EN
登录

工程化NLS嵌合体下调易聚集内源性FUS的表达

Engineered NLS-chimera downregulates expression of aggregation-prone endogenous FUS

Nature 等信源发布 2024-09-10 10:10

可切换为仅中文


AbstractImportin β-superfamily nuclear import receptors (NIRs) mitigate mislocalization and aggregation of RNA-binding proteins (RBPs), like FUS and TDP-43, which are implicated in neurodegenerative diseases. NIRs potently disaggregate RBPs by recognizing their nuclear localization signal (NLS). However, disease-causing mutations in NLS compromise NIR binding and activity.

摘要importinβ-超家族核输入受体(NIRs)减轻了与神经退行性疾病有关的RNA结合蛋白(RBPs)的错误定位和聚集,如FUS和TDP-43。NIRs通过识别其核定位信号(NLS)来有效地分解RBP。但是,NLS中的致病突变会损害NIR的结合和活性。

Here, we define features that characterize the anti-aggregation activity of NIR and NLS. We find that high binding affinity between NIR and NLS, and optimal NLS location relative to the aggregating domain plays a role in determining NIR disaggregation activity. A designed FUS chimera (FUSIBB), carrying the importin β binding (IBB) domain, is solubilized by importin β in vitro, translocated to the nucleus in cultured cells, and downregulates the expression of endogenous FUS.

在这里,我们定义了表征NIR和NLS抗聚集活性的特征。我们发现NIR和NLS之间的高结合亲和力,以及相对于聚集结构域的最佳NLS位置在确定NIR解聚活性中起作用。设计的带有输入蛋白β结合(IBB)结构域的FUS嵌合体(FUSBB)在体外被输入蛋白β溶解,转移到培养细胞的细胞核中,并下调内源性FUS的表达。

In this study, we posit that guiding the mutual recognition of NLSs and NIRs will aid the development of therapeutics, illustrated by the highly soluble FUSIBB replacing the aggregation-prone endogenous FUS..

在这项研究中,我们认为指导NLS和NIRs的相互识别将有助于治疗的发展,如高度可溶性的FUSIBB取代易聚集的内源性FUS所示。。

IntroductionCytoplasmic mislocalization and aggregation of nuclear RNA-binding proteins (RBPs) with Prion-like domain (PrLD) is a shared pathological hallmark of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and multisystem proteinopathy (MSP)1,2,3.

引言核RNA结合蛋白(RBPs)与朊病毒样结构域(PrLD)的细胞质错位和聚集是神经退行性疾病的共同病理标志,包括肌萎缩侧索硬化症(ALS),额颞叶痴呆(FTD)和多系统蛋白病(MSP)1,2,3。

For example, the inclusion bodies of TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), and heterogenous nuclear ribonucleoprotein A1 (hnRNPA1) are found in ALS and FTD patients4. These RBPs are predominately found in the nucleus, where they carry out their normal functions. However, mutations in their nuclear localization signal (NLS) and other environmental factors, such as stress, cause their mislocalization to the cytoplasm5,6,7,8.

例如,在ALS和FTD患者中发现了融合在肉瘤(FUS)中的TAR DNA结合蛋白43(TDP-43)和异源核糖核蛋白A1(hnRNPA1)的包涵体4。。然而,它们的核定位信号(NLS)和其他环境因素(例如压力)的突变会导致它们在细胞质中的错误定位5、6、7、8。

In the cytoplasm, these RBPs form aggregates through the interactions mediated by PrLD and other low complexity domains (LCDs)9,10,11,12, which can cause neurodegeneration in two ways: (i) the loss of function toxicity induced by nuclear depletion of RBPs and (ii) the gain of function toxicity induced by the aberrant assembly of RBPs in the cytoplasm.

在细胞质中,这些RBP通过PrLD和其他低复杂度结构域(LCD)9,10,11,12介导的相互作用形成聚集体,这可以通过两种方式引起神经退行性变:(i)RBP核耗竭引起的功能丧失毒性和(ii)RBP在细胞质中异常组装引起的功能获得毒性。

Therefore, a therapeutic strategy that restores the diffusive, functional state and nuclear localization of RBPs would rescue both the loss of function and the gain of function toxicity.Recently, we and others have shown that, besides their canonical function in nuclear transport, nuclear import receptors (NIRs) can function as molecular chaperones and protein disaggregators13,14,15,16.

因此,恢复RBP扩散,功能状态和核定位的治疗策略将挽救功能丧失和功能获得毒性。最近,我们和其他人已经表明,除了它们在核转运中的规范功能外,核输入受体(NIR)还可以作为分子伴侣和蛋白质解聚剂13,14,15,16。

Thus, the overexpression of NIRs can rescue the toxicity caused by RBP aggregation through simultaneously mitigating RBP aggregation and restoring their nuclear function. NIRs prevent and reverse the aggregation of their respective transport cargoes by binding to the nuclear localization signal .

因此,NIR的过表达可以通过同时减轻RBP聚集和恢复其核功能来挽救由RBP聚集引起的毒性。NIR通过与核定位信号结合来防止和逆转其各自运输货物的聚集。

FUSIBB holds a therapeutic potential to replace disease-causing endogenous FUS. In cultured cells, IBB is a highly efficient anti-aggregation signal, and FUSIBB can be transported and chaperoned by Imp β without Imp α. When cells are under oxidative stress by sodium arsenite treatment, FUSIBB remains nuclear and soluble, whereas WT FUS is assembled into stress granule64, indicating FUSIBB is more soluble than WT FUS.

FUSIBB具有替代致病内源性FUS的治疗潜力。在培养的细胞中,IBB是一种高效的抗聚集信号,FUSIBB可以被Impβ转运和伴侣化,而不需要Impα。当细胞通过亚砷酸钠处理处于氧化应激下时,FUSIBB保持核和可溶性,而WT FUS被组装成应激颗粒64,表明FUSIBB比WT FUS更易溶。

The higher solubility of FUSIBB leads to a strategy to replace aggregation-prone WT FUS with FUSIBB.This replacement strategy also exploits the autoregulatory feedback mechanism that controls FUS expression level; endogenous FUS expression is controlled by FUS protein binding to its pre-mRNA to prevent the accumulation of excess protein37,57,58.

FUSIBB的较高溶解度导致了一种用FUSIBB替代易聚集的WT FUS的策略。这种替代策略还利用了控制FUS表达水平的自动调节反馈机制;内源性FUS表达受FUS蛋白与其前mRNA结合的控制,以防止过量蛋白的积累37,57,58。

Indeed, a recent study showed that expressing WT FUS can rescue mutant FUS toxicity in mice expressing ALS-causing FUS mutant (i.e., FUSΔNLS) by reducing its expression level and replacing the mutant FUS65. For the majority of FTD patients, WT FUS, instead of a mutant FUS, is found in the inclusion body, which may result from disrupted Kap β2 function31,32,33,34,35,36.

实际上,最近的一项研究表明,表达WT FUS可以通过降低其表达水平并替代突变FUS65来挽救表达ALS引起的FUS突变体(即FUSΔNLS)的小鼠的突变FUS毒性。对于大多数FTD患者,在包涵体中发现了WT FUS而不是突变FUS,这可能是由于Kapβ2功能受损所致31,32,33,34,35,36。

In this case, replacing WT FUS with a more soluble FUS variant, such as the FUSIBB that employs an orthogonal transporter and chaperone other than Kap β2 (i.e., Imp β), will prevent further mislocalization of the disease-causing protein. As a proof of concept, our study showed that exogenously expressed FUSIBB can reduce the expression level of aggregation-prone, endogenous FUS.

在这种情况下,用更可溶性的FUS变体代替WT FUS,例如使用正交转运蛋白和Kapβ2以外的伴侣(即Impβ)的FUSBB,将防止致病蛋白的进一步错位。。

Three possible autoregulatory mechanisms have been proposed for FUS. First, binding of FUS protein to its pre-mRNA could lead to the splicing of exon 7, and the resulting abnormal ∆exon 7 FUS mRNA could then be degraded through nonsense-mediated mRNA decay37. Moreover, increas.

已经为FUS提出了三种可能的自动调节机制。首先,FUS蛋白与其前体mRNA的结合可能导致外显子7的剪接,然后产生的异常Δ外显子7 FUS mRNA可以通过无义介导的mRNA衰变降解37。此外,增加。

Data availability

数据可用性

All data generated in this study are available in the Article, Supplementary Information, and Source Data files. The FUSIBB-inducible HEK293 cells are available from the corresponding author upon request. Source data are provided with this paper.

本研究中产生的所有数据均可在文章,补充信息和源数据文件中找到。FUSIBB诱导型HEK293细胞可应要求从通讯作者处获得。本文提供了源数据。

ReferencesPortz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).Article

参考文献Portz,B.,Lee,B.L。&Shorter,J.FUS和TDP-43健康和疾病阶段。趋势生物化学。科学。46550–563(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Carey, J. L. & Guo, L. Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases. Front. Mol. Biosci. 9, 826719 (2022).Article

Carey,J.L。&Guo,L。TDP-43和FUS在神经退行性疾病生理学和病理学中的液-液相分离。正面。摩尔生物科学。9826719(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).Article

Harrison,A.F。&Shorter,J。RNA结合蛋白与朊病毒样结构域在健康和疾病中的作用。生物化学。J、 4741417-1438(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Purice, M. D. & Taylor, J. P. Linking hnRNP function to ALS and FTD pathology. Front. Neurosci. 12, 326 (2018).Article

Purice,M.D。&Taylor,J.P。将hnRNP功能与ALS和FTD病理学联系起来。正面。神经科学。12326(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hock, E. M. et al. Hypertonic stress causes cytoplasmic translocation of neuronal, but not astrocytic, FUS due to impaired transportin function. Cell Rep. 24, 987–1000.e1007 (2018).Article

由于转运蛋白功能受损,高渗应激导致神经元而非星形细胞FUS的细胞质移位。Cell Rep.24987–1000.e1007(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wood, A., Gurfinkel, Y., Polain, N., Lamont, W. & Rea, L. S. Molecular mechanisms underlying TDP-43 pathology in cellular and animal models of ALS and FTLD. Int. J. Mol. Sci. 22, 4705 (2021).Article

Wood,A.,Gurfinkel,Y.,Polain,N.,Lamont,W。&Rea,L.S。ALS和FTLD细胞和动物模型中TDP-43病理学的分子机制。Int.J.Mol.Sci。224705(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dormann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 (2010).Article

。EMBO J.292841–2857(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bosco, D. A. et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 19, 4160–4175 (2010).Article

Bosco,D.A。等人,引起肌萎缩性侧索硬化的突变FUS蛋白掺入应激颗粒中。嗯,摩尔·吉内特。194160-4175(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gitler, A. D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011).Article

Gitler,A.D。和Shorter,J。在ALS和FTLD-U中具有朊病毒样结构域的RNA结合蛋白。朊病毒5179-187(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614 (2011).Article

Sun,Z.等人。ALS疾病蛋白FUS/TLS聚集和毒性的分子决定因素和遗传修饰因子。《公共科学图书馆·生物学》。9,e1000614(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).Article

Johnson,B.S.等人TDP-43本质上易于聚集,肌萎缩侧索硬化相关突变加速聚集并增加毒性。J、 生物。。28420329–20339(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, Y. S. et al. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat. Commun. 5, 4824 (2014).Article

Fang,Y.S.等人,全长TDP-43形成毒性淀粉样寡聚体,存在于额颞叶痴呆TDP患者中。国家公社。54824(2014)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e620 (2018).Article

Guo,L.等人。核输入受体逆转具有朊病毒样结构域的RNA结合蛋白的异常相变。细胞173677-692.e620(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e713 (2018).Article

Hofweber,M。等人。FUS的相分离受到其核输入受体和精氨酸甲基化的抑制。细胞173706-719.e713(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e715 (2018).Article

Qamar,S。等人。FUS相分离受分子伴侣和精氨酸阳离子-π相互作用甲基化的调节。细胞173720-734.e715(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e622 (2018).Article

Yoshizawa,T。等人。核输入受体通过结合多个位点抑制FUS的相分离。细胞173693-705.e622(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Girdhar, A. & Guo, L. Regulating phase transition in neurodegenerative diseases by nuclear import receptors. Biology 11, 1009 (2022).Article

Girdhar,A。&Guo,L。通过核输入受体调节神经退行性疾病的相变。生物学111009(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, L., Fare, C. M. & Shorter, J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 29, 308–322 (2019).Article

Guo,L.,Fare,C.M。和Shorter,J。核输入受体对异常相的治疗性溶解。趋势细胞生物学。29308-322(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chook, Y. M. & Süel, K. E. Nuclear import by karyopherin-βs: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593–1606 (2011).Article

Chook,Y.M。&Süel,K.E。核转运蛋白-βS的核输入:识别和抑制。生物化学。生物物理。Acta 18131593–1606(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Soniat, M. & Chook, Y. M. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353–362 (2015).Article

Soniat,M。&Chook,Y.M。四种不同的核转运蛋白-β核输入系统的核定位信号。生物化学。J、 468353-362(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherinβ2. Cell 126, 543–558 (2006).Article

Lee,B.J.等人。核转运蛋白β2识别核定位序列的规则。细胞126543-558(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pumroy, R. A. & Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 (2015).Article

Pumroy,R.A。&Cingolani,G。在细胞运输和疾病状态中进口蛋白-α同种型的多样化。生物化学。J、 466,13-28(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Winton, M. J. et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302–13309 (2008).Article

Winton,M.J。等人。核和细胞质TAR DNA结合蛋白(TDP-43)的紊乱诱导疾病样的重新分布,隔离和聚集体形成。J、 生物。。28313302-13309(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nishimura, A. L. et al. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133, 1763–1771 (2010).Article

Nishimura,A.L.等人。核输入损伤导致细胞质反式激活反应DNA结合蛋白积累,并与额颞叶变性有关。大脑1331763-1771(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).Article

Chook,Y.M。&Blobel,G。Karyopherins和核进口。货币。奥平。结构。生物学杂志11703-715(2001)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Doll, S. G. et al. Recognition of the TDP-43 nuclear localization signal by importin α1/β. Cell Rep. 39, 111007 (2022).Article

Doll,S.G.等人。通过输入蛋白α1/β识别TDP-43核定位信号。Cell Rep.39111007(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fare, C. M., Rhine, K., Lam, A., Myong, S. & Shorter, J. A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. J. Biol. Chem. 299, 102806 (2023).Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS.

Fare,C.M.,Rhine,K.,Lam,A.,Myong,S。&Shorter,J。核输入受体核转运蛋白-β2的最小构建体定义了对伴侣和解聚活性至关重要的区域。J、 生物。。299102806(2023)。PY-NLS旁边的精氨酸甲基化调节FUS的转运蛋白结合和核输入。

EMBO J. 31, 4258–4275 (2012).Article .

EMBO J.314258–4275(2012)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gonzalez, A. et al. Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X). Sci. Rep. 11, 3754 (2021).Article

Gonzalez,A。等人。核转运蛋白-β2结合和ALS变体FUS(P525L)和FUS(R495X)的核输入机制。科学。代表113754(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Z. C. & Chook, Y. M. Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc. Natl Acad. Sci. USA 109, 12017–12021 (2012).Article

Zhang,Z.C.&Chook,Y.M。融合肉瘤蛋白(FUS)的非典型脯氨酸酪氨酸核定位信号中ALS引起突变的结构和能量基础。程序。国家科学院。科学。美国10912017-12021(2012)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brelstaff, J. et al. Transportin1: a marker of FTLD-FUS. Acta Neuropathol. 122, 591–600 (2011).Article

Brelstaff,J.等人。转运蛋白1:FTLD-FUS的标志物。神经病学学报。122, 591-600 (2011).文章

PubMed

PubMed

Google Scholar

谷歌学者

Troakes, C. et al. Transportin 1 colocalization with Fused in Sarcoma (FUS) inclusions is not characteristic for amyotrophic lateral sclerosis-FUS confirming disrupted nuclear import of mutant FUS and distinguishing it from frontotemporal lobar degeneration with FUS inclusions. Neuropathol.

Troakes,C。等人。转运蛋白1与融合肉瘤(FUS)包涵体的共定位不是肌萎缩侧索硬化症FUS的特征,证实突变FUS的核输入中断,并将其与FUS包涵体的额颞叶变性区分开。神经病。

Appl. Neurobiol. 39, 553–561 (2013).Article .

掌声。他没有。39, 553-561 (2013).第[UNK]条。

PubMed

PubMed

Google Scholar

谷歌学者

Neumann, M. et al. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol. 124, 705–716 (2012).Article

Neumann,M。等人。转运蛋白1在FTLD-FUS中与FET蛋白特异性积累,但没有其他转运蛋白货物,并且在具有FUS突变的ALS中的FUS内含物中不存在。神经病学报。124705-716(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Snowden, J. S. et al. The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol. 122, 99–110 (2011).Article

最常见的FTLD-FUS(aFTLD-U)类型与额颞叶痴呆的独特临床形式有关,但与FUS基因突变无关。神经病学报。122,99-110(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mackenzie, I. R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).Article

Mackenzie,I.R.,Rademakers,R。&Neumann,M。TDP-43和FUS在肌萎缩侧索硬化症和额颞叶痴呆中的作用。柳叶刀神经学。995-1007(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mikhaleva, S. & Lemke, E. A. Beyond the transport function of import receptors: what’s all the FUS about? Cell 173, 549–553 (2018).Article

Mikhaleva,S.&Lemke,E.A。超越进口受体的运输功能:所有FUS都是关于什么的?细胞173549-553(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, Y., Liu, S., Liu, G., Öztürk, A. & Hicks, G. G. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 9, e1003895 (2013).Article

Zhou,Y.,Liu,S.,Liu,G.,Öztürk,A。&Hicks,G.G。与ALS相关的FUS突变导致FUS选择性剪接和自动调节受损。PLoS Genet。9,e1003895(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imasaki, T. et al. Structural basis for substrate recognition and dissociation by human transportin 1. Mol. Cell 28, 57–67 (2007).Article

Imasaki,T。等人。人类转运蛋白1对底物识别和解离的结构基础。分子细胞28,57-67(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cansizoglu, A. E., Lee, B. J., Zhang, Z. C., Fontoura, B. M. & Chook, Y. M. Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 14, 452–454 (2007).Article

Cansizoglu,A.E.,Lee,B.J.,Zhang,Z.C.,Fontoura,B.M。&Chook,Y.M。基于结构的途径特异性核输入抑制剂设计。自然结构。分子生物学。14452-454(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e616 (2018).Article

Wang,J.等人。控制朊病毒样RNA结合蛋白相分离驱动力的分子语法。细胞174688-699.e616(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu Rev. Biophys. 49, 107–133 (2020).Article

Choi,J.M.,Holehouse,A.S。&Pappu,R.V。细胞内相变复杂生物学的物理原理。生物物理年鉴。49107-133(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).Article

Lin,Y.,Currie,S.L。和Rosen,M.K。内在无序序列能够通过分布的酪氨酸基序调节蛋白质相分离。J、 生物。。29219110–19120(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bourgeois, B. et al. Nonclassical nuclear localization signals mediate nuclear import of CIRBP. Proc. Natl Acad. Sci. USA 117, 8503–8514 (2020).Article

。程序。国家科学院。科学。美国1178503-8514(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmidt, H. B., Barreau, A. & Rohatgi, R. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890 (2019).Article

Schmidt,H.B.,Barreau,A。&Rohatgi,R。相分离缺陷型TDP43在剪接中保持功能。国家公社。104890(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).Article

Conicella,A.E.,Zerze,G.H.,Mittal,J。&Fawzi,N.L。ALS突变破坏了TDP-43低复杂度C末端结构域中由α-螺旋结构介导的相分离。结构241537-1549(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid-liquid phase separation and function. Proc. Natl Acad. Sci. USA 117, 5883–5894 (2020).Article

Conicella,A.E.等人TDP-43α螺旋结构调节液-液相分离和功能。程序。国家科学院。科学。美国1175883–5894(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. J. et al. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum. Mol. Genet. 22, 3112–3122 (2013).Article

Zhang,Y。J。等人。TDP-43极端N末端在调节其生物活性和包涵体形成中的双重功能。嗯,摩尔·吉内特。223112-3122(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baade, I. et al. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J. Biol. Chem. 296, 100659 (2021).Article

Baade,I。等人。RNA结合蛋白FUS被伴侣化并通过导入受体网络导入细胞核。J、 生物。。296100659(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldmann, I., Wälde, S. & Kehlenbach, R. H. Nuclear import of c-Jun is mediated by multiple transport receptors. J. Biol. Chem. 282, 27685–27692 (2007).Article

Waldmann,I.,Wälde,S。&Kehlenbach,R.H。c-Jun的核输入由多种转运受体介导。J、 生物。。28227685–27692(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Arnold, M., Nath, A., Hauber, J. & Kehlenbach, R. H. Multiple importins function as nuclear transport receptors for the rev protein of human immunodeficiency virus type 1. J. Biol. Chem. 281, 20883–20890 (2006).Article

Arnold,M.,Nath,A.,Hauber,J。&Kehlenbach,R.H。多种重要蛋白作为人类免疫缺陷病毒1型rev蛋白的核转运受体。J、 生物。。28120883–20890(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cingolani, G., Bednenko, J., Gillespie, M. T. & Gerace, L. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol. Cell 10, 1345–1353 (2002).Article

Cingolani,G.,Bednenko,J.,Gillespie,M.T。和Gerace,L。通过importin beta识别非经典核定位信号的分子基础。摩尔细胞101345-1353(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kosugi, S. et al. Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. Chem. Biol. 15, 940–949 (2008).Article

Kosugi,S.等人。通过基于活性的分析设计输入蛋白α/β核输入途径的肽抑制剂。。生物学杂志15940-949(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lott, K. & Cingolani, G. The importin β binding domain as a master regulator of nucleocytoplasmic transport. Biochim. Biophys. Acta 1813, 1578–1592 (2011).Article

Lott,K。&Cingolani,G。importinβ结合结构域作为核质转运的主要调节剂。生物化学。生物物理。Acta 18131578–1592(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Andersson, M. K. et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 9, 37 (2008).Article

Andersson,M.K.等人。多功能FUS,EWS和TAF15原癌蛋白显示细胞类型特异性表达模式,并参与细胞扩散和应激反应。BMC细胞生物学。9,37(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. & Gorlich, D. NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598 (1998).Article

Ribbeck,K.,Lipowsky,G.,Kent,H.M.,Stewart,M。&Gorlich,D。NTF2介导Ran的核进口。EMBO J.176587–6598(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lowe, A. R. et al. Importin-beta modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife https://doi.org/10.7554/eLife.04052 (2015).Humphrey, J. et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention.

Lowe,A.R。等人,Importin-beta以Ran依赖的方式调节核孔复合物的渗透性。埃利夫https://doi.org/10.7554/eLife.04052(2015年)。。

Nucleic Acids Res. 48, 6889–6905 (2020).Article .

核酸研究486889-6905(2020)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dini Modigliani, S., Morlando, M., Errichelli, L., Sabatelli, M. & Bozzoni, I. An ALS-associated mutation in the FUS 3’-UTR disrupts a microRNA-FUS regulatory circuitry. Nat. Commun. 5, 4335 (2014).Article

Dini Modigliani,S.,Morlando,M.,Errichelli,L.,Sabatelli,M。&Bozzoni,I。FUS 3'-UTR中与ALS相关的突变破坏了microRNA FUS调控电路。国家公社。54335(2014)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Ling, S.-C. et al. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. eLife 8, e40811 (2019).Article

Ling,S.-C.等人。在小鼠中压倒FUS自动调节会触发RNA代谢和自噬-溶酶体轴中毒性功能障碍的获得。eLife 8,e40811(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiu, H. et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J. Clin. Invest. 124, 981–999 (2014).Article

Qiu,H。等人。ALS相关突变FUS-R521C导致DNA损伤和RNA剪接缺陷。J、 临床。投资。124981-999(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyamoto, Y., Yamada, K. & Yoneda, Y. Importin α: a key molecule in nuclear transport and non-transport functions. J. Biochem. 160, 69–75 (2016).Article

Miyamoto,Y.,Yamada,K。&Yoneda,Y。Importinα:核转运和非转运功能中的关键分子。J、 生物化学。160,69-75(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Doll, S. G. & Cingolani, G. Importin α/β and the tug of war to keep TDP-43 in solution: quo vadis? Bioessays 44, e2200181 (2022).Article

Doll,S.G.,“Cingolani,G.Importinα/β和拔河比赛以保持TDP-43的解决方案:quo vadis?生物测定44,e2200181(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khalil, B. et al. Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy. Mol. Neurodegener. 17, 80 (2022).Article

Khalil,B。等人。FG核孔蛋白募集核输入受体以挽救TDP-43蛋白病的标志。。17,80(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).Article

Li,Y.R.,King,O.D.,Shorter,J.&Gitler,A.D。应激颗粒作为ALS发病机制的坩埚。J、 细胞生物学。201361-372(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanjuan-Ruiz, I. et al. Wild-type FUS corrects ALS-like disease induced by cytoplasmic mutant FUS through autoregulation. Mol. Neurodegener. 16, 61 (2021).Article

Sanjuan Ruiz,I。等人。野生型FUS通过自动调节纠正由细胞质突变FUS诱导的ALS样疾病。。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).Article

Görlich,D.,Panté,N.,Kutay,U.,Aebi,U。&Bischoff,F.R。确定RanGDP和RanGTP在核蛋白进口中的不同作用。EMBO J.155584–5594(1996)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Avendaño-Vázquez, S. E. et al. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 26, 1679–1684 (2012).Article

Avendaño-Vázquez,S.E.等人。TDP-43 mRNA水平的自动调节涉及转录,剪接和替代polyA位点选择之间的相互作用。Genes Dev.261679–1684(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011).Article

Ayala,Y.M.等人TDP-43通过负反馈环调节其mRNA水平。EMBO J.30277–288(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Suzuki, H. & Matsuoka, M. hnRNPA1 autoregulates its own mRNA expression to remain non-cytotoxic. Mol. Cell. Biochem. 427, 123–131 (2017).Article

Suzuki,H。&Matsuoka,M。hnRNPA1自动调节其自身的mRNA表达以保持无细胞毒性。摩尔电池。生物化学。427123-131(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

McGlincy, N. J. et al. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 11, 565 (2010).Article

McGlincy,N.J。等人。HeLa细胞中UPF1敲低的表达蛋白质组学揭示了由选择性剪接介导的hnRNP A2/B1的自动调节,导致无义介导的mRNA衰变。BMC基因组学11565(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, A. et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37, e97452 (2018).Britton, S. et al. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res.

。EMBO J 37,e97452(2018)。DNA损伤触发SAF-A和RNA生物发生因子从染色质中排除,并与R环去除相结合。核酸研究。

42, 9047–9062 (2014).Article .

429047–9062(2014)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gruijs da Silva, L. A. et al. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation. EMBO J. 41, e108443 (2022).Article

Gruijs da Silva,L.A。等人。与疾病相关的TDP-43过度磷酸化抑制TDP-43的浓缩和聚集。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696.e4622 (2021).Article

Hallegger,M。等人。TDP-43缩合特性指定了其RNA结合和调节库。细胞1844680–4696.e4622(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article

Schneider,C.A.,Rasband,W.S。和Eliceiri,K.W。NIH Image to ImageJ:25年的图像分析。自然方法9671-675(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article

Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinform. 22, 433 (2021).Article

Stirling,D.R.等人,《CellProfiler 4:速度、实用性和可用性的改进》。BMC生物信息。22433(2021)。文章

Google Scholar

谷歌学者

Kuchipudi, S. V. et al. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol. J. 9, 230 (2012).Article

Kuchipudi,S.V。等人18S rRNA是基于流感病毒感染细胞的实时PCR的可靠标准化基因。维罗尔。J、 。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank Diane Merry for generously providing the Flp-In T-Rex 293 cells. L.G. was supported by Dr. Ralph and Marian Falk Medical Research Trust, Frick Foundation for ALS Research, the National Institute of General Medical Sciences grant R35GM138109, and the National Institute of Neurological Disorders and Stroke grant RF1NS121143.

下载参考文献致谢我们感谢Diane Merry慷慨提供Flp-In T-Rex 293细胞。五十、 G.得到了Ralph博士和Marian Falk医学研究信托基金会,弗里克ALS研究基金会,国家普通医学科学研究所拨款R35GM138109以及国家神经疾病和中风研究所拨款RF1NS121143的支持。

G.C. is supported by grants R35GM140733 and R21NS128396. J.D. was supported by NIH grant T32 GM144302.Author informationAuthor notesThese authors contributed equally: Miyuki Hayashi, Amandeep Girdhar, Ying-Hui Ko.Authors and AffiliationsDepartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USAMiyuki Hayashi, Amandeep Girdhar, Kevin M.

G、 C.得到R35GM140733和R21NS128396赠款的支持。J、 D.得到了NIH资助T32 GM144302的支持。作者信息作者注意到这些作者做出了同样的贡献:Miyuki Hayashi,Amandeep Girdhar,Ying Hui Ko。作者和附属机构宾夕法尼亚州费城托马斯·杰斐逊大学生物化学与分子生物学系,USAMiyuki Hayashi,Amandeep Girdhar,Kevin M。

Kim, Jacquelyn A. DePierro, Joseph R. Buchler, Nikhita Arunprakash, Aditya Bajaj & Lin GuoDepartment of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USAYing-Hui Ko & Gino CingolaniDepartment of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USAJoseph R.

Kim,Jacquelyn A.DePierro,Joseph R.Buchler,Nikhita Arunprakash,Aditya Bajaj&Lin Guo阿拉巴马大学伯明翰分校生物化学与分子遗传学系,阿拉巴马州伯明翰,USAYing Hui Ko&Gino Cingolani美国宾夕法尼亚州费城托马斯杰斐逊大学神经科学系Joseph R。

BuchlerAuthorsMiyuki HayashiView author publicationsYou can also search for this author in.

BuchlerAuthorsMiyuki HayashiView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarAmandeep GirdharView author publicationsYou can also search for this author in

PubMed Google ScholarAmandeep GirdharView作者出版物您也可以在

PubMed Google ScholarYing-Hui KoView author publicationsYou can also search for this author in

PubMed Google ScholarYing Hui KoView作者出版物您也可以在

PubMed Google ScholarKevin M. KimView author publicationsYou can also search for this author in

PubMed Google ScholarKevin M.KimView作者出版物您也可以在

PubMed Google ScholarJacquelyn A. DePierroView author publicationsYou can also search for this author in

PubMed谷歌学者Jacquelyn A.DePierroView作者出版物您也可以在

PubMed Google ScholarJoseph R. BuchlerView author publicationsYou can also search for this author in

PubMed谷歌学者Joseph R.BuchlerView作者出版物您也可以在

PubMed Google ScholarNikhita ArunprakashView author publicationsYou can also search for this author in

PubMed Google ScholarNikhita ArunprakashView作者出版物您也可以在

PubMed Google ScholarAditya BajajView author publicationsYou can also search for this author in

PubMed谷歌学术评论BajajView作者出版物您也可以在

PubMed Google ScholarGino CingolaniView author publicationsYou can also search for this author in

PubMed Google ScholarGino CingolaniView作者出版物您也可以在

PubMed Google ScholarLin GuoView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsM.H., A.G., and Y.H.K. performed the experimental studies and carried out the analysis. K.M.K., J.A.D., J.R.B., N.A., and A.B. performed the experimental studies. M.H., G.C., and L.G. wrote the manuscript. G.C. and L.G. supervised the work.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献。H、 ,A.G.和Y.H.K.进行了实验研究并进行了分析。K、 。M、 H.,G.C。和L.G.撰写了手稿。G、 C.和L.G.监督了这项工作。通讯作者通讯。

Gino Cingolani or Lin Guo.Ethics declarations

吉诺·辛戈拉尼或林果。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Yuh Min Chook and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Yuh Min Chook和其他匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleHayashi, M., Girdhar, A., Ko, YH. et al. Engineered NLS-chimera downregulates expression of aggregation-prone endogenous FUS.

转载和许可本文引用本文Hayashi,M.,Girdhar,A.,Ko,YH。等。工程化NLS嵌合体下调易聚集的内源性FUS的表达。

Nat Commun 15, 7887 (2024). https://doi.org/10.1038/s41467-024-52151-6Download citationReceived: 08 December 2023Accepted: 27 August 2024Published: 10 September 2024DOI: https://doi.org/10.1038/s41467-024-52151-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》157887(2024)。https://doi.org/10.1038/s41467-024-52151-6Download引文收到日期:2023年12月8日接受日期:2024年8月27日发布日期:2024年9月10日OI:https://doi.org/10.1038/s41467-024-52151-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。