商务合作
动脉网APP
可切换为仅中文
AbstractAdeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs.
摘要腺相关病毒(AAV)是基础科学和临床治疗的基础基因传递工具。然而,缺乏机械洞察力,特别是对于定向进化产生的工程载体,可能会阻碍其应用。在这里,我们采用无偏见的人类细胞微阵列平台来确定天然和工程AAV的细胞外和细胞表面相互作用组。
We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration.
我们确定了AAV9衣壳和人白细胞介素3(IL3)之间的自然进化和血清型特异性相互作用,可能在宿主免疫调节中发挥作用,以及实验室进化的低密度脂蛋白受体相关蛋白6(LRP6)相互作用。静脉内给药后,非人类灵长类动物的工程衣壳具有增强的血脑屏障穿越。
The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors’ peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites.
无偏细胞微阵列筛选方法还使我们能够鉴定工程化富含大脑的AAV衣壳的脱靶组织结合相互作用,这可能会告知载体的外周器官趋向性和副作用。我们的衣壳相互作用复合物的低温电子断层扫描和AlphaFold建模揭示了LRP6和IL3结合位点。
These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain..
这些结果使工程化AAV在不同生物体中得到了可靠的应用,并为未来改进的病毒和非病毒载体的靶向工程解锁,以实现向大脑的非侵入性治疗。。
IntroductionAdeno-associated viruses (AAVs) have become the gene delivery vector of choice at the bench and in the clinic1,2. Systemic administration of AAVs, such as AAV93,4,5,6, allows noninvasive gene delivery, particularly in large or distributed biological structures7, but access to the brain from the periphery is restricted by the blood-brain barrier (BBB), a complex biological structure that regulates molecular access to the central nervous system (CNS)8,9,10.
引言腺相关病毒(AAV)已成为实验室和临床上首选的基因传递载体1,2。AAVs的全身给药,如AAV93,4,5,6,允许非侵入性基因传递,特别是在大型或分布式生物结构中7,但从外周进入大脑受到血脑屏障(BBB)的限制,血脑屏障是一种复杂的生物结构,调节分子进入中枢神经系统(CNS)8,9,10。
Systemic administration of AAVs also exposes the vectors to the host immune system11,12 and off-target tissues3,13. The poor efficiency of brain targeting after systemic administration with natural serotypes often necessitates high doses that raise costs and may trigger serious adverse events14,15,16.
AAV的全身给药还将载体暴露于宿主免疫系统11,12和脱靶组织3,13。用天然血清型全身给药后大脑靶向的效率低下通常需要高剂量,这会增加成本,并可能引发严重的不良事件14,15,16。
Thus, improved vectors are needed if AAV gene therapy is to realize its full therapeutic potential.AAV capsid engineering, particularly through directed evolution methods, has demonstrated that markedly improved efficiency in desired cell types and tissues after systemic intravenous delivery is possible17,18,19.
因此,如果AAV基因治疗要实现其全部治疗潜力,则需要改进的载体。AAV衣壳工程,特别是通过定向进化方法,已经证明全身静脉内递送后所需细胞类型和组织的效率显着提高是可能的17,18,19。
In particular, two recently identified engineered capsids, AAV9-X1.120 and AAV.CAP-Mac21, robustly transduce CNS neurons after systemic administration in macaques. As AAV capsids are applied across species, however, the enhanced tropisms of many engineered vectors can vary20,21,22,23. This is concerning for human clinical trials, as a capsid developed in another species that performs poorly when translated to humans may not only fail to provide therapeutic benefit but might preclude future therapies for the patient by inducing neutralizing antibodies11.This translational challenge of AAV engineering through directed evolution also represents an opportunity to better understand fundamental mechanisms of.
特别是,最近发现的两种工程衣壳AAV9-X1.120和AAV。CAP-Mac21在猕猴全身给药后强烈转导中枢神经系统神经元。然而,随着AAV衣壳在物种间的应用,许多工程载体的增强趋向性可以变化20,21,22,23。这与人类临床试验有关,因为在另一个物种中开发的衣壳在转化为人类时表现不佳,不仅可能无法提供治疗益处,而且可能通过诱导中和抗体来排除患者未来的治疗11。AAV工程的这种转化挑战通过定向进化也代表了更好地理解其基本机制的机会。
Lrp6 conditional knockout tissue preparation and imagingMice were anesthetized with Euthasol (pentobarbital sodium and phenytoin sodium solution, Virbac AH) and transcardially perfused with approximately 50 mL of 0.1 M PBS, pH 7.4 followed by an equal volume of 4% paraformaldehyde (PFA) in 0.1 M PBS.
Lrp6条件性敲除组织制备和成像用Euthasol(戊巴比妥钠和苯妥英钠溶液,Virbac AH)麻醉小鼠,并用约50ml的0.1M PBS(pH 7.4)经心脏灌注,然后用等体积的4%多聚甲醛(PFA)在0.1M PBS中灌注。
Collected organs were post-fixed in 4% PFA overnight at 4 °C, washed, and stored in 0.1 M PBS with 0.05% sodium azide at 4 °C. A Leica VT1200 vibratome was used to prepare 100 μm brain sections that were imaged on a Zeiss LSM 880 confocal microscope using a Plan-Apochromat 10 × 0.45 M27 (working distance, 2.0 mm) objective.
将收集的器官在4%PFA中于4℃后固定过夜,洗涤,并在4℃下储存在含有0.05%叠氮化钠的0.1M PBS中。使用Leica VT1200振动刀制备100μm脑切片,使用Plan-Apochromat 10×0.45 M27(工作距离,2.0 mm)物镜在Zeiss LSM 880共聚焦显微镜上成像。
Images were analyzed in Zen Black 2.3 SP1 (Zeiss) and ImageJ.AlphaFold structure modelingThe complex structures of the LRP6 extracellular domain and AAV-X1 or AAV.CAP-Mac VR-VIII peptide were modeled using a cloud-based implementation of AlphaFold-Multimer-v352 provided in ColabFold v2.3.596. The input comprised two sequences: surface-exposed residues in VR-VIII of AAV-X1 (587-AQGNNTRSVAQAQTG-594) or AAV-CAP-Mac (587-AQLNTTKPIAQAQTG-594) and the extracellular domain of human LRP6 (UniProt entry O75581, residues 20-1370).
在Zen Black 2.3 SP1(Zeiss)和ImageJ中分析了图像。AlphaFold结构模拟LRP6细胞外结构域和AAV-X1或AAV的复杂结构。使用ColabFold v2.3.596中提供的基于云的AlphaFold-Multimer-v352实现对CAP-Mac VR-VIII肽进行建模。输入包括两个序列:AAV-X1(587-AQGNNTRSVAQTG-594)或AAV-CAP-Mac(587-AQLNTTKPIAQAQTG-594)的VR-VIII中的表面暴露残基和人LRP6的细胞外结构域(UniProt条目O75581,残基20-1370)。
We ran the Google Colaboratory notebook using an A100 SXM4 40GB GPU. Five structure models were produced using a protocol with up to 20 recycles, and MSA generated with MMseqs2 (UniRef+Environmental)97 and templates from PDB70. The structure models were ranked using a weighted combination of pTM and iPTM scores as described in52.
我们使用A100 SXM4 40GB GPU运行了谷歌协作笔记本。使用具有多达20个再循环的协议产生了五个结构模型,并使用MMseqs2(UniRef+Environmental)97和PDB70的模板生成了MSA。如52所述,使用pTM和iPTM分数的加权组合对结构模型进行排名。
All structure visualizations in figures were prepared using PyMOL (www.pymol.org).Statistics & reproducibilityNo statistical methods were performed, including to predetermine sample size, and no data were excluded. Experiments were not randomized and the investigators were not blinded to allocation during experi.
图中的所有结构可视化均使用PyMOL(www.PyMOL.org)制备。统计和可重复性没有进行统计方法,包括预先确定样本量,也没有排除数据。实验不是随机的,研究人员在实验期间也不盲目分配。
Data availability
数据可用性
Cryo-ET data has been deposited to the EMDB with accession codes EMD-42063 (I1 map) [https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-42063] and EMD-41918 (trimer face) [https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-41918]. Cross-linking mass spectrometry data has been deposited to the ProteomeXchange Consortium via the PRIDE84 partner repository with the dataset identifier PXD045380.
Cryo ET数据已保存到EMDB,登录号为EMD-42063(I1 map)[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-42063]和EMD-41918(三聚体表面)[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-41918]。交联质谱数据已通过PRIDE84合作伙伴存储库保存到ProteomeXchange Consortium,数据集标识符为PXD045380。
All other data supporting the findings of this study are provided as source data files. Previously published data used in the present study include: IL3 structure, PDB ID: 5UV8; AAV9 structure, PDB ID: 3UX1. Source data are provided with this paper..
支持本研究结果的所有其他数据均作为源数据文件提供。本研究中使用的先前公布的数据包括:IL3结构,PDB ID:5UV8;AAV9结构,PDB ID:3UX1。本文提供了源数据。。
ReferencesHaery, L. et al. Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front Neuroanat. 13, 93 (2019).Article
参考文献Shaery,L。等人。用于靶向神经元操作的腺相关病毒技术和方法。前神经解剖。13,93(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. d41573-021-00017–7 https://doi.org/10.1038/d41573-021-00017-7 (2021).Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).Article .
Kuzmin,D.A.等人,《AAV基因治疗的临床前景》。《药物目录》修订版。d41573-021-00017–7https://doi.org/10.1038/d41573-021-00017-7。Foust,K.D.等人血管内AAV9优先靶向新生神经元和成年星形胶质细胞。美国国家生物技术公司。27,59-65(2009)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).Article
Mendell,J.R.等人。脊髓性肌萎缩症的单剂量基因替代疗法。N、 英语。J、 医学3771713-1722(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Al-Zaidy, S. A. & Mendell, J. R. From clinical trials to clinical practice: Practical considerations for gene replacement therapy in SMA type 1. Pediatr. Neurol. 100, 3–11 (2019).Article
Al-Zaidy,S.A。&Mendell,J.R。从临床试验到临床实践:SMA 1型基因替代疗法的实际考虑。儿科。神经病学。100,3-11(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-023-00766-7 (2023).Duan, D. Systemic delivery of adeno-associated viral vectors. Curr. Opin. Virol. 21, 16–25 (2016).Article .
Ling,Q.,Herstine,J.A.,Bradbury,A。&Gray,S.J。基于AAV的神经系统疾病体内基因治疗。《药物目录》修订版。https://doi.org/10.1038/s41573-023-00766-7。Duan,D。腺相关病毒载体的全身递送。货币。奥平。维罗尔。21,16-25(2016)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).Article
从血脑屏障到血脑界面:中枢神经系统药物输送的新机会。《药物目录》修订版。15275-292(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).Article
Sweeney,M.D.,Zhao,Z.,Montagne,A.,Nelson,A.R。&Zlokovic,B.V。血脑屏障:从生理学到疾病和背部。生理学。第99版,第21-78页(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood–brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 217, e20190062 (2020).Article
Profaci,C.P.,Munji,R.N.,Pulido,R.S。&Daneman,R。健康和疾病中的血脑屏障:重要的未解答问题。J、 实验医学217,e20190062(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, T. et al. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol. Ther. - Methods Clin. Dev. 26, 471–494 (2022).Article
Yang,T。等人。基于AAV的基因疗法的免疫原性评估:IQ联盟行业白皮书。摩尔热方法临床。德文26471-494(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gorovits, B. et al. Evaluation of cellular immune response to adeno-associated virus-based gene therapy. AAPS J. 25, 47 (2023).Article
Gorovits,B。等人。基于腺相关病毒的基因治疗的细胞免疫应答评估。AAPS J.25,47(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).Article
Srivastava,A。腺相关病毒载体的体内组织趋向性。货币。奥平。维罗尔。21,75-80(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feldman, A. G. et al. Subacute liver failure following gene replacement therapy for spinal muscular atrophy type 1. J. Pediatr. 225, 252–258.e1 (2020).Article
Feldman,A.G.等人。基因替代疗法治疗1型脊髓性肌萎缩症后的亚急性肝衰竭。J、 。225252–258.e1(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
High-dose AAV gene therapy deaths. Nat. Biotechnol 38, 910–910 (2020).Paulk, N. Gene Therapy: It Is Time to Talk about High-Dose AAV: The deaths of two children with X-linked myotubular myopathy in the ASPIRO trial prompts a reexamination of vector safety. Genet. Eng. Biotechnol. N. 40, 14–16 (2020).Article .
高剂量AAV基因治疗死亡。《国家生物技术》38910–910(2020)。Paulk,N。基因治疗:现在是谈论高剂量AAV的时候了:ASPIRO试验中两名X连锁肌管肌病儿童的死亡促使人们重新审视载体的安全性。基因。工程生物技术。N、 40,14-16(2020)。文章。
Google Scholar
谷歌学者
Challis, R. C. et al. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 45, 447–469 (2022).Article
Challis,R.C。等人。腺相关病毒工具包,用于靶向多种脑细胞。年。神经科学牧师。45447-469(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pupo, A. et al. AAV vectors: The Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515–3541 (2022).Article
Pupo,A.等人,《AAV载体:人类基因疗法的魔方》。摩尔热。303515-3541(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becker, J., Fakhiri, J. & Grimm, D. Fantastic AAV gene therapy vectors and how to find them—random diversification, rational design and machine learning. Pathogens 11, 756 (2022).Article
Becker,J.,Fakhiri,J。&Grimm,D。梦幻AAV基因治疗载体以及如何找到它们随机多样化,合理设计和机器学习。病原体11756(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, X. et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat. Commun. 14, 3345 (2023).Article
Chen,X。等人。在啮齿动物中具有内皮特异性趋向性和灵长类动物中具有广泛趋向性的系统性AAV的脑血管系统和跨脑血管的功能基因递送。国家公社。143345(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chuapoco, M. R. et al. Adeno-associated viral vectors for functional intravenous gene transfer throughout the non-human primate brain. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01419-x (2023).Liguore, W. A. et al. AAV-PHP.B administration results in a differential pattern of CNS biodistribution in non-human primates compared with mice.
Chuapoco,M.R.等人。用于在整个非人灵长类动物大脑中进行功能性静脉内基因转移的腺相关病毒载体。自然纳米技术。https://doi.org/10.1038/s41565-023-01419-x。Liguore,W.A。等人。AAV-PHP。B与小鼠相比,施用导致非人灵长类动物中CNS生物分布的差异模式。
Mol. Ther. 27, 2018–2037 (2019).Article .
摩尔热。2018年至2037年(2019年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, X. et al. Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems. Neuron S0896627322004111 https://doi.org/10.1016/j.neuron.2022.05.003 (2022).Shay, T. F. et al. Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors.
Chen,X.等人设计了AAV,用于向啮齿动物和非人灵长类神经系统非侵入性基因传递。神经元S0896627322004111https://doi.org/10.1016/j.neuron.2022.05.003(2022年)。Shay,T.F.等人。灵长类动物保守的碳酸酐酶IV和鼠限制性LY6C1能够通过工程化病毒载体跨越血脑屏障。
Sci. Adv. 9, eadg6618 (2023).Article .
科学。广告9,eadg6618(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hordeaux, J. et al. The GPI-linked protein LY6A Drives AAV-PHP.B transport across the blood-brain barrier. Mol. Ther. 27, 912–921 (2019).Article
Hordeaux,J。等人。GPI连接的蛋白LY6A驱动AAV-PHP。B穿过血脑屏障。摩尔热。27912-921(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, Q. et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE 14, e0225206 (2019).Article
Huang,Q.等人。跨越血脑屏障传递基因:LY6A,一种新型AAV-PHP细胞受体。B衣壳。PLoS ONE 14,e0225206(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Batista, A. R. et al. Ly6a differential expression in blood–brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum. Gene Ther. 31, 90–102 (2020).Article
。B、 嗯。吉恩·瑟。31,90–102(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).Article
Goertsen,D。等人。AAV衣壳变体具有全脑转基因表达,并且在小鼠和mar猴中静脉内递送后肝脏靶向性降低。自然神经科学。25106-115(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stanton, A. C. et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med 4, 31–50.e8 (2023).Article
Stanton,A.C.等人。新型工程化AAV衣壳的全身给药促进猕猴中枢神经系统中转基因表达的增强。Med 4,31–50.e8(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yao, Y. et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates. Nat. Biomed. Eng. 6, 1257–1271 (2022).Article
Yao,Y。等人。腺相关病毒血清型9的变体,其在啮齿动物和灵长类动物中具有增强的血脑屏障渗透性。自然生物医学。工程61257-1271(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Freeth, J. & Soden, J. New advances in cell microarray technology to expand applications in target deconvolution and off-target screening. SLAS Discov. 25, 223–230 (2020).Article
Freeth,J。&Soden,J。细胞微阵列技术的新进展,以扩大目标反卷积和脱靶筛选的应用。SLA Discov。25223-230(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).Article
严重疟疾与寄生虫与内皮蛋白C受体的结合有关。自然498502-505(2013)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martino, R. A. et al. Vector affinity and receptor distribution define tissue-specific targeting in an engineered AAV capsid. J. Virol. e00174-23 https://doi.org/10.1128/jvi.00174-23 (2023).Huang, Q. et al. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier.
Martino,R.A。等人。载体亲和力和受体分布定义了工程化AAV衣壳中的组织特异性靶向。J、 维罗尔。e00174-23https://doi.org/10.1128/jvi.00174-23。Huang,Q。等人。通过设计衣壳-受体相互作用,将AAV载体靶向中枢神经系统,使其能够穿过血脑屏障。
PLoS Biol. 21, e3002112 (2023).Article .
《公共科学图书馆·生物学》。21,e3002112(2023)。第[UNK]条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108–112 (2016).Article
Pillay,S。等人。腺相关病毒感染的必需受体。自然530108-112(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zolotukhin, S. & Vandenberghe, L. H. AAV capsid design: A Goldilocks challenge. Trends Mol. Med. 28, 183–193 (2022).Article
Zolotukhin,S.&Vandenberghe,L.H。AAV衣壳设计:金凤花挑战。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seo, J. W. et al. Positron emission tomography imaging of novel AAV capsids maps rapid brain accumulation. Nat. Commun. 11, 2102 (2020).Article
Seo,J.W。等人。新型AAV衣壳的正电子发射断层扫描成像绘制了快速的大脑积累图。国家公社。112102(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seo, J. W. et al. Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs. Biomaterials 288, 121701 (2022).Article
Seo,J.W.等人。衣壳和货物的多模式成像揭示了全身给药AAV的不同脑靶向和肝脏去靶向。生物材料28812171(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jang, S., Shen, H. K., Ding, X., Miles, T. F. & Gradinaru, V. Structural basis of receptor usage by the engineered capsid AAV-PHP.eB. Mol. Ther. - Methods Clin. Dev. 26, 343–354 (2022).Article
Jang,S.,Shen,H.K.,Ding,X.,Miles,T.F。&Gradinaru,V。工程衣壳AAV-PHP.eB使用受体的结构基础。摩尔热方法临床。第26343-354页(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rapti, K. & Grimm, D. Adeno-associated viruses (AAV) and Host Immunity – A race between the Hare and the Hedgehog. Front. Immunol. 12, 753467 (2021).Article
。正面。免疫。12753467(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dougan, M., Dranoff, G. & Dougan, S. K. GM-CSF, IL-3, and IL-5 family of cytokines: Regulators of inflammation. Immunity 50, 796–811 (2019).Article
Dougan,M.,Dranoff,G。&Dougan,S.K。GM-CSF,IL-3和IL-5细胞因子家族:炎症调节剂。免疫力50796-811(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cearley, C. N. et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16, 1710–1718 (2008).Article
Cearley,C.N.等人,AAV载体血清型的扩展库介导了小鼠大脑中独特的转导模式。摩尔热。161710-1718(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, G. et al. Structural basis for the neurotropic AAV9 and the engineered AAVPHP.eB recognition with cellular receptors. Mol. Ther. - Methods Clin. Dev. 26, 52–60 (2022).Article
Xu,G.等人。嗜神经性AAV9的结构基础和工程化AAVPHP.eB与细胞受体的识别。摩尔热方法临床。发展26,52-60(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, C. & Huang, L. New advances in cross-linking mass spectrometry toward structural systems biology. Curr. Opin. Chem. Biol. 76, 102357 (2023).Article
Yu,C。&Huang,L。交联质谱法向结构系统生物学的新进展。货币。奥平。化学。生物学76102357(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meyer, N. L. et al. Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR. eLife 8, e44707 (2019).Article
Meyer,N.L.等人。基因治疗载体腺相关病毒及其细胞受体AAVR的结构。eLife 8,e44707(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, G., Silveria, M. A., Zane, G. M., Chapman, M. S. & Stagg, S. M. Adeno-associated virus receptor-binding: Flexible domains and alternative conformations through cryo-electron tomography of adeno-associated virus 2 (AAV2) and AAV5 complexes. J. Virol. 96, e00106–e00122 (2022).Article .
Hu,G.,Silveria,M.A.,Zane,G.M.,Chapman,M.S。&Stagg,S.M。腺相关病毒受体结合:通过腺相关病毒2(AAV2)和AAV5复合物的冷冻电子断层扫描的柔性结构域和替代构象。J、 维罗尔。96,e00106–e00122(2022)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).Article
Garcia,F.J.等人。人脑血管系统的单细胞解剖。自然603893-899(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10, 468–477 (2009).Article
Angers,S。&Moon,R.T。Wnt信号转导中的近端事件。Nat。Rev。Mol。Cell Biol。10468-477(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
MacDonald, B. T. & He, X. Frizzled and LRP5/6 receptors for Wnt/ -Catenin signaling. Cold Spring Harb. Perspect. Biol. 4, a007880–a007880 (2012).Article
MacDonald,B.T。&He,X。Frizzled和LRP5/6受体用于Wnt/-连环蛋白信号传导。冷泉兔。透视图。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Davidson, G. LRPs in WNT Signalling. in Pharmacology of the WNT Signaling System (eds. Schulte, G. & Kozielewicz, P.) vol. 269 45–73 (Springer International Publishing, Cham, 2021).Ren, Q., Chen, J. & Liu, Y. LRP5 and LRP6 in Wnt signaling: Similarity and divergence. Front. Cell Dev.
Davidson,G。WNT信号中的LRPs。《WNT信号系统药理学》(Schulte,G。&Kozielewicz,P.)第269卷45-73(Springer International Publishing,Cham,2021)。Ren,Q.,Chen,J。&Liu,Y。Wnt信号传导中的LRP5和LRP6:相似性和分歧。正面。单元开发。
Biol. 9, 670960 (2021).Article .
《生物学》第9卷,第670960页(2021年)。第[UNK]条。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Evans, R. et al. Protein Complex Prediction with AlphaFold-Multimer. http://biorxiv.org/lookup/doi/10.1101/2021.10.04.463034 (2021) https://doi.org/10.1101/2021.10.04.463034.Liu, C.-C., Pearson, C. & Bu, G. Cooperative folding and ligand-binding properties of LRP6 β-propeller domains.
Evans,R。等人。使用AlphaFold多聚体预测蛋白质复合物。http://biorxiv.org/lookup/doi/10.1101/2021.10.04.463034(2021年)https://doi.org/10.1101/2021.10.04.463034.Liu,C.-C.,Pearson,C。&Bu,G。LRP6β-螺旋桨结构域的协同折叠和配体结合特性。
J. Biol. Chem. 284, 15299–15307 (2009).Article .
J.生物学。化学。284, 15299-15307 (2009).第[UNK]条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krolak, T. et al. A high-efficiency AAV for endothelial cell transduction throughout the central nervous system. Nat. Cardiovasc Res 1, 389–400 (2022).Article
Krolak,T。等人。一种用于整个中枢神经系统内皮细胞转导的高效AAV。《心血管杂志》第1389-400号(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, C. et al. Mesd is a general inhibitor of different Wnt ligands in Wnt/LRP signaling and inhibits PC-3 tumor growth in vivo. FEBS Lett. 585, 3120–3125 (2011).Article
Mesd是Wnt/LRP信号传导中不同Wnt配体的一般抑制剂,可抑制体内PC-3肿瘤的生长。。5853120–3125(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, J. et al. Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat. Commun. 11, 5357 (2020).Article
Kim,J。等人。硬化蛋白通过与两个LRP6胞外域的串联相互作用抑制Wnt信号传导。国家公社。115357(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, Y. et al. Glycoprotein 2 in health and disease: Lifting the veil. Genes Environ. 43, 53 (2021).Article
Lin,Y.等人,《糖蛋白2与健康和疾病:揭开面纱》。。43,53(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kurashima, Y. et al. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat. Commun. 12, 1067 (2021).Article
Kurashima,Y。等人。胰腺糖蛋白2是肠道炎症中粘膜保护的第一道防线。国家公社。121067(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).Article
Sjöstedt,E.等人。人类,猪和小鼠大脑中蛋白质编码基因的图谱。科学367,eaay5947(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).Article
。自然599628-634(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brown, S. D. et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem. Biophys. Res. Commun. 248, 879–888 (1998).Article
Brown,S.D.等人。LRP6的分离和表征,LRP6是低密度脂蛋白受体基因家族的新成员。生物化学。生物物理。公共资源。248879-888(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, Z. & Zlokovic, B. V. Therapeutic TVs for crossing barriers in the brain. Cell 182, 267–269 (2020).Article
Zhao,Z.&Zlokovic,B.V。用于跨越大脑障碍的治疗性电视。细胞182267-269(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Epperson, M. L., Lee, C. A. & Fremont, D. H. Subversion of cytokine networks by virally encoded decoy receptors. Immunol. Rev. 250, 199–215 (2012).Article
Epperson,M.L.,Lee,C.A。&Fremont,D.H。通过病毒编码的诱饵受体颠覆细胞因子网络。免疫。修订版250199-215(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595, 701–706 (2021).Article
McAlpine,C.S。等人。星形胶质细胞白细胞介素-3编程小胶质细胞并限制阿尔茨海默病。自然595701-706(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).Article
Gao,G。等人。腺相关病毒的进化枝在人体组织中广泛传播。J、 维罗尔。786381-6388(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herzog, R. W. Immune responses to AAV capsid: Are mice not humans after all? Mol. Ther. 15, 649–650 (2007).Article
Herzog,R.W。对AAV衣壳的免疫反应:小鼠毕竟不是人类吗?摩尔热。15649-650(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ertl, H. C. J. Preclinical models to assess the immunogenicity of AAV vectors. Cell. Immunol. 342, 103722 (2019).Article
Ertl,H.C.J。评估AAV载体免疫原性的临床前模型。细胞。免疫。342103722(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Martino, A. T. & Markusic, D. M. Immune response mechanisms against AAV vectors in animal models. Mol. Ther. - Methods Clin. Dev. 17, 198–208 (2020).Article
。摩尔热方法临床。德文17198-208(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet 21, 255–272 (2020).Article
Li,C。&Samulski,R。J。用于基因治疗的工程化腺相关病毒载体。《遗传学杂志》第21255-272期(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Loughner, C. L. et al. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum. Genomics 10, 10 (2016).Article
。嗯,基因组学10,10(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med 12, eaay1359 (2020).Article
Kariolis,M.S.等人。在小鼠和猴子中使用Fc片段血脑屏障转运载体进行治疗性蛋白质的脑递送。科学。翻译。医学12,eaay1359(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article
Uhlén,M。等人。基于组织的人类蛋白质组图谱。科学3471260419(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).Article
Yang,A.C.等人。人脑血管图谱揭示了阿尔茨海默病风险的多种介质。自然603885-892(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).Article
Hase,K。等人。M细胞通过FimH+细菌的糖蛋白2摄取启动粘膜免疫应答。《自然》462226-230(2009)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Clifford, D. B. HIV-associated neurocognitive disorder. Curr. Opin. Infect. Dis. 30, 117–122 (2017).Article
Clifford,D.B。HIV相关神经认知障碍。货币。奥平。感染。Dis。30117-122(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peluso, M. J. et al. SARS‐CoV‐2 and mitochondrial proteins in neural‐derived exosomes of COVID‐19. Ann. Neurol. 91, 772–781 (2022).Article
Peluso,M.J.等人。SARS-CoV-2和线粒体蛋白在COVID-19神经衍生的外泌体中。安。神经病学。91772-781(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Friden, P. M. et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88, 4771–4775 (1991).Article
Friden,P.M.等人。抗转铁蛋白受体抗体和抗体-药物偶联物穿过血脑屏障。程序。纳特尔。阿卡德。科学。美国884771-4775(1991)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pardridge, W. M., Kang, Y., Buciak, J. L. & Yang, J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12, 807–816 (1995).Article
Pardridge,W.M.,Kang,Y.,Buciak,J.L。&Yang,J。人胰岛素受体单克隆抗体在体外与人脑毛细血管发生高亲和力结合,并在灵长类动物体内通过血脑屏障快速转胞吞。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boado, R. J. & Pardridge, W. M. Brain and organ uptake in the rhesus monkey in vivo of recombinant iduronidase compared to an insulin receptor antibody-iduronidase fusion protein. Mol. Pharm. 14, 1271–1277 (2017).Article
Boado,R.J。&Pardridge,W.M。与胰岛素受体-抗体-艾杜糖醛酸酶融合蛋白相比,重组艾杜糖醛酸酶在恒河猴体内的脑和器官摄取。Mol.Pharm.141271-1277(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zuchero, Y. J. Y. et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89, 70–82 (2016).Article
Zuchero,Y.J.Y.等人发现了新的血脑屏障靶标,以增强治疗性抗体的大脑摄取。神经元89,70-82(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chew, K. S. et al. CD98hc is a target for brain delivery of biotherapeutics. Nat. Commun. 14, 5053 (2023).Article
Chew,K.S.等人。CD98hc是生物治疗药物脑部递送的靶标。国家公社。145503(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).Article
Challis,R.C.等人。用于啮齿动物中广泛和靶向基因递送的系统性AAV载体。自然协议。14379-414(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, F., Lössl, P., Scheltema, R., Viner, R. & Heck, A. J. R. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017).Article
Liu,F.,Lössl,P.,Scheltema,R.,Viner,R。&Heck,A.J.R。用于蛋白质组范围交联鉴定的优化片段化方案和数据分析策略。国家公社。815473(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50, D543–D552 (2022).Article
Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸Res 50,D543–D552(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kolbowski, L., Combe, C. & Rappsilber, J. xiSPEC: web-based visualization, analysis and sharing of proteomics data. Nucleic Acids Res. 46, W473–W478 (2018).Article
Kolbowski,L.,Combe,C。&Rappsilber,J。xiSPEC:基于网络的蛋白质组学数据可视化,分析和共享。核酸研究46,W473-W478(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).Article
Mastronarde,D.N。使用样本运动的稳健预测进行自动电子显微镜断层扫描。J、 结构。生物学152,36-51(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).Article
Tegunov,D。&Cramer,P。使用Warp进行实时低温电子显微镜数据预处理。自然方法161146-1152(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).Article
Mastronarde,D.N。和Hold,S.R。IMOD中的自动倾斜序列对齐和断层重建。J、 结构。生物学杂志197102-113(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).Article
Zivanov,J。等人。RELION-3中自动高分辨率低温电磁结构测定的新工具。Elife 7,e42166(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Broughton, S. E. et al. A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nat. Commun. 9, 386 (2018).Article
Broughton,S.E.等人。IL-3受体N端结构域在细胞信号传导中的双重作用。国家公社。9386(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DiMattia, M. A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86, 6947–6958 (2012).Article
。J、 维罗尔。866947-6958(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Watanabe, R. et al. The in situ structure of Parkinson’s disease-linked LRRK2. Cell 182, 1508–1518.e16 (2020).Article
Watanabe,R。等人。帕金森病相关LRRK2的原位结构。细胞1821508-1518.e16(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).Article
Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。。27,14-25(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fan, Y. et al. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung’s disease. Cell Stem Cell 30, 264–282.e9 (2023).Article
Fan,Y。等人。hPSC衍生的骶神经嵴可以挽救严重的先天性巨结肠模型。细胞干细胞30264-282.e9(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355.e5 (2021).Article
Kim,T.W.等人。WNT信号的双相激活有助于从hESC衍生中脑多巴胺神经元用于翻译用途。细胞干细胞28343-355.e5(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mirdita, M. et al. ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article
Mirdita,M。等人,ColabFold:使所有人都可以进行蛋白质折叠。自然方法19679-682(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).Article
Mirdita,M.,Steinegger,M。&Söding,J。MMseqs2桌面和本地web服务器应用程序,用于快速,交互式序列搜索。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Catherine Oikonomou for help with manuscript editing. We thank Helen McBride for assistance in establishing collaborations with Charles River Laboratories, Brad Gartland and Lynsey Chatham of Charles River Laboratories for technical assistance, and Máté Borsos for assistance breeding Lrp6 conditional KO mice and providing AAV8 and AAVrh10.
下载参考文献致谢我们感谢Catherine Oikonomou在稿件编辑方面的帮助。我们感谢海伦·麦克布莱德(HelenMcBride)协助与查尔斯河实验室(CharlesRiver Laboratories)建立合作关系,感谢查尔斯河实验室(CharlesRiver Laboratories)的布拉德·加特兰(BradGartland)和林西·查塔姆(LynseyChatham)提供技术援助,感谢MátéBorsos协助培育Lrp6条件性KO小鼠并提供AAV8和AAVrh10。
We thank Nathan Appling for helpful discussion. Cryo-electron microscopy was performed in the Beckman Institute Resource Center for Transmission Electron Microscopy at Caltech. Cross-linking mass spectrometry was performed in the Beckman Institute Proteome Exploration Laboratory. Surface plasmon resonance was performed in the Beckman Institute Protein Expression Center.
我们感谢Nathan Appling的有益讨论。低温电子显微镜是在加州理工学院贝克曼研究所透射电子显微镜资源中心进行的。交联质谱法在贝克曼研究所蛋白质组探索实验室进行。。
Figures were created using imagery from BioRender. This project was supported by the Center for Molecular and Cellular Neuroscience in the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech (to V.G.), the Beckman Institute CLOVER Center (to T.F.S. and V.G.), NIH PIONEER DP1NS111369 (to V.G.), and NIH BRAIN Initiative Armamentarium UF1MH128336 (to V.G.
数字是使用BioRender的图像创建的。该项目得到了天桥分子与细胞神经科学中心和加州理工学院Chrissy Chen神经科学研究所(致V.G.),贝克曼研究所三叶草中心(致T.F.S.和V.G.),NIH先驱DP1NS111369(致V.G.)和NIH脑倡议武器库UF1MH128336(致V.G.)的支持。
and T.F.S.).Author informationAuthor notesThese authors contributed equally: Timothy F. Shay, Seongmin Jang, Tyler J. Brittain, Xinhong Chen.Authors and AffiliationsDivision of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USATimothy F. Shay, Seongmin Jang, Tyler J.
和T.F.S.)。作者信息作者注意到这些作者做出了同样的贡献:Timothy F.Shay,Seongmin Jang,Tyler J.Brittain,Xinhong Chen。作者和附属机构加利福尼亚理工学院生物与生物工程系,加利福尼亚州帕萨迪纳,91125,USATimothy F.Shay,Seongmin Jang,Tyler J。
Brittain, Xinhong Chen, Yujie Fan, Damien A. Wolfe, Cynthia M. Arokiaraj, Erin E. Sullivan, Xiaozhe Ding, Ting-Yu Wang, Yaping Lei, Miguel R. Chuapoco, Tsui-Fen Chou & Viviana GradinaruCharles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UKBeth Walker & Claire TebbuttAuthorsTimothy F.
Brittain,Xinhong Chen,Yujie Fan,Damien A.Wolfe,Cynthia M.Arokiaraj,Erin E.Sullivan,Xiaozhe Ding,Ting Yu Wang,Yaping Lei,Miguel R.Chuapoco,Tsui Fen Chou&Viviana GradinaruCharles River Laboratories,High Peak Business Park,Buxton Road,Chinley,SK23 6FJ,UKBeth Walker&Claire TebbuthorsTimothy F。
ShayView author publications.
ShayView作者出版物。
PubMed Google ScholarSeongmin JangView author publicationsYou can also search for this author in
PubMed Google ScholarSeongmin JangView作者出版物您也可以在
PubMed Google ScholarTyler J. BrittainView author publicationsYou can also search for this author in
PubMed Google ScholarTyler J.BrittainView作者出版物您也可以在
PubMed Google ScholarXinhong ChenView author publicationsYou can also search for this author in
PubMed Google ScholarBeth WalkerView author publicationsYou can also search for this author in
PubMed Google ScholarBeth WalkerView作者出版物您也可以在
PubMed Google ScholarClaire TebbuttView author publicationsYou can also search for this author in
PubMed Google ScholarClaire TebbuttView作者出版物您也可以在
PubMed Google ScholarYujie FanView author publicationsYou can also search for this author in
PubMed Google ScholarYujie FanView作者出版物您也可以在
PubMed Google ScholarDamien A. WolfeView author publicationsYou can also search for this author in
PubMed Google ScholarDamien A.WolfeView作者出版物您也可以在
PubMed Google ScholarCynthia M. ArokiarajView author publicationsYou can also search for this author in
PubMed Google ScholarCynthia M.ArokiarajView作者出版物您也可以在
PubMed Google ScholarErin E. SullivanView author publicationsYou can also search for this author in
PubMed Google ScholarErin E.SullivanView作者出版物您也可以在
PubMed Google ScholarXiaozhe DingView author publicationsYou can also search for this author in
PubMed Google ScholarXiaozhe DingView作者出版物您也可以在
PubMed Google ScholarTing-Yu WangView author publicationsYou can also search for this author in
PubMed Google ScholarTing Yu WangView作者出版物您也可以在
PubMed Google ScholarYaping LeiView author publicationsYou can also search for this author in
PubMed Google ScholarYaping LeiView作者出版物您也可以在
PubMed Google ScholarMiguel R. ChuapocoView author publicationsYou can also search for this author in
PubMed Google Scholarmamiguel R.ChuapocoView作者出版物您也可以在
PubMed Google ScholarTsui-Fen ChouView author publicationsYou can also search for this author in
PubMed Google ScholarTsui Fen ChouView作者出版物您也可以在
PubMed Google ScholarViviana GradinaruView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsT.F.S., S.J., and V.G. conceived the project. T.F.S., S.J., and V.G. wrote the manuscript and prepared figures with input from all authors. T.F.S., X.C., E.E.S., Y.L., S.J., and M.R.C. produced AAVs. B.W. and C.T. performed cell microarray screening.
PubMed谷歌学术贡献者。F、 。T、 F.S.,S.J。和V.G.撰写了手稿,并根据所有作者的意见准备了数字。T、 F.S.,X.C.,E.E.S.,Y.L.,S.J。和M.R.C.生产了AAV。B、 W.和C.T.进行了细胞微阵列筛选。
S.J. produced recombinant receptor protein and performed pull-down assays, T.J.B., T.Y.W., and T.F.C. performed cross-linking mass spectrometry experiments. C.M.A. and E.E.S performed cell culture potency assays. T.F.S. and S.J. performed SPR experiments. X.D. performed AlphaFold modeling. X.C. and D.A.W.
S、 J.产生重组受体蛋白并进行下拉测定,T.J.B.,T.Y.W。和T.F.C.进行交联质谱实验。C、 M.A.和E.E.S进行了细胞培养效力测定。T、 。十、 D.进行AlphaFold建模。十、 C.和D.A.W。
performed mouse experiments. X.C. performed primary cell culture experiments. T.J.B. collected and T.J.B. and S.J. analyzed cryo-electron tomography data. Y.F. performed hPSC cell culture experiments. T.F.S and V.G. supervised and funded the project.Corresponding authorsCorrespondence to.
进行了小鼠实验。十、 C.进行原代细胞培养实验。T、 J.B.收集并分析了低温电子断层扫描数据。Y、 F.进行hPSC细胞培养实验。T、 F.S和V.G.监督并资助了该项目。通讯作者通讯。
Timothy F. Shay or Viviana Gradinaru.Ethics declarations
蒂莫西·谢伊(TimothyF.Shay)或维维亚娜·格拉迪纳鲁(VivianaGradinaru)。道德宣言
Competing interests
相互竞争的利益
The California Institute of Technology has a patent pending for the delivery methods identified in this manuscript, with T.F.S, X.C., S.J., and V.G. listed as inventors (PCT Patent Application No: PCT/US2024/0139329) and a provisional patent for the sequences described in this manuscript, with S.J., T.J.B., T.F.S., and V.G listed as inventors.
。
V.G. is a co-founder and board of directors member of Capsida Therapeutics, a fully integrated AAV engineering and gene therapy company. T.F.S and V.G. are co-founders and X.C. and X.D. are co-founders and employees of Receptive Biotherapeutics. B.W. and C.T. are employees of Charles River Laboratories.
五、 G.是Capsida Therapeutics的联合创始人和董事会成员,Capsida Therapeutics是一家全面整合的AAV工程和基因治疗公司。T、 F.S和V.G.是联合创始人,X.C.和X.D.是接受性生物治疗学的联合创始人和员工。B、 W.和C.T.是查尔斯河实验室的员工。
The remaining authors declare no competing interests..
其余作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleShay, T.F., Jang, S., Brittain, T.J. et al. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder.
转载和许可本文引用本文Shay,T.F.,Jang,S.,Brittain,T.J。等人。人类细胞表面AAV相互作用组将LRP6鉴定为血脑屏障转胞吞作用受体,将免疫细胞因子IL3鉴定为AAV9粘合剂。
Nat Commun 15, 7853 (2024). https://doi.org/10.1038/s41467-024-52149-0Download citationReceived: 06 June 2024Accepted: 27 August 2024Published: 08 September 2024DOI: https://doi.org/10.1038/s41467-024-52149-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》157853(2024)。https://doi.org/10.1038/s41467-024-52149-0Download引文接收日期:2024年6月6日接受日期:2024年8月27日发布日期:2024年9月8日OI:https://doi.org/10.1038/s41467-024-52149-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。