过转录抑制活性氧和氮自由基途径改善绿脓菌素介导的巨噬细胞功能障碍。细胞死亡Dis。11459(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8(8), 627–644 (2009).Article
Liu,P.,Cheng,H.,Roberts,T.M。&Zhao,J.J。靶向癌症中的磷酸肌醇3-激酶途径。《药物目录》修订版。8(8),627-644(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, C.-S. et al. TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1. J. Immunol. 190(12), 6368–6377 (2013).Article
Yang,C.-S.等人。TLR3触发的活性氧通过激活信号转导子和转录激活因子-1促进炎症反应。J、 免疫。190(12),6368–6377(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jarczak, D. & Nierhaus, A. Cytokine storm—definition, causes, and implications. Int. J. Mol. Sci. 23, 19 (2022).Article
Jarczak,D。&Nierhaus,A。细胞因子风暴的定义,原因和影响。Int.J.Mol.Sci。23、19(2022年)。文章
Google Scholar
谷歌学者
Addeo, A., Obeid, M. & Friedlaender, A. COVID-19 and lung cancer: Risks, mechanisms and treatment interactions. J. ImmunoTherapy Cancer 8, 1 (2020).Article
Addeo,A.,Obeid,M。&Friedlaender,A。COVID-19和肺癌:风险,机制和治疗相互作用。J、 免疫治疗癌症8,1(2020)。文章
Google Scholar
谷歌学者
Knoll, R., Schultze, J. L. & Schulte-Schrepping, J. Monocytes and Macrophages in COVID-19. Front. Immunol. 2021, 12 (2021).
。正面。免疫。2021年,12(2021年)。
Google Scholar
谷歌学者
Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124(2), 188–195 (2014).Article
Lee,D.W.等人。细胞因子释放综合征诊断和管理的当前概念。血液124(2),188-195(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tay, S. H. et al. Cytokine release syndrome in cancer patients receiving immune checkpoint inhibitors: A case series of 25 patients and review of the literature. Front. Immunol. 2022, 13 (2022).
Tay,S.H.等人。接受免疫检查点抑制剂的癌症患者的细胞因子释放综合征:25例患者的病例系列和文献综述。正面。免疫。。
Google Scholar
谷歌学者
Zhu, Z. et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 95, 332–339 (2020).Article
Zhu,Z.等人。2019年免疫炎症参数评估冠状病毒病严重程度的临床价值。Int.J.感染。Dis。95332-339(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J. Clin. Oncol. 36(17), 1714–1768 (2018).Article
Brahmer,J.R.等人,《免疫检查点抑制剂治疗患者免疫相关不良事件的管理:美国临床肿瘤学会临床实践指南》。J、 临床。Oncol公司。36(17),1714-1768(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. ImmunoTherapy Cancer 5, 1 (2017).Article
Puzanov,I.等人,《管理与免疫检查点抑制剂相关的毒性:癌症免疫治疗学会(SITC)毒性管理工作组的共识建议》。J、 免疫治疗癌症5,1(2017)。文章
Google Scholar
谷歌学者
Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 1 (2020).
Ramos Casals,M.等人。检查点抑制剂的免疫相关不良事件。自然版本Dis。一本正经。6,1(2020年)。
Google Scholar
谷歌学者
Prescott, H. C. & Rice, T. W. Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. Jama 324, 1292–1295 (2020).Article
Prescott,H.C。&Rice,T.W。COVID-19 ARDS中的皮质类固醇:大流行期间的证据和希望。Jama 3241292-1295(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cai, J. et al. The neutrophil-to-lymphocyte ratio determines clinical efficacy of corticosteroid therapy in patients with COVID-19. Cell Metabol. 33(2), 258-269.e3 (2021).Article
Cai,J。等人。中性粒细胞与淋巴细胞的比率决定了皮质类固醇治疗COVID-19患者的临床疗效。。33(2),258-269.e3(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Rosas, I. O. et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N. Engl. J. Med. 384(16), 1503–1516 (2021).Article
Rosas,I.O.等人,托珠单抗治疗严重新型冠状病毒肺炎住院患者。N、 英语。J、 医学384(16),1503-1516(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ip, A. et al. Hydroxychloroquine and tocilizumab therapy in COVID-19 patients-An observational study. Plos One 15, 8 (2020).Article
Ip,A。等人。羟氯喹和托珠单抗治疗COVID-19患者的一项观察性研究。Plos One 15,8(2020)。文章
Google Scholar
谷歌学者
Kang, J.-Y. et al. Melatonin attenuates LPS-induced pyroptosis in acute lung injury by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis. Int. Immunopharmacol. 2022, 109 (2022).
Kang,J.-Y.等人。褪黑激素通过激活Nrf2/HO-1信号轴抑制NLRP3-GSDMD途径,减轻LPS诱导的急性肺损伤中的pyroptosis。国际免疫药理学。2022109(2022)。
Google Scholar
谷歌学者
Kim, J. H. et al. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-κB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. Pharmacol. 71(8), 1198–1205 (2006).Article
Rengyolone通过下调LPS刺激的RAW 264.7细胞中的NF-κB和p38 MAP激酶活性来抑制诱导型一氧化氮合酶的表达和一氧化氮的产生。生物化学。药理学。71(8),1198-1205(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Suryavanshi, S. V., Zaiachuk, M., Pryimak, N., Kovalchuk, I. & Kovalchuk, O. Cannabinoids alleviate the LPS-induced cytokine storm via attenuating NLRP3 inflammasome signaling and TYK2-mediated STAT3 signaling pathways in vitro. Cells 11, 9 (2022).Article
Suryavanshi,S.V.,Zaiachuk,M.,Pryimak,N.,Kovalchuk,I。&Kovalchuk,O。大麻素通过减弱NLRP3炎性体信号传导和TYK2介导的STAT3信号传导途径减轻LPS诱导的细胞因子风暴体外。细胞11,9(2022)。文章
Google Scholar
谷歌学者
Li, H. et al. Glycyrrhetinic acid: A potential drug for the treatment of COVID-19 cytokine storm. Phytomedicine 2022, 102 (2022).
Li,H。等人。甘草次酸:治疗COVID-19细胞因子风暴的潜在药物。植物医学2022102(2022)。
Google Scholar
谷歌学者
You, J. et al. Inspiration for COVID-19 treatment: Network analysis and experimental validation of baicalin for cytokine storm. Front. Pharmacol. 2022, 13 (2022).ADS
You,J.等人。新型冠状病毒肺炎治疗的启示:黄芩苷对细胞因子风暴的网络分析和实验验证。正面。药理学。。广告
Google Scholar
谷歌学者
Lin. X, Zhao. Q, Fu. B, Xiong. Y, Zhang. S, Xu. S, Wu. H. ISOC1 Modulates Inflammatory Responses in Macrophages through the AKT1/PEX11B/Peroxisome Pathway. Molecules 27(18), 5896 (2022).Wang. R, Wang. Y, Wu. J, Guo. Y, Xiao. H, Zhang. Y, & Ma. K. Resveratrol Targets AKT1 to Inhibit Inflammasome Activation in Cardiomyocytes Under Acute Sympathetic Stress.
林X,赵。Q、 傅。B、 熊。Y、 张。S、 徐。S、 吴。H、 ISOC1通过AKT1/PEX11B/过氧化物酶体途径调节巨噬细胞的炎症反应。分子27(18),5896(2022)。。R、 王。Y、 吴。J、 郭。Y、 肖。H、 张。Y、 白藜芦醇靶向AKT1以抑制急性交感神经应激下心肌细胞中的炎性体活化。
Frontiers in Pharmacology 13, https://doi.org/10.3389/fphar.2022.818127 (2022).Yang. J, Cheng. M, Gu. B, & Wang. J. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κBaxis, Cell Death & Disease 11(10), https://doi.org/10.1038/s41419-020-03038-z (2020).Arranz, A.
药理学前沿13,https://doi.org/10.3389/fphar.2022.818127(2022年)。杨。J、 程。M、 顾B和王。J、 CircRNA\u 09505通过miR-6089/AKT1/NF-κBaxis,细胞死亡与疾病11(10)加重胶原诱导的关节炎小鼠的炎症和关节损伤,https://doi.org/10.1038/s41419-020-03038-z(2020年)。阿拉茨,A。
et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. 109(24), 9517–9522 (2012).Article .
Akt1和Akt2蛋白激酶对巨噬细胞极化有不同的贡献。程序。纳特尔。阿卡德。科学。109(24),9517–9522(2012)。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin, M. et al. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777–784 (2005).Article
Toll样受体介导的细胞因子产生受糖原合酶激酶3的差异调节。自然免疫。6777-784(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seiler, F. et al. FOXO transcription factors regulate innate immune mechanisms in respiratory epithelial cells. J. Immunol. 190(4), 1603–1613 (2013).Article
Seiler,F。等人。FOXO转录因子调节呼吸道上皮细胞的先天免疫机制。J、 免疫。190(4),1603-1613(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, K. et al. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways. Front. Physiol. 2018, 9 (2018).
Sun,K。等人。五味子素通过调节TLR-4和Akt/FoxO1信号通路来减轻脂多糖诱导的肺损伤。正面。生理学。2018,9(2018)。
Google Scholar
谷歌学者
Lee, J., Jang, J., Park, S.-M. & Yang, S.-R. An update on the role of Nrf2 in respiratory disease: Molecular mechanisms and therapeutic approaches. Int. J. Mol. Sci. 22, 16 (2021).
Lee,J.,Jang,J.,Park,S.-M.&Yang,S.-R.Nrf2在呼吸系统疾病中的作用的最新进展:分子机制和治疗方法。Int.J.Mol.Sci。22,16(2021)。
Google Scholar
谷歌学者
Lin, X. et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PloS one 14, e0216711 (2019).Article
Lin,X。等人。姜黄素通过增加抗氧化酶的活性和激活Nrf2-Keap1途径来减轻RAW264.7细胞的氧化应激。PloS one 14,e0216711(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. et al. Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages. Int. Immunopharmacol. 125, 111079 (2023).Article
Liu,X。等人。Mollugin通过抑制TAK1-NF-κB/MAPKs途径和激活巨噬细胞中的Keap1-Nrf2途径来预防CLP诱导的小鼠败血症。国际免疫药理学。125111079(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luo, L. et al. Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 signaling pathways in LPS-induced acute lung injury. Life Sci. 311, 121091 (2022).Article
Luo,L。等人。虾青素通过LPS诱导的急性肺损伤中的Keap1-Nrf2/HO-1信号通路减轻铁浓化。生命科学。311121091(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors thank Ping Lin, Jie Zhang and Qin Lin from the lab of experimental oncology for their great help in this study. The authors gratefully appreciate BioRender's modifications to the figures. The authors would like to thank all the reviewers who participated in the review and MJEditor (www.mjeditor.com) for their linguistic assistance during the preparation of this manuscript.FundingThis study was supported by the National Natural Science Foundation of China (NO.82260490), Sichuan Provincial Nature Science Foundation (2022NSFSC1379); Sichuan Science and Technology Programme (2022YFSY0054) and Technology Innovation Project of Chengdu Science and Technology (2020-YF05-00059-SN); Natural Science Foundation of Hainan Province (NO.821QN394); Science and technology research project on novel corona-virus pneumonia outbreak, West China Hospital, Sichuan University (HX-2019-nCoV-069).Author informationAuthor notesThese authors contributed equally: Jingyi Xu, Yue Li and Xi Yang.Authors and AffiliationsWest China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People’s Republic of ChinaJingyi Xu, Yue Li, Hong Li, Xi Xiao & Ying HuangDepartment of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, ChinaXi Yang, Jia You, Lingnan Zheng & Cheng YiDepartment of Integrated Traditional Chinese and Western Medicine, School of Medicine, Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, 610041, ChinaHuawei LiDepartment of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), No.31, Longhua Road, Haikou, 570100, Chi.
下载参考文献致谢作者感谢实验肿瘤学实验室的林萍,张洁和秦琳在这项研究中的巨大帮助。作者非常感谢BioRender对数字的修改。作者要感谢所有参与评论的审稿人和MJEditor(www.MJEditor.com)在编写本手稿期间提供的语言帮助。资助本研究得到了国家自然科学基金(NO.82260490),四川省自然科学基金(2022NSFSC1379)的支持;四川省科技计划(2022YFSY0054)和成都市科技创新项目(2020-YF05-00059-SN);海南省自然科学基金(NO.821QN394);四川大学华西医院新型冠状病毒肺炎爆发科技研究项目(HX-2019-nCoV-069)。作者信息作者注意到这些作者做出了同样的贡献:徐静怡,李悦和杨曦。作者和单位四川大学中国基础医学与法医学院,中国人民南路3段17号,成都,610044,中华人民共和国徐静怡,李悦,李红,奚晓英,黄英四川大学肿瘤中心华西医院肿瘤内科,成都国学巷37号,610041,中国西安杨,贾优,岭南郑,程毅中国电子科技大学肿瘤医院医学院中西医结合科,成都,610041,中国华为海南医科大学附属医院放射肿瘤科综合医院),海口市龙华路31号,邮编570100。
PubMed Google ScholarYue LiView author publicationsYou can also search for this author in
PubMed Google ScholarYue LiView作者出版物您也可以在
PubMed Google ScholarXi YangView author publicationsYou can also search for this author in
PubMed Google ScholarXi YangView作者出版物您也可以在
PubMed Google ScholarHong LiView author publicationsYou can also search for this author in
PubMed Google ScholarHong LiView作者出版物您也可以在
PubMed Google ScholarXi XiaoView author publicationsYou can also search for this author in
PubMed Google ScholarXi XiaoView作者出版物您也可以在
PubMed Google ScholarJia YouView author publicationsYou can also search for this author in
PubMed Google ScholarJia YouView作者出版物您也可以在
PubMed Google ScholarHuawei LiView author publicationsYou can also search for this author in
PubMed Google ScholarHuawei LiView作者出版物您也可以在
PubMed Google ScholarLingnan ZhengView author publicationsYou can also search for this author in
PubMed Google ScholarLingnan ZhengView作者出版物您也可以在
PubMed Google ScholarCheng YiView author publicationsYou can also search for this author in
PubMed Google ScholarCheng YiView作者出版物您也可以在
PubMed Google ScholarZhaojun LiView author publicationsYou can also search for this author in
PubMed谷歌学者赵军LiView作者出版物您也可以在
PubMed Google ScholarYing HuangView author publicationsYou can also search for this author in
PubMed Google ScholarYing HuangView作者出版物您也可以在
PubMed Google ScholarContributionsXu, Li, Yang, Li, Xiao, You, Li, Zheng, Li, Yi, and Huang contributed to this study. Xu, Li,ang contributed equally to this study. Yi, Li andHuang directed the design of this study, supervised its implementation and revised draft. Xu, Li, Yang, Li, Xiao participated in the specific experimental process, data analysis and paper writing.
PubMed谷歌学术贡献Xu,Li,Yang,Li,Xiao,You,Li,Zheng,Li,Yi和Huang为这项研究做出了贡献。Xu,Li,ang对这项研究做出了同样的贡献。易,李和黄指导了这项研究的设计,监督了它的实施和修订草案。徐,李,杨,李,肖参与了具体的实验过程,数据分析和论文写作。
You, Li, Zheng were involved in the charting of the paper. All authors have read and approved the final draft.Corresponding authorsCorrespondence to.
你、李、郑参与了论文的制图。所有作者都阅读并批准了最终草案。通讯作者通讯。
Cheng Yi, Zhaojun Li or Ying Huang.Ethics declarations
程毅、李昭君或黄英。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figure 1.Supplementary Figure 2.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充图1补充图2权利和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleXu, J., Li, Y., Yang, X. et al. Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages.
转载和许可本文引用本文Xu,J.,Li,Y.,Yang,X。等人。槲皮素通过与巨噬细胞中的AKT1-FoxO1和Keap1-Nrf2信号通路相互作用来抑制LPS诱导的细胞因子风暴。
Sci Rep 14, 20913 (2024). https://doi.org/10.1038/s41598-024-71569-yDownload citationReceived: 10 May 2024Accepted: 29 August 2024Published: 08 September 2024DOI: https://doi.org/10.1038/s41598-024-71569-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1420913(2024)。https://doi.org/10.1038/s41598-024-71569-yDownload引文接收日期:2024年5月10日接受日期:2024年8月29日发布日期:2024年9月8日OI:https://doi.org/10.1038/s41598-024-71569-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsCytokine stormMacrophagesNetwork pharmacologyQuercetinAKT1-FoxO1 pathwayKeap1-Nrf2 pathway
关键词细胞因子风暴巨噬细胞网络药理学槲皮素AKT1-FoxO1通路KEAP1-Nrf2通路
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。