商务合作
动脉网APP
可切换为仅中文
AbstractSimultaneous imaging of the SPECT tracer 131I and PET tracer 18F is important in the diagnosis of high- and low-grade thyroid cancers because high-grade thyroid cancers have high 18F-FDG and low 131I uptake, while low-grade thyroid cancers have high 131I and low 18F-FDG uptake. In this study, Na131I and 18F-FDG were simultaneously imaged using the Compton-PET system, in vivo.
SPECT示踪剂131I和PET示踪剂18F的同时成像在高级别和低级别甲状腺癌的诊断中很重要,因为高级别甲状腺癌具有高18F-FDG和低131I摄取,而低级别甲状腺癌具有高131I和低18F-FDG摄取。在这项研究中,使用康普顿PET系统在体内同时对Na131I和18F-FDG进行成像。
The angular resolution and sensitivity of the Compton camera with 356 keV gamma ray measured using a 133Ba point source were 12.3° and 2 × 10−5, respectively. The spatial resolution and sensitivity of PET were measured with a 22Na point source. The transaxial and axial spatial resolutions of the PET at the center of the FOV were 1.15 mm and 2.04 mm, respectively.
使用133Ba点源测量的具有356 keV伽马射线的康普顿相机的角度分辨率和灵敏度分别为12.3°和2×10-5。用22Na点源测量PET的空间分辨率和灵敏度。PET在FOV中心的横轴和轴向空间分辨率分别为1.15 mm和2.04 mm。
Its sensitivity was 1.2 × 10−4. In-vivo images of the 18F and 131I isotopes were simultaneously acquired from mice. These showed that 18F-FDG was active in the heart, brown fat, and brain, while Na131I was active in the thyroid, stomach, and bladder. Artifacts were found in the Compton camera images when the activity of 131I was much lower than that of 18F.
其灵敏度为1.2×10-4。同时从小鼠获得18F和131I同位素的体内图像。这些表明18F-FDG在心脏,棕色脂肪和大脑中具有活性,而Na131I在甲状腺,胃和膀胱中具有活性。当131I的活性远低于18F时,在康普顿相机图像中发现了伪影。
This study demonstrates the potential of simultaneous clinical imaging of 18F and 131I..
这项研究证明了18F和131I同时临床成像的潜力。。
IntroductionThe in-vivo imaging of radioisotopes is significant for diagnosing various diseases in nuclear medicine. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most used methods1,2.SPECT uses collimators, such as parallel holes and pin holes, made of materials that absorb gamma rays.
引言放射性同位素的体内成像对于诊断核医学中的各种疾病具有重要意义。单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)是最常用的方法1,2。SPECT使用准直器,如平行孔和针孔,由吸收伽马射线的材料制成。
A system response is based on the geometry of the collimators. SPECT can perform multiple nuclide imaging by accepting different energy windows corresponding to different gamma ray energies; however, it is limited to low-energy gamma rays because high-energy gamma rays can penetrate the collimators.
系统响应基于准直器的几何形状。SPECT可以通过接受对应于不同伽马射线能量的不同能量窗口来进行多核素成像;然而,它仅限于低能伽马射线,因为高能伽马射线可以穿透准直器。
The penetrating gamma rays generate a background in the image, degrading the correlation between the actual activity and voxel intensity in the image. It indicates the possibility that the Compton camera, which will be explained later, might outperform SPECT if the incident energy is high3.PET takes gamma rays from positron–electron annihilations.
穿透性伽马射线在图像中产生背景,降低了实际活动与图像中体素强度之间的相关性。这表明,如果入射能量较高,康普顿相机(稍后将解释)可能会优于SPECT。PET从正电子湮没中获取伽马射线。
The gamma rays are emitted collinearly. The energy of both gamma rays is 511 keV. If the two annihilation gamma rays interact with the detectors within a short time, a coincidence event is recorded. The image is reconstructed with lines of response (LORs) using the collinear property of the direction of the annihilation gamma rays.
伽马射线是共线发射的。两种伽马射线的能量都是511 keV。如果两条湮灭伽马射线在短时间内与探测器相互作用,则会记录一个巧合事件。利用湮没伽马射线方向的共线特性,用响应线(LOR)重建图像。
All positron–electron annihilation events generate gamma rays of the same energy. Therefore, identifying different isotopes that emit positrons using only coincidence events of two 511 keV gamma rays is impossible. Prompt gamma rays can be used to identify different positron emitters. Several studies have been conducted on multinuclide imaging of PET tracers using prompt gamma rays4,5,6.
所有正电子-电子湮灭事件都会产生相同能量的伽马射线。因此,仅使用两个511 keV伽马射线的重合事件来识别发射正电子的不同同位素是不可能的。瞬发伽马射线可以用来识别不同的正电子发射体。已经使用瞬发伽马射线对PET示踪剂的多核素成像进行了几项研究4,5,6。
In these studies, extra detectors were used to increase the sensitivity of triple co.
在这些研究中,使用额外的检测器来提高三重co的灵敏度。
(1)
(1)
where \({m}_{0}{c}^{2}\) is the mass of electron at rest, \({E}_{inc}\) is the energy of the incident gamma ray, and \({E}_{sca}\) is the deposit energy of the scatter detector. Compton cameras have been used in various fields, including space telescopes, environmental monitoring, beam-range monitoring during particle therapy, and preclinical and clinical imaging applications7,8,9,10,11.Another advantage of the Compton camera is that it can be more easily combined with PET than with SPECT because it does not require collimators.
在哪里\({m}_{0}{c}^{2}\)是静止时的电子质量\({E}_{inc}\)是入射伽马射线的能量,并且\({E}_{sca}\)是散射检测器的沉积能量。康普顿相机已被用于各个领域,包括空间望远镜,环境监测,粒子治疗过程中的光束范围监测,以及临床前和临床成像应用7,8,9,10,11。康普顿相机的另一个优点是它可以更容易地与PET结合,而不是与SPECT结合,因为它不需要准直器。
Several studies have been conducted on multinuclide imaging using a Compton camera and PET9,12,13,14,15. Combining PET and Compton cameras as SPECT scanners for simultaneously imaging PET and SPECT tracers has many advantages. This relieves the burden on patients who require multiple PET and SPECT scans.
。结合PET和康普顿相机作为SPECT扫描仪,同时对PET和SPECT示踪剂进行成像具有许多优点。这减轻了需要多次PET和SPECT扫描的患者的负担。
If multiple tracers are imaged separately, the patient’s physiological conditions may vary and affect the images, reducing the accuracy of the evaluation. Separate PET and SPECT scans require separate registrations. In addition, patients receive a higher dose from computed tomography (CT) scans, approximately 5–9 mSv per scan, because PET and SPECT require CT images for attenuation correction.
如果多个示踪剂分别成像,患者的生理状况可能会发生变化并影响图像,从而降低评估的准确性。单独的PET和SPECT扫描需要单独的注册。此外,患者接受计算机断层扫描(CT)扫描的剂量更高,每次扫描约5-9 mSv,因为PET和SPECT需要CT图像进行衰减校正。
Simultaneous measurement can facilitate the diagnosis of tumors with different uptake values with different tracers, such as differentiated and undifferentiated thyroid carcinoma16.Previously, we demonstrated the world’s first Compton-PET, in which two Compton cameras were used to image SPECT and PET tracers17.
同时测量可以促进用不同示踪剂诊断具有不同摄取值的肿瘤,例如分化型和未分化型甲状腺癌16。之前,我们展示了世界上第一个康普顿PET,其中两个康普顿相机用于对SPECT和PET示踪剂成像17。
Subsequently, we demonstrated the world’s first Compton–PET simultaneous in-vivo imaging of 111In and 18F, followed by the simultaneous 2D imaging of 131I and 18F using Compton–PET with two Compton camera modules facing each other13,.
随后,我们展示了世界上第一个康普顿-PET同时体内成像111In和18F,然后使用康普顿-PET同时进行131I和18F的2D成像,两个康普顿相机模块相互面对13,。
(2)
(2)
where \({\theta }_{G}\) is the scattering angle calculated from the geometric projection, and \({\theta }_{E}\) is the scattering angle calculated from the energy deposits. For the ARM measurements, the sources were placed at the center of the FOV. The sensitivity was calculated from the point sources at the center of the FOV.
其中\({\θ}{G}\)是从几何投影计算的散射角,\({\θ}{E}\)是从能量沉积计算的散射角。对于手臂测量,源被放置在FOV的中心。灵敏度是从FOV中心的点源计算出来的。
It was calculated as the total number of recorded events with \(2\times \) FWHM of the ARM divided by the total number of disintegrations. The FWHM of the ARM was measured using Lorentzian fitting. The images were reconstructed simultaneously by placing the sources 20 mm apart.The sensitivity of the Compton camera to each energy level was measured based on the FWHM of the ARM.
它被计算为记录的事件总数,其中手臂的“2倍”FWHM除以崩解总数。。通过将源相距20毫米同时重建图像。基于手臂的FWHM测量康普顿相机对每个能级的灵敏度。
It was assumed that coincident events that were far away from the peak of the ARM distribution did not provide meaningful information for image reconstruction. The ROI for the sensitivity calculation was set \(2\times \) FWHM of the ARM. Sensitivity is the number of events within the ROI divided by the number of disintegrations.PET sensitivity was measured by dividing the number of coincidence events by the number of disintegrations.The following equation was used in the calculation of spatial resolution at the center of the FOV:$$FWHM \left(\text{mm}\right)=l\times \text{tan}\left(FWHM of ARM\right)$$.
假设远离手臂分布峰值的重合事件不能为图像重建提供有意义的信息。灵敏度计算的ROI设置为手臂的(2倍)FWHM。灵敏度是ROI内的事件数除以崩解次数。通过将巧合事件的数量除以崩解的数量来测量PET的敏感性。以下等式用于计算FOV中心的空间分辨率:$$FWHM \ left(\ text{mm}\ right)=l \ times \ text{tan}\ left(手臂的FWHM \ right)$$。
(3)
(3)
where \(l\) is the distance between the scatterer surface and the point of interest. The spatial resolution at the center of FOV was evaluated with 10 iterations of MLEM.Phantom measurementThis study used a 3D-printed phantom. The structure comprised five rods of 15 mm, 12 mm, 9 mm, 6 mm, and 3 mm diameters.
其中\(l \)是散射体表面与感兴趣点之间的距离。通过10次MLEM迭代评估FOV中心的空间分辨率。幻影测量本研究使用3D打印的幻影。该结构由五根直径分别为15毫米、12毫米、9毫米、6毫米和3毫米的杆组成。
The distance from the transaxial center to the center of each circle was 21 mm. Figure 8 shows the phantoms used in this study. The heights of all the rods were set to 5 mm. The activity densities of 18F-FDG and Na131I measurements were 1.68 MBq/mL and 1.151 MBq/mL, respectively. The phantom measurement for both isotopes was 1 h.Fig.
从横轴中心到每个圆中心的距离为21毫米。图8显示了本研究中使用的幻影。所有杆的高度设置为5毫米。18F-FDG和Na131I测量的活性密度分别为1.68 MBq/mL和1.151 MBq/mL。两种同位素的幻影测量均为1小时。图。
8(a) The schematic of the phantom used in this study. (b) A photograph of the phantom printed from a 3D printer.Full size imageData acquisitionThis study independently processed the coincidence data for Compton imaging and PET. Time windows of 250 ns and 80 ns were used for Compton imaging and PET, respectively.
8(a)本研究中使用的幻影示意图。(b) 从3D打印机打印的幻影照片。全尺寸图像数据采集本研究独立处理康普顿成像和PET的符合数据。康普顿成像和PET分别使用250 ns和80 ns的时间窗口。
Table 2 lists the energy windows of the Compton camera. 133Ba had a higher low threshold for scatter energy owing to the characteristic X-rays from 133Ba and 137Cs (32 keV and 31 keV, respectively). An energy window of 459.9 keV < Eabs < 562.1 keV was for PET data acquisition.Table 2 Energy windows for data acquisition of Compton camera of each incident gamma energy.Full size table.
表2列出了康普顿相机的能量窗口。由于来自133Ba和137Cs的特征X射线(分别为32 keV和31 keV),133Ba具有较高的散射能量低阈值。PET数据采集的能量窗口为459.9 keV,Eabs为562.1 keV。表2康普顿相机每次入射伽马能量数据采集的能量窗口。全尺寸表。
Data availability
数据可用性
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
本研究中使用和/或分析的数据集可根据合理要求从通讯作者处获得。
ReferencesKnoll, G. F. Single-photon emission computed tomography. Proc. IEEE 71, 320–332 (1983).
参考文献Knoll,G.F。单光子发射计算机断层扫描。程序。IEEE 71320–332(1983)。
Google Scholar
谷歌学者
Ter Pogossian, M. M., Phelps, M. E., Hoffman, E. J. & Mullani, N. A. A positron emission transaxial tomograph for nuclear imaging (PETT). Radiology 114, 89–98 (1975).PubMed
Ter Pogossian,M.M.,Phelps,M.E.,Hoffman,E.J。&Mullani,N.A。用于核成像的正电子发射横轴断层扫描仪(PETT)。放射学114,89-98(1975)。PubMed出版社
Google Scholar
谷歌学者
Fontana, M., Dauvergne, D., Létang, J. M., Ley, J. L. & Testa, E. Compton camera study for high efficiency SPECT and benchmark with Anger system. Phys. Med. Biol. 62, 8794–8812 (2017).PubMed
Fontana,M.,Dauvergne,D.,Létang,J.M.,Ley,J.L。和Testa,E.Compton相机研究,用于高效SPECT和Anger系统的基准测试。物理。医学生物学。628794-8812(2017)。PubMed出版社
Google Scholar
谷歌学者
Andreyev, A. & Celler, A. Dual-isotope PET using positron-gamma emitters. Phys. Med. Biol. 56, 4539–4556 (2011).PubMed
Andreyev,A。&Celler,A。使用正电子γ发射体的双同位素PET。物理。医学生物学。564539-4556(2011)。PubMed出版社
Google Scholar
谷歌学者
Fukuchi, T. et al. Image reconstruction method for dual-isotope positron emission tomography. J. Instrum. 16, P01035 (2021).
Fukuchi,T。等人。双同位素正电子发射断层扫描的图像重建方法。J、 仪器。16,P01035(2021)。
Google Scholar
谷歌学者
Gonzalez, E., Olcott, P. D., Bieniosek, M. & Levin, C. S. Methods for increasing the sensitivity of simultaneous multi-isotope positron emission tomography eric. IEEE Nucl. Sci. Symp. Conf. Rec. https://doi.org/10.1109/NSSMIC.2011.6153676 (2011).
Gonzalez,E.,Olcott,P.D.,Bieniosek,M。&Levin,C.S。提高同时多同位素正电子发射断层扫描eric灵敏度的方法。。科学。症状。配置记录。https://doi.org/10.1109/NSSMIC.2011.6153676(2011年)。
Google Scholar
谷歌学者
Watanabe, S. et al. A Si/CdTe semiconductor Compton camera. IEEE Trans. Nucl. Sci. 52, 2045–2051 (2005).ADS
Watanabe,S.等人,Si/CdTe半导体康普顿相机。IEEE Trans。核。科学。522045-2051(2005)。广告
Google Scholar
谷歌学者
Sato, Y. et al. Radiation imaging using a compact Compton camera inside the Fukushima Daiichi Nuclear Power Station building. J. Nucl. Sci. Technol. 55, 965–970 (2018).
Sato,Y.等人在福岛第一核电站大楼内使用小型康普顿相机进行辐射成像。J、 核。科学。技术。55965-970(2018)。
Google Scholar
谷歌学者
Motomura, S., Kanayama, Y., Haba, H., Watanabe, Y. & Enomoto, S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J. Anal. At. Spectrom. 23, 1089–1092 (2008).
Motomura,S.,Kanayama,Y.,Haba,H.,Watanabe,Y。&Enomoto,S。使用半导体康普顿相机在活体小鼠中进行多分子同时成像。J、 。在Spectrom。231089-1092(2008)。
Google Scholar
谷歌学者
Parajuli, R. K., Sakai, M., Parajuli, R. & Tashiro, M. Development and applications of Compton camera—A review. Sensors 22, 7374 (2022).ADS
Parajuli,R.K.,Sakai,M.,Parajuli,R。和Tashiro,M。康普顿相机的发展和应用-综述。传感器227374(2022)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tashima, H. & Yamaya, T. Compton imaging for medical applications. Radiol. Phys. Technol. 15, 187–205 (2022).PubMed
Tashima,H。和Yamaya,T。Compton imaging for medical applications。放射性。物理。技术。15187-205(2022)。PubMed出版社
Google Scholar
谷歌学者
Sakai, M. et al. In vivo simultaneous imaging with 99mTc and 18F using a Compton camera. Phys. Med. Biol. 63, 205006 (2018).PubMed
Sakai,M.等人。使用康普顿相机用99mTc和18F进行体内同时成像。物理。医学生物学。63205006(2018)。PubMed出版社
Google Scholar
谷歌学者
Uenomachi, M. et al. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci. Rep. 11, 1–11 (2021).
Uenomachi,M.等人。使用康普顿PET混合相机与PET和SPECT示踪剂同时进行体内成像。科学。。
Google Scholar
谷歌学者
Kishimoto, A. et al. First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 7, 1–7 (2017).ADS
Kishimoto,A.等人。首次使用超小型康普顿相机演示多色3-D体内成像。科学。代表7,1-7(2017)。广告
Google Scholar
谷歌学者
Yoshida, E. et al. Whole gamma imaging: A new concept of PET combined with Compton imaging. Phys. Med. Biol. 65, 125013 (2020).PubMed
吉田,E。等。全伽马成像:PET与康普顿成像相结合的新概念。物理。医学生物学。65125013(2020)。PubMed出版社
Google Scholar
谷歌学者
Treglia, G., Bertagna, F., Piccardo, A. & Giovanella, L. 131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound?. Clin. Transl. Imaging 1, 175–183 (2013).
Treglia,G.,Bertagna,F.,Piccardo,A。&Giovanella,L。131I全身扫描或18FDG PET/CT用于甲状腺球蛋白升高和超声阴性的患者?。临床。翻译。成像1175-183(2013)。
Google Scholar
谷歌学者
Shimazoe, K. et al. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954, 161499 (2020).
Shimazoe,K.等人。使用基于GAGG SiPM的像素检测器同时进行PET和康普顿成像的开发。核。仪器。方法物理。决议第节。加速器。光谱。检测。《联合装备》954161499(2020)。
Google Scholar
谷歌学者
Ogane, K. et al. Simultaneous measurements of single gamma ray of 131I and annihilation radiation of 18F with Compton PET hybrid camera. Appl. Radiat. Isot. 176, 109864 (2021).PubMed
Ogane,K.等人。用康普顿PET混合相机同时测量131I的单个伽马射线和18F的湮灭辐射。应用。辐射。Isot。176109864(2021)。PubMed出版社
Google Scholar
谷歌学者
Goorden, M. C. et al. VECTor: A preclinical imaging system for simultaneous submillimeter SPECT and PET. J. Nucl. Med. 54, 306–312 (2013).PubMed
Goorden,M.C.等人。VECTor:用于同时进行亚毫米SPECT和PET的临床前成像系统。J、 核。医学54306-312(2013)。PubMed出版社
Google Scholar
谷歌学者
Prieto, E. et al. Performance evaluation of a preclinical SPECT/CT system for multi-animal and multi-isotope quantitative experiments. Sci. Rep. 12, 1–13 (2022).
Prieto,E.等人。用于多动物和多同位素定量实验的临床前SPECT/CT系统的性能评估。科学。代表12,1-13(2022年)。
Google Scholar
谷歌学者
Dong, X., Saripan, M. I., Mahmud, R., Mashohor, S. & Wang, A. Characterization of SIEMENS symbia T SPECT camera in Monte Carlo simulation environment Pakistan. J. Nucl. Med. 8, 18–26 (2018).
Dong,X.,Saripan,M.I.,Mahmud,R.,Mashohohor,S.&Wang,A.在巴基斯坦蒙特卡罗模拟环境中表征西门子symbia T SPECT相机。J、 核。医学杂志8,18-26(2018)。
Google Scholar
谷歌学者
Liyanaarachchi, M. R., Shimazoe, K., Takahashi, H., Kobayashi, E. & Sakuma, I. Simulation study on system configuration refinement for the PET–laparoscope system—An intraoperative tool for surgical navigation in gastric cancer surgery. Biomed. Phys. Eng. Express 5(1), 015002 (2018).
Liyanaarachchi,M.R.,Shimazoe,K.,Takahashi,H.,Kobayashi,E。&Sakuma,I。PET腹腔镜系统系统配置优化的模拟研究-胃癌手术中手术导航的术中工具。生物医学。物理。《工程快报》5(1),015002(2018)。
Google Scholar
谷歌学者
Ordonez, C. E. Angular uncertainties due to geometry and spatial resolution in compton cameras. IEEE Trans. Nucl. Sci. 46, 1142–1147 (1999).ADS
Ordonez,C.E。康普顿相机中由于几何和空间分辨率引起的角度不确定性。IEEE Trans。核。科学。461142-1147(1999)。广告
Google Scholar
谷歌学者
Ordonez, C. E., Bolozdynya, A. & Chang, W. Dependence of angular uncertainties on the energy resolution of Compton cameras. IEEE Nucl. Sci. Symp. 2, 1122–1125 (1998).
Ordonez,C.E.,Bolozdynya,A。&Chang,W。角度不确定性对康普顿相机能量分辨率的依赖性。。科学。症状。21122-1125(1998)。
Google Scholar
谷歌学者
Hitomi, K. et al. Recent development of TlBr gamma-ray detectors. IEEE Trans. Nucl. Sci. 58, 1987–1991 (2011).ADS
Hitomi,K.等人。TlBrγ射线探测器的最新发展。IEEE Trans。核。科学。581987-1991(2011)。广告
Google Scholar
谷歌学者
Ramachers, Y. & Stewart, D. Y. Energy resolution improvement in room-temperature CZT detectors. J. Instrum. 2, P12003–P12003 (2007).
Ramachers,Y。&Stewart,D.Y。室温CZT探测器的能量分辨率改进。J、 仪器。2,P12003–P12003(2007)。
Google Scholar
谷歌学者
Frame, E. et al. Coded aperture and Compton imaging for the development of 225Ac-based radiopharmaceuticals. Med. Phys. 50, 6454–6468 (2023).PubMed
Frame,E.等人。用于开发基于225Ac的放射性药物的编码孔径和康普顿成像。医学物理。506454-6468(2023)。PubMed出版社
Google Scholar
谷歌学者
Nakano, T. et al. Imaging of 99m Tc-DMSA and 18 F-FDG in humans using a Si/CdTe Compton camera Imaging of 99m Tc-DMSA and 18 F-FDG in humans using a Si/CdTe Compton camera. Phys. Med. Biol. 65, 2–8 (2020).
。物理。医学生物学。65,2-8(2020)。
Google Scholar
谷歌学者
Yoshihara, Y. et al. Development of electron-tracking Compton imaging system with 30-μm SOI pixel sensor. J. Instrum. 12, C01045 (2017).
Yoshihara,Y.等人。具有30μmSOI像素传感器的电子跟踪康普顿成像系统的开发。J、 仪器。12,C01045(2017)。
Google Scholar
谷歌学者
Kim, S. M. et al. Resolution recovery reconstruction for a Compton camera. Phys. Med. Biol. 58, 2823–2840 (2013).PubMed
Kim,S.M.等人,《康普顿相机的分辨率恢复重建》。物理。医学生物学。582823-2840(2013)。PubMed出版社
Google Scholar
谷歌学者
De Jong, H. et al. Correction methods for missing data in sinograms of the HRRT PET scanner. IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2, 1202–1205 (2002).
DeJong,H。等人。HRRT PET扫描仪正弦图中缺失数据的校正方法。。科学。症状。医学影像形态21202-1205(2002)。
Google Scholar
谷歌学者
Kamada, K. et al. Cz grown 2-in size Ce:Gd3(Al, Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. (Amst.) 36, 1942–1945 (2014).ADS
Kamada,K。等人Cz生长的2英寸尺寸的Ce:Gd3(al,Ga)5O12单晶;Al,Ga位置占用与闪烁特性之间的关系。选择。马特。(Amst。)361942-1945(2014)。广告
Google Scholar
谷歌学者
Shimazoe, K. et al. Dynamic time over threshold method. IEEE Trans. Nucl. Sci. 59, 3213–3217 (2012).ADS
Shimazoe,K。等人。动态时间超过阈值方法。IEEE Trans。核。科学。593213-3217(2012)。广告
Google Scholar
谷歌学者
Sato, S., Uenomachi, M. & Shimazoe, K. Development of multichannel high time resolution data acquisition system for TOT-ASIC. IEEE Trans. Nucl. Sci. 68, 1801–1806 (2021).ADS
Sato,S.,Uenomachi,M。和Shimazoe,K。为TOT-ASIC开发多通道高时间分辨率数据采集系统。IEEE Trans。核。科学。681801-1806(2021)。广告
Google Scholar
谷歌学者
Huesman, R. H. et al. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling. IEEE Trans. Med. Imaging 19, 532–537 (2000).PubMed
Huesman,R.H。等人。列表模式最大似然重建应用于不规则采样的正电子发射乳房X线照相术(PEM)。IEEE Trans。医学成像19532-537(2000)。PubMed出版社
Google Scholar
谷歌学者
Shepp, L. A. & Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982).PubMed
Shepp,L.A。和Vardi,Y。发射断层扫描的最大似然重建。IEEE Trans。医学影像学1113-122(1982)。PubMed出版社
Google Scholar
谷歌学者
Hudson, H. M. & Larkin, R. S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994).PubMed
Hudson,H.M。&Larkin,R.S。使用投影数据的有序子集加速图像重建。IEEE Trans。医学成像13601-609(1994)。PubMed出版社
Google Scholar
谷歌学者
Maxim, V. et al. Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3D reconstruction of Compton camera images. Phys. Med. Biol. 61, 243–264 (2015).PubMed
Maxim,V。等人。康普顿相机图像列表模式MLEM三维重建中系统矩阵和灵敏度的概率模型和数值计算。物理。医学生物学。61243-264(2015)。PubMed出版社
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by Japan Society for the Promotion of Science grant 23H00278 (KS) Japan Society for the Promotion of Science grant 22H05022 (KS)FundingThis work was supported by Japan Society for the Promotion of Science grant 23H00278 (KS).
下载参考文献致谢这项工作得到了日本科学促进会23H00278(KS)日本科学促进会22H05022(KS)基金的支持。这项工作得到了日本科学促进会23H00278(KS)的支持。
Japan Society for the Promotion of Science grant 22H05022 (KS).Author informationAuthors and AffiliationsDepartment of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, JapanDonghwan Kim, Kenji Shimazoe & Hiroyuki TakahashiDepartment of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, JapanLinlin Yan & Hiroyuki TakahashiDepartment of Nuclear Medicine, International University of Health and Welfare, 1-4-3 Mita, Minato City, Tokyo, JapanKenichiro OganeInstitute for Materials Research, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, JapanMasao YoshinoNew Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, JapanKei KamadaUnit of Synergetic Studies for Space, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, JapanMizuki UenomachiAuthorsDonghwan KimView author publicationsYou can also search for this author in.
日本科学促进会拨款22H05022(KS)。作者信息作者和附属机构东京大学核工程与管理系,东京文京市7-3-1 Hongo,东京,日本东焕金,岛崎健二和高桥弘行东京大学生物工程系,东京文京市7-3-1 Hongo,东京,日本林林燕和高桥弘行国际健康与福利大学核医学系,东京都米塔市1-4-3,日本北洋大学材料研究所,阿拉木本6-6-10 Aoba宫城县仙台青坝区980-8579,东北大学日本正雄吉农新产业创造孵化中心,6-6-10,宫城县仙台青坝区阿拉马基青坝区980-8579,京都大学协同空间研究日本龟田单位,北川,酒神区,京都,606-8502,日本水上大学作者东川KimView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarLinlin YanView author publicationsYou can also search for this author in
PubMed Google ScholarLinlin YanView作者出版物您也可以在
PubMed Google ScholarKenji ShimazoeView author publicationsYou can also search for this author in
PubMed Google ScholarKenji ShimazoeView作者出版物您也可以在
PubMed Google ScholarHiroyuki TakahashiView author publicationsYou can also search for this author in
PubMed谷歌学者Hiroyuki TakahashiView作者出版物您也可以在
PubMed Google ScholarKenichiro OganeView author publicationsYou can also search for this author in
PubMed Google ScholarMasao YoshinoView author publicationsYou can also search for this author in
PubMed Google ScholarMasao YoshinoView作者出版物您也可以在
PubMed Google ScholarKei KamadaView author publicationsYou can also search for this author in
PubMed Google ScholarKei KamadaView作者出版物您也可以在
PubMed Google ScholarMizuki UenomachiView author publicationsYou can also search for this author in
PubMed Google Scholarmarizuki UenomachiView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: KO, KS, MU. Scintillator Provision: KK. DAQ: MY. System Geometry Design: MU. Mice Preparation and Handling: LY. Equipment Installation: DK, LY. Image Reconstruction: DK. Investigation: DK. Visualization: DK. Supervision: HT, KS.
PubMed谷歌学术贡献概念:KO,KS,MU。闪烁体提供:KK。数据采集:我的。系统几何设计:MU。小鼠准备和处理:LY。设备安装:DK,LY。图像重建:DK。调查:DK。可视化:DK。监督:HT,KS。
Writing—Original Draft: DK. Writing—Review & Editing: DK, KS.Corresponding authorCorrespondence to.
撰写原稿:DK。撰写评论和编辑:DK,KS。对应作者对应。
Donghwan Kim.Ethics declarations
金东焕。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figures.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKim, D., Yan, L., Shimazoe, K. et al. Demonstration of in-vivo simultaneous 3D imaging with 18F-FDG and Na131I using Compton–PET system.
转载和许可本文引用本文Kim,D.,Yan,L.,Shimazoe,K。等人使用Compton-PET系统演示18F-FDG和Na131I的体内同时3D成像。
Sci Rep 14, 20946 (2024). https://doi.org/10.1038/s41598-024-71750-3Download citationReceived: 27 March 2024Accepted: 30 August 2024Published: 09 September 2024DOI: https://doi.org/10.1038/s41598-024-71750-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1420946(2024)。https://doi.org/10.1038/s41598-024-71750-3Download引文收到日期:2024年3月27日接受日期:2024年8月30日发布日期:2024年9月9日OI:https://doi.org/10.1038/s41598-024-71750-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsPETCompton cameraThyroid cancer imaging
关键词SPETCOMPTON甲状腺癌成像
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。