商务合作
动脉网APP
可切换为仅中文
AbstractThe efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215—a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650–900 nm) and shortwave infrared (SWIR) fluorescence imaging (900–1,700 nm)—can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing.
摘要荧光引导手术在促进肿瘤实时描绘方面的功效取决于肿瘤组织与健康组织的光学对比度。在这里,我们显示CJ215-一种对细胞凋亡敏感的市售,肾清除的碳菁染料,其吸收和发射光谱适用于近红外荧光成像(波长650-900 nm)和短波红外(SWIR)荧光成像(900-1700 nm)-可以促进荧光引导的肿瘤筛查,肿瘤切除和伤口愈合评估。
In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs.
在鼠源性或人源性乳腺癌,前列腺癌和结肠癌以及纤维肉瘤的肿瘤模型中,以及在腹膜内癌病模型中,用环境光对CJ215进行成像,可以在静脉注射染料后24小时内描绘几乎所有的肿瘤,这是健康器官摄取最少的。
At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions..
在后来的时间点,CJ215提供的肿瘤与肌肉的对比度高达100,肿瘤与肝脏的对比度高达18。使用染料的SWIR荧光成像还允许通过商业绷带进行可量化的非接触伤口监测。CJ215可能与现有和新兴的临床解决方案兼容。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间更多订阅本期刊每年收到12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元更多了解更多购买本文在SpringerLink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: CJ215 spectral, in vitro and in vivo assessment.Fig. 2: Tumour resection using SWIRFI (>900 nm, sensor response) and CJ215.Fig. 3: Extended spectral emission (>1,100, >1,300 nm) assessment of CJ215 via SWIRFI.Fig. 4: NIRFI (745 nm excitation, 840 nm emission) necropsy biodistribution assessment of CJ215 in four tumour models.Fig.
图1:CJ215光谱,体外和体内评估。图2:使用SWIRFI(>900 nm,传感器响应)和CJ215进行肿瘤切除。图3:通过SWIRFI对CJ215进行扩展光谱发射(>1100,>1300 nm)评估。图4:CJ215在四种肿瘤模型中的NIRFI(745nm激发,840nm发射)尸检生物分布评估。图。
5: Necropsy and histological analysis of additional regions of interest during CT26 tumour resection.Fig. 6: SWIRFI (>900 nm) and CJ215 enable contrast-based image generation for binary tumour delineation.Fig. 7: CJ215 assessment in a colorectal peritoneal carcinomatosis model (SW1222).Fig. 8: Non-invasive, non-contact and ambient-light-resistant wound monitoring through commercially available bandages via SWIRFI (>1,300 nm) and CJ215..
5: CT26肿瘤切除过程中其他感兴趣区域的尸检和组织学分析。图6:SWIRFI(>900 nm)和CJ215能够基于对比度的图像生成用于二值肿瘤描绘。图7:结直肠癌腹膜癌病模型(SW1222)中的CJ215评估。图8:通过SWIRFI(>1300 nm)和CJ215通过市售绷带进行非侵入性,非接触性和环境耐光伤口监测。。
Data availability
数据可用性
The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.
研究期间生成的原始和分析数据集可根据合理要求从通讯作者处获得用于研究目的。本文提供了源数据。
Code availability
代码可用性
The code required to generate the CNR images via framewise or pixelwise methods is included in the Supplementary Information. All code to process the images in ImageJ is readily available via plugins.
补充信息中包含了通过逐帧或逐像素方法生成CNR图像所需的代码。ImageJ中处理图像的所有代码都可以通过插件轻松获得。
ReferencesLiu, J. T. & Sanai, N. Trends and challenges for the clinical adoption of fluorescence-guided surgery. J. Nucl. Med. 60, 756–757 (2019).Article
参考文献Liu,J.T。&Sanai,N。临床采用荧光引导手术的趋势和挑战。J、 核。医学60756-757(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pogue, B. W. Perspective on the optics of medical imaging. J. Biomed. Opt. 28, 121208–121208 (2023).Article
Pogue,B.W。医学成像光学透视图。J、 生物医学。选择。28121208–121208(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sutton, P. A. et al. Fluorescence-guided surgery: comprehensive review. BJS Open 7, zrad049 (2023).Article
Sutton,P.A。等。荧光引导手术:综合评论。BJS公开赛7,zrad049(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Teng, C. W. et al. Second window ICG predicts gross-total resection and progression-free survival during brain metastasis surgery. J. Neurosurg. 135, 1026–1035 (2021).Article
Teng,C.W.等人。第二窗口ICG预测脑转移手术期间的总切除率和无进展生存率。J、 神经外科杂志1351026-1035(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, M. et al. 800CW dye and 89Zr dual-labeled antibody for the PET/NIRF/Cerenkov multi-modality imaging of ICAM-1 (CD54) in pancreatic cancer. J. Nucl. Med. 60, 331 (2019).CAS
Li,M。等人800CW染料和89Zr双标记抗体用于胰腺癌中ICAM-1(CD54)的PET/NIRF/Cerenkov多模态成像。J、 核。医学60331(2019)。中科院
Google Scholar
谷歌学者
Tsuboi, S. & Jin, T. Shortwave-infrared (SWIR) fluorescence molecular imaging using indocyanine green–antibody conjugates for the optical diagnostics of cancerous tumours. RSC Adv. 10, 28171–28179 (2020).Article
Tsuboi,S。&Jin,T。使用吲哚菁绿-抗体偶联物进行短波红外(SWIR)荧光分子成像,用于癌症肿瘤的光学诊断。RSC Adv.1028171–28179(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hollandsworth, H. M., Turner, M. A., Hoffman, R. M. & Bouvet, M. A review of tumor-specific fluorescence-guided surgery for colorectal cancer. Surg. Oncol. 36, 84–90 (2021).Article
Hollandsworth,H.M.,Turner,M.A.,Hoffman,R.M。&Bouvet,M。肿瘤特异性荧光引导结直肠癌手术的综述。外科肿瘤学。36,84-90(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gao, R. W. et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 8, 2488–2495 (2018).Article
Gao,R.W.等人。帕尼单抗-IRDye800CW和西妥昔单抗-IRDye800CW在头颈部癌症荧光引导手术导航中的安全性。Theranostics 82488-2495(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gutowski, M. et al. SGM-101: an innovative near-infrared dye–antibody conjugate that targets CEA for fluorescence-guided surgery. Surg. Oncol. 26, 153–162 (2017).Article
Gutowski,M。等人。SGM-101:一种创新的近红外染料-抗体偶联物,靶向CEA用于荧光引导手术。外科肿瘤学。26153-162(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nunn, A. D. The cost of developing imaging agents for routine clinical use. Invest. Radiol. 41, 206–212 (2006).Article
Nunn,A.D。为常规临床使用开发成像剂的成本。投资。放射性。41206-212(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).Article
Paul,S.M.等人,《如何提高研发生产力:制药行业的巨大挑战》。《药物目录》修订版。9203-214(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nagaya, T., Nakamura, Y. A., Choyke, P. L. & Kobayashi, H. Fluorescence-guided surgery. Front. Oncol. 7, 314 (2017).Article
Nagaya,T.,Nakamura,Y.A.,Choyke,P.L。和Kobayashi,H。荧光引导手术。正面。Oncol公司。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smith, T. et al. The cost of OR time is $46.04 per minute. J. Orthop. Business 2, 10–13 (2022).Article
史密斯,T。等人。OR时间的成本是每分钟46.04美元。J、 骨科。商业2,10-13(2022)。文章
Google Scholar
谷歌学者
Kinch, M. S. & Woodard, P. K. Analysis of FDA-approved imaging agents. Drug Discov. Today 22, 1077–1083 (2017).Article
Kinch,M.S。和Woodard,P.K。FDA批准的成像剂分析。药物发现。今天221077-1083(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Crawford, T. et al. pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Sci. Rep. 10, 18356 (2020).Article
Crawford,T。等人。pHLIP ICG用于在荧光引导手术期间描绘肿瘤和血流。科学。代表1018356(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kaynak, A. et al. Phosphatidylserine: the unique dual-role biomarker for cancer imaging and therapy. Cancers 14, 2536 (2022).Article
Kaynak,A。等人。磷脂酰丝氨酸:癌症成像和治疗的独特双重作用生物标志物。癌症142536(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fouad, Y. A. & Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 7, 1016–1036 (2017).PubMed
Fouad,Y.A。和Aanei,C。重新审视癌症的标志。Am.J.Cancer Res.71016–1036(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).Article
Hanahan,D。和Weinberg,R.A。癌症的标志:下一代。细胞144646-674(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4, 81–89 (2014).Article
Kobayashi,H.,Watanabe,R。&Choyke,P.L。改善传统的增强渗透性和保留(EPR)效应;合适的目标是什么?。文章
Google Scholar
谷歌学者
Jensen, R. L. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J. Neurooncol. 92, 317–335 (2009).Article
Jensen,R.L。脑肿瘤缺氧:肿瘤发生,血管生成,成像,假性进展,以及作为治疗靶点。J、 神经肿瘤学。92317-335(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pfeffer, C. M. & Singh, A. T. Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448 (2018).Article
Pfeffer,C.M。&Singh,A.T。细胞凋亡:抗癌治疗的靶标。Int.J.Mol.Sci。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barth, N. D. et al. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat. Commun. 11, 4027 (2020).Article
Barth,N.D.等人。一种用于成像和定量药物诱导细胞凋亡的荧光环肽。国家公社。114027(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Widen, J. C. et al. AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat. Biomed. Eng. 5, 264–277 (2021).Article
Widead,J.C.等人和用于增强荧光引导手术的门造影剂。自然生物医学。工程5264-277(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cho, H. et al. Polymeric micelles for apoptosis-targeted optical imaging of cancer and intraoperative surgical guidance. PLoS ONE 9, e89968 (2014).Article
。PLoS ONE 9,e89968(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, X. et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients. IEEE Trans. Biomed. Eng. 69, 1889–1900 (2021).Article
。IEEE Trans。生物医学。工程691889-1900(2021)。文章
Google Scholar
谷歌学者
Tran-Guyon, J., Guyon, V. & Scherninski, F. European Patent Office EP4149925A1 (Google Patents, 2023).Pulaski, B. A. & Ostrand‐Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im2002s39 (2000).Flores, O. et al. PSMA-targeted theranostic nanocarrier for prostate cancer.
Tran Guyon,J.,Guyon,V。和Scherninski,F。欧洲专利局EP4149925A1(谷歌专利,2023)。Pulaski,B.A。&Ostrand-Rosenberg,S。小鼠4T1乳腺肿瘤模型。货币。普罗托克。免疫。https://doi.org/10.1002/0471142735.im2002s39(2000年)。Flores,O.等人,PSMA靶向治疗前列腺癌的诊断纳米载体。
Theranostics 7, 2477–2494 (2017).Article .
Theranostics 72477-2494(2017)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miwa, S. et al. Inhibition of spontaneous and experimental lung metastasis of soft-tissue sarcoma by tumor-targeting Salmonella typhimurium A1-R. Oncotarget 5, 12849–12861 (2014).PubMed
Miwa,S.等人。通过靶向鼠伤寒沙门氏菌A1-R的肿瘤抑制软组织肉瘤的自发性和实验性肺转移。Oncotarget 512849–12861(2014)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Richman, P. I. & Bodmer, W. F. Control of differentiation in human colorectal carcinoma cell lines: epithelial–mesenchymal interactions. J. Pathol. 156, 197–211 (1988).Article
Richman,P.I。&Bodmer,W.F。控制人结直肠癌细胞系的分化:上皮-间充质相互作用。J、 病理学。156197-211(1988)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Czajka, M. L. & Pfeifer, C. Breast Cancer Surgery (StatPearls Publishing, 2020).Kim, E. H. & Bullock, A. D. Surgical management for prostate cancer. Mo. Med. 115, 142–145 (2018).PubMed
Czajka,M.L。和Pfeifer,C。乳腺癌手术(StatPearls Publishing,2020)。Kim,E.H。和Bullock,A.D。前列腺癌的外科治疗。Mo.Med.115142-145(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Augsburger, D. et al. Current diagnostics and treatment of fibrosarcoma – perspectives for future therapeutic targets and strategies. Oncotarget 8, 104638-104653 (2017).Article
Augsburger,D.等人。纤维肉瘤的当前诊断和治疗-未来治疗目标和策略的展望。Oncotarget 8104638-104653(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsuda, T. et al. Recent updates in the surgical treatment of colorectal cancer. Ann. Gastroenterol. Surg. 2, 129–136 (2018).Article
。安。肠胃病。Surg.2129-136(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Glehen, O. et al. Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J. Clin. Oncol. 22, 3284–3292 (2004).Article
Glehen,O.等。细胞减灭术联合围手术期腹腔化疗治疗结直肠癌腹膜癌病:一项多机构研究。J、 临床。Oncol公司。223284-3292(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Riwaldt, S. et al. Role of apoptosis in wound healing and apoptosis alterations in microgravity. Front. Bioeng. Biotechnol. 9, 679650 (2021).Article
Riwaldt,S.等人。细胞凋亡在微重力下伤口愈合和细胞凋亡改变中的作用。正面。生物能源。生物技术。9679650(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Greenhalgh, D. G. The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol. 30, 1019–1030 (1998).Article
Greenhalgh,D.G。细胞凋亡在伤口愈合中的作用。Int.J.生物化学。细胞生物学。301019-1030(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fogarty, C. E. & Bergmann, A. Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ. 24, 1390–1400 (2017).Article
Fogarty,C.E。&Bergmann,A。Killers创造新生命:半胱天冬酶在组织修复和疾病中驱动细胞凋亡诱导的增殖。细胞死亡不同。241390-1400(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Belsky, J. Short wave infrared enhances machine vision: the machine vision professional gains a new tool with SWIR. Quality 52, 16VS (2013).
Belsky,J。短波红外增强机器视觉:机器视觉专业人员使用SWIR获得了一种新工具。质量5216VS(2013)。
Google Scholar
谷歌学者
Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).Article
Carr,J.A.等人。使用临床批准的近红外染料吲哚菁绿进行短波红外荧光成像。程序。国家科学院。科学。美国1154465-4470(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mc Larney, B. E. et al. Ambient light resistant shortwave infrared fluorescence imaging for preclinical tumor delineation via the pH low-insertion peptide conjugated to indocyanine green. J. Nucl. Med. 64, 1647–1653 (2023).Article
Mc Larney,B.E.等人。通过与吲哚菁绿缀合的pH低插入肽进行抗环境光短波红外荧光成像,用于临床前肿瘤描绘。J、 核。医学641647-1653(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Cosco, E. D., Lim, I. & Sletten, E. M. Photophysical properties of indocyanine green in the shortwave infrared region. ChemPhotoChem 5, 727–734 (2021).Article
Cosco,E.D.,Lim,I。&Sletten,E.M。吲哚菁绿在短波红外区域的光物理性质。ChemPhotoChem 5727-734(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Usama, S. M. et al. Role of albumin in accumulation and persistence of tumor-seeking cyanine dyes. Bioconjug. Chem. 31, 248–259 (2020).Article
Usama,S.M.等人。白蛋白在寻找肿瘤的花青染料的积累和持久性中的作用。生物共轭。化学。31248-259(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carr, J. A. et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl Acad. Sci. USA 115, 9080–9085 (2018).Article
Carr,J.A。等人。水的吸收增加了生物组织在短波红外中的荧光图像对比度。程序。国家科学院。科学。美国1159080–9085(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).Article
Jacques,S.L。生物组织的光学性质:综述。物理。医学生物学。58,R37–R61(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Madani, F., Lindberg, S., Langel, Ü., Futaki, S. & Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011, 414729 (2011).Article
马达尼,F.,林德伯格,S.,兰格尔,Ü。,Futaki,S。&Gräslund,A。细胞摄取细胞穿透肽的机制。J、 生物物理。2011414729(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuste, V. J. et al. The prevention of the staurosporine‐induced apoptosis by Bcl‐XL, but not by Bcl‐2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. J. Neurochem. 80, 126–139 (2002).Article
Yuste,V.J.等人,通过Bcl-XL而不是Bcl-2或半胱天冬酶抑制剂来预防星形孢菌素诱导的细胞凋亡,可以使人神经母细胞瘤细胞广泛分化。J、 。80126-139(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Usama, S. M. & Burgess, K. Hows and whys of tumor-seeking dyes. Acc. Chem. Res. 54, 2121–2131 (2021).Article
Usama,S.M。和Burgess,K。如何和为什么寻找肿瘤染料。根据化学。第542121-2131号决议(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dieckens, D., Lavalaye, J., Romijn, L. & Habraken, J. Contrast-noise-ratio (CNR) analysis and optimisation of breast-specific gamma imaging (BSGI) acquisition protocols. EJNMMI Res. 3, 21 (2013).Article
Dieckens,D.,Lavalaye,J.,Romijn,L。&Habraken,J。对比噪声比(CNR)分析和乳腺特异性伽玛成像(BSGI)采集协议的优化。EJNMMI Res.3,21(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cherry, S. R., Sorenson, J. A. & Phelps, M. E. Physics in Nuclear Medicine 3rd edn (Saunders, 2003).Zhu, S. et al. Repurposing cyanine NIR‐I dyes accelerates clinical translation of near‐infrared‐II (NIR‐II) bioimaging. Adv. Mater. 30, 1802546 (2018).Article
Cherry,S.R.,Sorenson,J.A。和Phelps,M.E。核医学物理第三版(Saunders,2003)。Zhu,S。等人。重新利用花青NIR-I染料可加速近红外II(NIR-II)生物成像的临床转化。高级材料。301802546(2018)。文章
Google Scholar
谷歌学者
Gown, A. M. & Willingham, M. C. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J. Histochem. Cytochem. 50, 449–454 (2002).Article
Grown,A.M。和Willingham,M.C。改进了档案石蜡切片中凋亡细胞的检测:使用抗体切割半胱天冬酶3的免疫组织化学。J、 组织化学。细胞化学。50449-454(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sabapathy, V., Mentam, J., Jacob, P. M. & Kumar, S. Noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cells Int. 2015, 606415 (2015).Article
Sabapathy,V.,Mentam,J.,Jacob,P.M。&Kumar,S。吲哚菁绿标记的人干细胞的无创光学成像和体内细胞追踪移植到SCID小鼠的浅表或深层组织中。干细胞国际2015606415(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klaver, Y. L., Lemmens, V. E., Nienhuijs, S. W., Luyer, M. D. & de Hingh, I. H. Peritoneal carcinomatosis of colorectal origin: incidence, prognosis and treatment options. World J. Gastroenterol. 18, 5489–5494 (2012).Article
Klaver,Y.L.,Lemmens,V.E.,Nienhuijs,S.W.,Luyer,M.D。&de Hingh,I.H。大肠来源的腹膜癌病:发病率,预后和治疗选择。世界J.胃肠病学。185489-5494(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chandler, C. S. et al. Intraperitoneal pretargeted radioimmunotherapy for colorectal peritoneal carcinomatosis. Mol. Cancer Ther. 21, 125–137 (2022).Article
Chandler,C.S.等。腹膜内预靶向放射免疫治疗结直肠癌腹膜癌病。分子癌症治疗。21125-137(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ide, T. et al. LED light characteristics for surgical shadowless lamps and surgical loupes. Plast. Reconstr. Surg. Glob. Open 3, e562 (2015).Article
Ide,T.等人。手术无影灯和手术百叶窗的LED光特性。塑料。重建。外科全球。公开3,e562(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, J., Li, H., Conti, P., Shi, X. & Chen, K. 64Cu-Labeled polyethyleneimine-coated manganese oxide nanoparticles for targeted tumor PET/MR imaging. Soc. Nuclear Med. 57 (Suppl. 2), 1187 (2016).Wang, F. et al. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging.
Zhu,J.,Li,H.,Conti,P.,Shi,X。&Chen,K。64Cu标记的聚乙烯亚胺包被的氧化锰纳米颗粒用于靶向肿瘤PET/MR成像。《社会核医学》57(增刊2),1187(2016)。Wang,F。等人。通过NIR IIb分子荧光成像指导高精度肿瘤切除至少数细胞水平。
Proc. Natl Acad. Sci. USA 119, e2123111119 (2022).Article .
Proc。国家科学院。滑雪。美国119,e2123111119(2022)。第条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lim, I. et al. Shortwave infrared fluorofluorophores for multicolor in vivo imaging. Angew. Chem. 135, e202215200 (2023).Article
Lim,I.等人。用于多色体内成像的短波红外荧光团。安吉。化学。135,e202215200(2023)。文章
Google Scholar
谷歌学者
Bandi, V. G. et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 19, 353–358 (2022).Elliott, J. T. et al. Review of fluorescence guided surgery visualization and overlay techniques. Biomed. Opt. Express 6, 3765–3782 (2015).Article
Bandi,V.G.等人通过非甲氧基花青实现了1000 nm以上的靶向多色体内成像。自然方法19353-358(2022)。Elliott,J.T.等人。荧光引导手术可视化和覆盖技术综述。生物医学。选择。Express 63765–3782(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020).Article
哈斯(Haase,R.)等人(CLIJ):GPU为每个人加速了图像处理。自然方法17,5-6(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Z.-g & Jiao, D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 4, 1–8 (2020).Article
Liu,Z.-g&Jiao,D。坏死性凋亡,肿瘤坏死和肿瘤发生。细胞应激4,1-8(2020)。文章
Google Scholar
谷歌学者
Dvorak, H. F. Tumors: wounds that do not heal—redux. Cancer Immunol. Res. 3, 1–11 (2015).Article
Dvorak,H.F。肿瘤:不能治愈redux的伤口。癌症免疫。第3、1-11号决议(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brumberg, V., Astrelina, T., Malivanova, T. & Samoilov, A. Modern wound dressings: hydrogel dressings. Biomedicines 9, 1235 (2021).Article
Brumberg,V.,Astrelina,T.,Malivanova,T。&Samoilov,A。现代伤口敷料:水凝胶敷料。生物医学91235(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stoica, A. E., Chircov, C. & Grumezescu, A. M. Hydrogel dressings for the treatment of burn wounds: an up-to-date overview. Materials 13, 2853 (2020).Article
Stoica,A.E.,Chircov,C。&Gruezescu,A.M。用于治疗烧伤的水凝胶敷料:最新概述。材料132853(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kenworthy, P. et al. Monitoring wound healing in minor burns—a novel approach. Burns 44, 70–76 (2018).Article
Kenworthy,P。等人。监测轻微烧伤的伤口愈合-一种新方法。伯恩斯44,70-76(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sugio, S., Kashima, A., Mochizuki, S., Noda, M. & Kobayashi, K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 12, 439–446 (1999).Article
Sugio,S.,Kashima,A.,Mochizuki,S.,Noda,M。和Kobayashi,K。人血清白蛋白的晶体结构,分辨率为2.5Å。蛋白质工程12439-446(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stehle, G. et al. Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Crit. Rev. Oncol. Hematol. 26, 77–100 (1997).Article
Stehle,G。等人。肿瘤本身的血浆蛋白(白蛋白)分解代谢对肿瘤代谢和恶病质发生的影响。暴击。修订版Oncol。血液学。26,77-100(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chaudhury, C. et al. The major histocompatibility complex–related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322 (2003).Article
。J、 实验医学197315-322(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peters, T. Jr Serum albumin. Adv. Protein Chem. 37, 161–245 (1985).Article
Peters,T.Jr血清白蛋白。高级蛋白质化学。37161-245(1985)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Awosika, A. O, Farrar, M.C. & Jacobs T. F. Paclitaxel (StatPearls Publishing, 2023); https://europepmc.org/article/nbk/nbk536917Tian, Z. & Yao, W. Albumin-bound paclitaxel: worthy of further study in sarcomas. Front. Oncol. 12, 815900 (2022).Article
Awosika,A.O,Farrar,M.C.&Jacobs T.F.紫杉醇(StatPearls Publishing,2023);https://europepmc.org/article/nbk/nbk536917Tian,Z.&Yao,W。白蛋白结合的紫杉醇:值得在肉瘤中进一步研究。正面。Oncol公司。12815900(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ploch-Jankowska, A. & Pentak, D. A comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part I. Pharmaceuticals 13, 205 (2020).Article
Ploch-Jankowska,A。&Pentak,D。布洛芬与人血清白蛋白结合的综合光谱分析,第一部分。Pharmaceuticals13205(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yee, P. P. & Li, W. Tumor necrosis: a synergistic consequence of metabolic stress and inflammation. Bioessays 43, 2100029 (2021).Article
Yee,P.P。&Li,W。肿瘤坏死:代谢应激和炎症的协同结果。生物测定432100029(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Zeien, J. et al. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care. Biomed. Pharmacother. 146, 112503 (2022).Article
Zeien,J.等人。化疗药物器官毒性对围手术期护理的临床意义。生物医学。药剂师。146112503(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).Article
。对接精度的方法和评估。J、 医学化学。471739-1749(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).Article
Friesner,R.A。等人,《超精密滑翔:对接和评分》,结合了蛋白质-配体复合物的疏水外壳模型。J、 医学化学。496177-6196(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article
Varadi,M。等人。AlphaFold蛋白质结构数据库:通过高精度模型大规模扩展蛋白质序列空间的结构覆盖范围。核酸研究50,D439–D444(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).Article
Varadi,M.等人,《2024年的AlphaFold蛋白质结构数据库:为超过2.14亿个蛋白质序列提供结构覆盖率》。核酸研究52,D368–D375(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).Article
。核酸研究28235-242(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).Article
Bateman,A。等人。UniProt:2023年的通用蛋白质知识库。核酸研究51,D523–D531(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Kostyukov, A. et al. Molecular docking simulation and fluorescence lifetime characteristics of nir cyanine dye complexes with albumin. In IOP Conference Series: Materials Science and Engineering Vol. 848, 012040 (IOP Publishing, 2020).Tian, R. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics.
Kostyukov,A。等人。nir花青染料与白蛋白复合物的分子对接模拟和荧光寿命特征。在IOP会议系列:材料科学与工程第848012040卷(IOP Publishing,2020)中。Tian,R。等人。白蛋白伴侣花青染料产生超亮NIR-II荧光团,具有增强的药代动力学。
Sci. Adv. 5, eaaw0672 (2019).Article .
科学。《广告5》,eaaw0672(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Le Guennic, B. & Jacquemin, D. Taking up the cyanine challenge with quantum tools. Acc. Chem. Res. 48, 530–537 (2015).Article
Le Guennic,B。和Jacquemin,D。用量子工具接受花青挑战。根据化学。第48530-537号决议(2015年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).Article
Bankhead,P。等。QuPath:用于数字病理图像分析的开源软件。科学。代表716878(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dougherty, R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. In 11th AIAA/CEAS Aeroacoustics Conference 2961 (AIAA, 2005).Landmann, L. Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques.
。在第11届AIAA/CEAS空气声学会议2961(AIAA,2005)上。Landmann,L。反卷积比过滤技术更能改善3D共焦数据集中多个荧光染料的共定位分析。
J. Microsc. 208, 134–147 (2002).Article .
J、 微型计算机。208134-147(2002)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank S. Urbain and F. Scherninski from Proimaging (Paris, France) along with J. Tran-Guyon and V. Guyon from Laboratoires Synth-Innove (Paris, France) for helpful advice, discussions and for providing CJ215 for this investigation (CJ215 was a gift from Proimaging which did not sponsor this research other than providing CJ215); the small-animal imaging core at MSKCC for assistance as well as RARC at MSKCC for advice on animal experiments and excellent animal assistance, especially A.
下载参考文献致谢我们感谢Proimaging(法国巴黎)的S.Urbain和F.Scherninski以及Laboratoires Synth Innove(法国巴黎)的J.Tran Guyon和V.Guyon提供了有益的建议,讨论并为本次调查提供了CJ215(CJ215是Proimaging的礼物,除了提供CJ215之外,没有赞助这项研究);MSKCC的小动物成像核心提供帮助,MSKCC的RARC提供动物实验和优秀动物援助的建议,特别是A。
Ritter and E. Soto-Lemus; N. Fan, B. Shrestha and W. Kang of the Molecular Cytology Core Facility at MSKCC and I. Miranda of the Laboratory of Comparative Pathology at MSKCC; E. Chan, E. Rosiek and Y. Romin of the Molecular Cytology core at MSKCC for microscopy assistance. Support for this work was provided by the the National Science Foundation CAREER Award (1752506, D.A.H.), the NCI (R01-CA-257811, J.G., R01-CA215719, D.A.H.
Ritter和E.Soto Lemus;N、 MSKCC分子细胞学核心设施的Fan,B.Shrestha和W.Kang以及MSKCC比较病理学实验室的I.Miranda;E、 MSKCC分子细胞学核心的Chan,E。Rosiek和Y。Romin提供显微镜辅助。国家科学基金会职业奖(1752506,D.A.H.),NCI(R01-CA-257811,J.G.,R01-CA215719,D.A.H.)为这项工作提供了支持。
and Cancer Center Support Grant P30-CA008748, Selwyn Vickers/MSKCC), NIBIB (R56 EB030512, J.G., R01-EB033651, D.A.H.; R00-EB033580, M.K.), the Department of Defense Congressionally Directed Medical Research Program (W81XWH-22-1-0563, D.A.H.), the Ara Parseghian Medical Research Fund (D.A.H.), the American Cancer Society Research Scholar Grant (GC230452, D.A.H.), the Louis and Rachel Rudin Foundation (D.A.H.), MSK’s Cycle for Survival’s Equinox Innovation Award in Rare Cancers (D.A.H.), the Experimental Therapeutics Center of MSKCC (D.A.H.
和癌症中心支持拨款P30-CA008748,Selwyn Vickers/MSKCC),NIBIB(R56 EB030512,J.G.,R01-EB033651,D.A.H.;R00-EB033580,M.K.),国防部国会指导的医学研究计划(W81XWH-22-1-0563,D.A.H.),Ara Parseghian医学研究基金(D.A.H.),美国癌症协会研究学者拨款(GC230452,D.A.H.),路易斯和雷切尔·鲁丁基金会(D.A.H.),MSK的生存周期罕见癌症Equinox创新奖(D.A.H.),MSKCC实验治疗中心(D.A.H.)。
and J.G.), Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research (D.A.H.) and the Vince Lombardi Cancer Foundation (J.G.). This work was partially funded by Memorial Sloan Kettering Cancer Center’s Technology Development Funding Program,.
和J.G.),威廉·古德温先生和爱丽丝·古德温夫人以及英联邦癌症研究基金会(D.A.H.)和文斯·伦巴第癌症基金会(J.G.)。这项工作部分由纪念斯隆·凯特琳癌症中心的技术发展资助计划资助,。
PubMed Google ScholarAli Yasin SonayView author publicationsYou can also search for this author in
PubMed Google ScholarAli Yasin SonayView作者出版物您也可以在
PubMed Google ScholarElana ApfelbaumView author publicationsYou can also search for this author in
PubMed Google ScholarElana ApfelbaumView作者出版物您也可以在
PubMed Google ScholarNermin MostafaView author publicationsYou can also search for this author in
PubMed Google ScholarNermin MostafaView作者出版物您也可以在
PubMed Google ScholarSébastien MonetteView author publicationsYou can also search for this author in
PubMed Google ScholarSébastien MonetteView作者出版物您也可以在
PubMed Google ScholarDana GoerzenView author publicationsYou can also search for this author in
PubMed Google ScholarNicole AguirreView author publicationsYou can also search for this author in
PubMed Google ScholarNicole AguinReview作者出版物您也可以在
PubMed Google ScholarRüdiger M. ExnerView author publicationsYou can also search for this author in
PubMed和Google Scholar Rüdiger M.Exner查看作者出版物您也可以在
PubMed Google ScholarChristine HabjanView author publicationsYou can also search for this author in
PubMed Google ScholarChristine HabjanView作者出版物您也可以在
PubMed Google ScholarElizabeth IsaacView author publicationsYou can also search for this author in
PubMed Google ScholarElizabeth IsaacView作者出版物您也可以在
PubMed Google ScholarNgan Bao PhungView author publicationsYou can also search for this author in
PubMed Google ScholarMagdalena SkubalView author publicationsYou can also search for this author in
PubMed Google ScholarMagdalena SkubalView作者出版物您也可以在
PubMed Google ScholarMijin KimView author publicationsYou can also search for this author in
PubMed Google Scholarmarijin KimView作者出版物您也可以在
PubMed Google ScholarAnuja OgiralaView author publicationsYou can also search for this author in
PubMed Google ScholarAnuja OgiralaView作者出版物您也可以在
PubMed Google ScholarDarren VeachView author publicationsYou can also search for this author in
PubMed Google ScholarDarren VeachView作者出版物您也可以在
PubMed Google ScholarDaniel A. HellerView author publicationsYou can also search for this author in
PubMed Google ScholarDaniel A.HellerView作者出版物您也可以在
PubMed Google ScholarJan GrimmView author publicationsYou can also search for this author in
PubMed Google ScholarJan GrimmView作者出版物您也可以在
PubMed Google ScholarContributionsB.E.M.L conceived, designed and performed the experiments, and designed the analysis pipelines and CNR code. A.Y.S. designed and performed Sta and zVAD experiments. E.A. designed and performed in vivo experiments. B.E.M.L. and C.H. performed in vitro assessment and microscopy.
PubMed谷歌学术贡献b。E、 M.L构思,设计和执行了实验,并设计了分析管道和CNR代码。A、 Y.S.设计并进行了Sta和zVAD实验。E、 A.设计并进行体内实验。B、 E.M.L.和C.H.进行了体外评估和显微镜检查。
B.E.M.L., D.G. and M.K. performed spectral characterization. R.M.E. performed the in silico serum docking assessment. N.A. and D.V. generated and assisted with metastatic modelling. S.M. performed pathology analysis and staining. N.M., E.I., N.B.P. and M.S. generated various tumour models and performed experiments.
B、 E.M.L.,D.G.和M.K.进行了光谱表征。R、 M.E.进行了计算机血清对接评估。N、 A.和D.V.生成并协助进行转移建模。S、 M.进行病理分析和染色。N、 M.,E.I.,N.B.P.和M.S.生成了各种肿瘤模型并进行了实验。
A.O. and N.M. conducted in vivo experimental design and work. B.E.M.L., D.A.H. and J.G. designed experiments and supervised the study. All authors discussed the work, and edited and commented on the manuscript.Corresponding authorCorrespondence to.
A、 O.和N.M.进行了体内实验设计和工作。B.E.M.L.,D.A.H.和J.G.设计了实验并监督了研究。所有作者都讨论了这项工作,并对稿件进行了编辑和评论。对应作者对应。
Jan Grimm.Ethics declarations
简·格林。道德宣言
Competing interests
相互竞争的利益
D.A.H. is a co-founder with equity interest in Lime Therapeutics Inc., Selectin Therapeutics Inc., and Nine Diagnostics Inc.; is a member of the scientific advisory board of Concarlo Therapeutics Inc., Celine Therapeutics Inc., Nanorobotics Inc., and Mediphage Bioceuticals Inc.; and is a consultant for METiS Therapeutics Inc.
D、 。;是Concarlo Therapeutics Inc.,Celine Therapeutics Inc.,Nanorobotics Inc.和Mediphage Bioceuticals Inc.科学顾问委员会的成员。;并且是METiS Therapeutics Inc.的顾问。
B.M.L., D.A.H. and J.G. have filed a provisional patent in relation to some of the work in this paper. The other authors declare no competing interests..
B、 M.L.,D.A.H.和J.G.已经就本文中的一些工作提交了临时专利。其他作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Biomedical Engineering thanks Jianmin Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Nature Biomedical Engineering感谢吴建民(Jianmin Wu)和另一位匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审报告。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 In silico assessment of serum binding affinity of CJ215 and ICG to human serum albumin (HSA) and mouse serum albumin (MSA).A) Overview of ALIGN results between human and murine serum albumin revealed a sequence homology of 72.37 %.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1计算机评估CJ215和ICG对人血清白蛋白(HSA)和小鼠血清白蛋白(MSA)的血清结合亲和力。A) 人和鼠血清白蛋白之间比对结果的概述显示序列同源性为72.37%。
B) Predicted aligned error for murine albumin (AF-P07724-F1). C) Left, overview of CJ215 docking pose with HSA. Right, zoomed in portion of docking site. D) Residue interactions of HSA with CJ215. E) Left, overview of ICG binding with HSA. Right, zoomed in view of the binding site. F) Residue interactions of HSA with ICG.
B) 鼠白蛋白(AF-P07724-F1)的预测比对误差。C) 左,CJ215与HSA对接姿势概述。右,放大了对接站点的一部分。D) HSA与CJ215的残基相互作用。E) 左,ICG与HSA结合的概述。。F) HSA与ICG的残基相互作用。
G) Left, overview of docking pose of CJ215 with MSA. Right, zoomed in view of the binding site. H) Residue interactions of CJ215 with MSA. J) Left, overview of ICG binding with MSA. Right, zoomed in view of the binding site. K) Residue interactions of ICG and MSA. For D, F, H, & K the non-covalent binding co-efficient (GlideScore) is shown in italics, where more negative binding correlates to a stronger binding and interaction.
G) 左,CJ215与MSA对接姿势概述。。H) CJ215与MSA的残基相互作用。J) 。。K) ICG和MSA的残基相互作用。对于D,F,H和K,非共价结合系数(GlideScore)以斜体显示,其中更多的负结合与更强的结合和相互作用相关。
In all cases CJ215 showed improved binding efficacy to albumin over ICG.Supplementary informationMain Supplementary InformationSupplementary figures and video captions.Reporting SummaryPeer Review FileVideo 1CJ215 uptake in single 4T1 cells.Video 2CJ215 uptake in 4T1 spheroids.Video 3SWIRFI CNR mode (pixel-based) of CJ215 uptake in various tumour models.Video 4SWIRFI CNR mode (pixel-based) of CJ215 uptake in wounds, without and with bandage application.Source dataSource Data for Figs.
在所有情况下,与ICG相比,CJ215对白蛋白的结合效力都有所提高。补充信息主要补充信息补充数字和视频字幕。报告总结同行评审文件视频1CJ215在单个4T1细胞中的摄取。视频2CJ215在4T1球体中的摄取。视频3SWIRFI CNR模式(基于像素)在各种肿瘤模型中摄取CJ215。视频4SWIRFI CNR模式(基于像素)在伤口中摄取CJ215,不使用和使用绷带应用。图的源数据源数据。
1–8Source data.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to th.
。权利和许可Pringer Nature或其许可人(例如社会或其他合作伙伴)对th拥有专有权利。
Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01248-wDownload citationReceived: 19 January 2024Accepted: 21 July 2024Published: 09 September 2024DOI: https://doi.org/10.1038/s41551-024-01248-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
自然生物医学。Eng(2024年)。https://doi.org/10.1038/s41551-024-01248-wDownload引文接收日期:2024年1月19日接受日期:2024年7月21日发布日期:2024年9月9日OI:https://doi.org/10.1038/s41551-024-01248-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供